Pricing and hedging for a sticky diffusion - Laboratoire Jean Kuntzmann
Pré-Publication, Document De Travail Année : 2024

Pricing and hedging for a sticky diffusion

Résumé

We introduce a financial market model featuring a risky asset whose price follows a sticky geometric Brownian motion and a riskless asset that grows with a constant interest rate $r\in \mathbb R $. We prove that this model satisfies No Arbitrage (NA) and No Free Lunch with Vanishing Risk (NFLVR) only when $r=0 $. Under this condition, we derive the corresponding arbitrage-free pricing equation, assess replicability and representation of the replication strategy. We then show that all locally bounded replicable payoffs for the standard Black--Scholes model are also replicable for the sticky model. Last, we evaluate via numerical experiments the impact of hedging in discrete time and of misrepresenting price stickiness.
Fichier principal
Vignette du fichier
main_R2_final.pdf (758.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04756051 , version 1 (28-10-2024)

Licence

Identifiants

Citer

Alexis Anagnostakis. Pricing and hedging for a sticky diffusion. 2024. ⟨hal-04756051⟩
63 Consultations
13 Téléchargements

Altmetric

Partager

More