Tail index estimation, concentration and adaptivity - Laboratoire de Probabilités, Statistique et Modélisation
Article Dans Une Revue Electronic Journal of Statistics Année : 2015

Tail index estimation, concentration and adaptivity

Résumé

This paper presents an adaptive version of the Hill estimator based on Lespki's model selection method. This simple data-driven index selection method is shown to satisfy an oracle inequality and is checked to achieve the lower bound recently derived by Carpentier and Kim. In order to establish the oracle inequality, we derive non-asymptotic variance bounds and concentration inequalities for Hill estimators. These concentration inequalities are derived from Talagrand's concentration inequality for smooth functions of independent exponentially distributed random variables combined with three tools of Extreme Value Theory: the quantile transform, Karamata's representation of slowly varying functions, and Renyi's characterisation for the order statistics of exponential samples. The performance of this computationally and conceptually simple method is illustrated using Monte-Carlo simulations.
Fichier principal
Vignette du fichier
1503.05077v3.pdf (1.03 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01263286 , version 1 (06-12-2024)

Identifiants

Citer

S. Boucheron, M. Thomas. Tail index estimation, concentration and adaptivity. Electronic Journal of Statistics , 2015, 9 (2), pp.2751-2792. ⟨10.1214/15-EJS1088⟩. ⟨hal-01263286⟩
43 Consultations
0 Téléchargements

Altmetric

Partager

More