Spectral (Isotropic) Manifolds and Their Dimension - Archive ouverte HAL Access content directly
Journal Articles Journal d'analyse mathématique Year : 2016

Spectral (Isotropic) Manifolds and Their Dimension

(1, 2) , (3) , (4)
1
2
3
4

Abstract

A set of symmetric matrices whose ordered vector of eigenvalues belongs to a fixed set in Rn is called spectral or isotropic. In this paper, we establish that every locally symmetric submanifold M of Rn gives rise to a spectral manifold, for k ∈ {2, 3, . . . , ∞, ω}. An explicit formula for the dimension of the spectral manifold in terms of the dimension and the intrinsic properties of M is derived.
Fichier principal
Vignette du fichier
spectral-manifolds.pdf (407.98 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00972281 , version 1 (03-04-2014)

Identifiers

Cite

Aris Danilidis, Jérôme Malick, Hristo Sendov. Spectral (Isotropic) Manifolds and Their Dimension. Journal d'analyse mathématique, 2016, 128 (1), pp.369-397. ⟨10.1007/s11854-016-0013-0⟩. ⟨hal-00972281⟩
323 View
180 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More