Learning properties of quantum states without the IID assumption - Laboratoire d'Informatique de Paris 6
Article Dans Une Revue Nature Communications Année : 2024

Learning properties of quantum states without the IID assumption

Résumé

We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states. We prove that, given any learning problem (under reasonable assumptions), an algorithm designed for i.i.d. input states can be adapted to handle input states of any nature, albeit at the expense of a polynomial increase in training data size (aka sample complexity). Importantly, this polynomial increase in sample complexity can be substantially improved to polylogarithmic if the learning algorithm in question only requires non-adaptive, single-copy measurements. Among other applications, this allows us to generalize the classical shadow framework to the non-i.i.d. setting while only incurring a comparatively small loss in sample efficiency. We leverage permutation invariance and randomized single-copy measurements to derive a new quantum de Finetti theorem that mainly addresses measurement outcome statistics and, in turn, scales much more favorably in Hilbert space dimension.
Fichier principal
Vignette du fichier
s41467-024-53765-6.pdf (1.14 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04824975 , version 1 (07-12-2024)

Licence

Identifiants

Citer

Omar Fawzi, Richard Kueng, Damian Markham, Aadil Oufkir. Learning properties of quantum states without the IID assumption. Nature Communications, 2024, 15 (1), pp.9677. ⟨10.1038/s41467-024-53765-6⟩. ⟨hal-04824975⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More