CRAWD: Sampling-Based Estimation of Count-Distinct SPARQL Queries - Laboratoire des Sciences du Numérique de Nantes
Communication Dans Un Congrès Année : 2024

CRAWD: Sampling-Based Estimation of Count-Distinct SPARQL Queries

Résumé

Count-distinct SPARQL queries compute the number of unique values in the results of a query executed on a Knowledge Graph. However, counting the exact number of distinct values is often computationally demanding and time-consuming. As a result, these queries often fail on public SPARQL endpoints due to fair use policies. In this paper, we propose CRAWD, a new sampling-based approach designed to approximate count-distinct SPARQL queries. CRAWD significantly improves sampling efficiency and allows feasible execution of count-distinct SPARQL queries on public SPARQL endpoints, considerably improving existing methods.
Fichier principal
Vignette du fichier
paper.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04726343 , version 1 (08-10-2024)

Identifiants

  • HAL Id : hal-04726343 , version 1

Citer

Thi Hoang Thi Pham, Pascal Molli, Brice Nédelec, Hala Skaf-Molli, Julien Aimonier-Davat. CRAWD: Sampling-Based Estimation of Count-Distinct SPARQL Queries. International Semantic Web Conference, Nov 2024, Maryland, United States. ⟨hal-04726343⟩
66 Consultations
42 Téléchargements

Partager

More