3D MHD simulations and synthetic radio emission from an oblique rotating magnetic massive star - Maison de la Simulation Accéder directement au contenu
Article Dans Une Revue Monthly Notices of the Royal Astronomical Society Année : 2019

3D MHD simulations and synthetic radio emission from an oblique rotating magnetic massive star

Résumé

We have performed 3D isothermal MHD simulation of a magnetic rotating massive star with a non-zero dipole obliquity and predicted the radio/sub-mm observable light curves and continuum spectra for a frequency range compatible with ALMA. From these results we also compare the model input mass-loss to that calculated from the synthetic thermal emission. Spherical and cylindrical symmetry is broken due to the obliquity of the stellar magnetic dipole resulting in an inclination and phase dependence of both the spectral flux and inferred mass-loss rate, providing testable predictions of variability for oblique rotator. Both quantities vary by factors between 2 and 3 over a full rotational period of the star, demonstrating that the role of rotation as critical in understanding the emission. This illustrates the divergence from a symmetric wind, resulting in a two-armed spiral structure indicative of an oblique magnetic rotator. We show that a constant spectral index, α, model agrees well with our numerical prediction for a spherical wind for $ν$ < 10$^3$ GHz; however it is unable to capture the behaviour of emission at $ν$ > 10$^3$ GHz. As such we caution the use of such constant α models for predicting emission from non-spherical winds such as those which form around magnetic massive stars.
Fichier principal
Vignette du fichier
DaStDo19.pdf (7 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-02277892 , version 1 (11-01-2023)

Identifiants

Citer

Simon Daley-Yates, Ian R. Stevens, Asif Ud-Doula. 3D MHD simulations and synthetic radio emission from an oblique rotating magnetic massive star. Monthly Notices of the Royal Astronomical Society, 2019, 489 (3), pp.3251-3268. ⟨10.1093/mnras/stz1982⟩. ⟨hal-02277892⟩
57 Consultations
1 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More