Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system - Laboratoire ROBERVAL Accéder directement au contenu
Thèse Année : 2017

Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system

Contribution au contexte de micro-usine : conception d’un système de convoyage électromagnétique flexible

Neha Arora
  • Fonction : Auteur
  • PersonId : 1144311
  • IdRef : 263142558

Résumé

The aim of the thesis is to provide a flexible conveyor system for moving micro-objects. The system may need to be integrated into a micro-factory which requires high reconfigurability and low power consumption. These two criteria have been considered in the design of the conveyor system. The conveyor is based on a planar electromagnetic actuator developed in the Laboratoire Roberval of the UTC, and on smart surface composed of 5 x 5 unit cells; each ceii moves th movable part in the two directions of the plane. An analytical model of the actuator has been developed in order to calculate the electromagnetic forces and the displacement of the mobile part. This modei has been used during the design phase of the conveying system. An experimental prototype is then manufactured and tested which has validated the proposed principle of operation. Experimental tests have shown the ability to perform wide area displacement in both directions of the plane. Numerous experimental tests (control in open loop and closed loop performance characterization as straightness of movement, position repeatability, coupled- decoupled analysis...) have been done to qualify the performance of the conveyor system. Experiments for rotations about the axis perpendicular to the olane have also been performed successfully. Work synthesis: - Static modeling under RADIA was developed in order to design the conveyor surface especially for the transitio zone between two neighboring cells. A dynamic modeling under MATLAB allowed to simulate the behavior of single axis motor in open loop and closed loop control. - A conveyor surface prototype, consisting of a multilayer printed circuit board (4 layers) of dimensions 130 mm x 130 mm, was designed under EAGLE software. The influence of the distance between the first two layers was studied using the developed models to ensure uniform displacement in both the directions. - The experimental tests (with LABVIEW interface) of an elementary cell of the intelligent surface with a moving part composed of two orthogonal magnetic motors has been carried out that allowed to validate the operation of the conveying system in both directions of the plane. - Another series of tests with LABVIEW interface were carried out in order to validate experimentally the displacement of the mobile part with the smart surface at the transition zones between the elementary cells. - These experimental tests showed displacements of great extent in the two directions of the plane and of rotation about the axis perpendicular to the plane. - Long displacements and rotations of the moving part were measured using image processing algorithm developed in MATLAB. - At the same time, a high resolution fiber optic displacement sensor was studied that can be integrated into the conveyor surface locally for the precise positioning. A robust signal processing algorithm for high resolution displacement measurement was developed. In this algorithm, - The optimum position of the movable part is determined in order to obtain a continuous switching betwee the two fiber optic probes ; - The usable parts of the signals obtained from two probes were then filtered to measure the displacement using interpolation method ; The algorithm is implemented under MATLAB and validated by the implementation of the experimental signals. The work have been published in an international journal (Computers in Industry (COMIND)) and presented at international congresses (IEEE Sensors, REM Mechatronics, AIM, IWMF) during the years 2011 to 2016.
L’objectif de la thèse est de réaliser un système de convoyage flexible permettant de déplacer des micro-objets. Ce système pourra être amené à être intégré dans une micro-usine ce qui nécessite une forte reconfigurabilité et une faible consommation d’énergie. Ces deux critères ont donc été considérés lors de la conception du système de convoyage. Ce dernier est basé sur un actionneur planaire électromagnétique, développé au sein du laboratoire Roberval, et sur une surface intelligente composée de 5 × 5 cellules élémentaires permettant chacune de déplacer la partie mobile dans les deux directions du plan et des rotations autour de l'axe perpendiculaire au plan. Un modèle analytique de l’actionneur a été développé afin de calculer les efforts électromagnétiques ainsi que le déplacement de la partie mobile. Ce modèle a été utilisé lors de la phase de conception du système de convoyage. Un prototype expérimental a ensuite été fabriqué et testé ce qui a permis de valider le principe de fonctionnement proposé. Des tests expérimentaux ont montré la possibilité de réaliser des déplacements de grande étendue dans les deux directions du plan. De multiples tests expérimentaux (pilotage en boucle ouverte, caractérisation des performances telles que rectitude de déplacement, répétabilité de positionnement, charge déplaçable, …) a été réalisée afin de qualifier les performances du système de convoyage. Les points sur la réalisation : - Une modélisation statique sous RADIA a été développée afin de concevoir la surface intelligente notamment la zone de transition entre deux cellules voisines. Une modélisation dynamique réalisée sous MATLAB a permis de simuler le comportement d’un moteur en boucle ouverte et en boucle fermée. - Un prototype de surface intelligente, composé d’un circuit imprimé multicouches (4 couches) de dimensions 130 mm x 130 mm, a été conçu sous EAGLE software. L’influence de la distance entre les deux premières couches a été étudiée à l’aide des modèles développés afin d'assurer un déplacement uniforme dans les deux directions. - Un test expérimental avec LABVIEW interface d'une cellule élémentaire de la surface intelligente avec une partie mobile composée de deux moteurs magnétiques orthogonaux a été réalisé et a permis de valider le fonctionnement du système de convoyage dans les deux directions du plan. - Une autre série de tests avec LABVIEW interface a été réalisée afin de valider expérimentalement le déplacement de la partie mobile avec la surface intelligente au niveau des zones de transition entre les cellules élémentaires. Ces tests expérimentaux ont montré des déplacements de grande étendue dans les deux directions du plan et de rotation autour de l'axe perpendiculaire au plan. Des déplacements de grande étendue et des rotations de la partie mobile ont été mesurés à l’aide d’une méthode de traitement d'image réalisée sous MATLAB. - Parallèlement, on a étudié un capteur à déplacement optique à haute résolution qui peut être intégré dans le convoyeur. Un algorithme robuste pour le traitement du signal de capteur à fibres optiques à haute résolution pour mesurer de déplacement est développé. Dans cet algorithme, la position optimale de la partie mobile est déterminée pour obtenir un basculement sans arrêt entre les sondes et l'algorithme est implémenté sous MATLAB et validée par la mise en œuvre des signaux expérimentaux. Ces travaux de thèse ont été publiés dans une revue internationale (Computers in Industry (COMIND)) et présentés dans des congrès internationaux (IEEE Sensors, REM Mechatronics, AIM, IWMF) pendant les années 2011 à 2016.
Fichier principal
Vignette du fichier
These_UTC_Neha_Arora.pdf (10.63 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03702035 , version 1 (22-06-2022)

Identifiants

  • HAL Id : tel-03702035 , version 1

Citer

Neha Arora. Contribution to the concept of micro factory : design of a flexible electromagnetic conveyor system. Other. Université de Technologie de Compiègne, 2017. English. ⟨NNT : 2017COMP2347⟩. ⟨tel-03702035⟩
32 Consultations
34 Téléchargements

Partager

Gmail Facebook X LinkedIn More