The critical Karp-Sipser core of Erdős-Rényi random graphs - Laboratoire d'Analyse, Géométrie et Applications
Pré-Publication, Document De Travail Année : 2024

The critical Karp-Sipser core of Erdős-Rényi random graphs

Résumé

The Karp-Sipser algorithm consists in removing recursively the leaves as well their unique neighbours and all isolated vertices of a given graph. The remaining graph obtained when there is no leaf left is called the Karp-Sipser core. When the underlying graph is the classical sparse Erdős-Rényi random graph G[n, c/n], it is known to exhibit a phase transition at c = e. We show that at criticality, the Karp-Sipser core has size of order n ^{3/5} , which proves a conjecture of Bauer and Golinelli. We provide the asymptotic law of this renormalized size as well as a description of the distribution of the core as a graph. Our approach relies on the differential equation method, and builds up on a previous work on a configuration model with bounded degrees.
Fichier principal
Vignette du fichier
KS_ER.pdf (544.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04844150 , version 1 (17-12-2024)

Licence

Identifiants

Citer

Thomas Budzinski, Alice Contat. The critical Karp-Sipser core of Erdős-Rényi random graphs. 2024. ⟨hal-04844150⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More