Convex and non-convex regularization methods for spatial point processes intensity estimation - [Labex] PERSYVAL-lab
Article Dans Une Revue Electronic Journal of Statistics Année : 2018

Convex and non-convex regularization methods for spatial point processes intensity estimation

Résumé

This paper deals with feature selection procedures for spatial point processes intensity estimation. We consider regularized versions of estimating equations based on Campbell theorem derived from two classical functions: Poisson likelihood and logistic regression likelihood. We provide general conditions on the spatial point processes and on penalty functions which ensure consistency, sparsity and asymptotic normality. We discuss the numerical implementation and assess finite sample properties in a simulation study. Finally, an application to tropical forestry datasets illustrates the use of the proposed methods.
Fichier principal
Vignette du fichier
euclid.ejs.1522288952.pdf (787.85 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01484779 , version 1 (09-03-2017)
hal-01484779 , version 2 (24-08-2018)

Identifiants

Citer

Achmad Choiruddin, Jean-François Coeurjolly, Frédérique Letué. Convex and non-convex regularization methods for spatial point processes intensity estimation. Electronic Journal of Statistics , 2018, 12 (1), pp.1210-1255. ⟨10.1214/18-EJS1408⟩. ⟨hal-01484779v2⟩
579 Consultations
216 Téléchargements

Altmetric

Partager

More