Conductance of a subdiffusive random weighted tree - Laboratoire d'Analyse, Géométrie et Applications
Article Dans Une Revue ALEA : Latin American Journal of Probability and Mathematical Statistics Année : 2023

Conductance of a subdiffusive random weighted tree

Résumé

We work on a Galton-Watson tree with random weights, in the so-called "subdiffusive" regime. We study the rate of decay of the conductance between the root and the n-th level of the tree, as n goes to infinity, by a mostly analytic method. It turns out the order of magnitude of the expectation of this conductance can be less than 1/n (in contrast with the results of Addario-Berry-Broutin-Lugosi and Chen-Hu-Lin), depending on the value of the second zero of the characteristic function associated to the model.

We also prove the almost sure (and in L p for some p > 1) convergence of this conductance divided by its expectation towards the limit of the additive martingale.

Fichier principal
Vignette du fichier
conductance-subdiffusive-rousselin-alea-2023.pdf (566.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04825036 , version 1 (07-12-2024)

Identifiants

Citer

Pierre Rousselin. Conductance of a subdiffusive random weighted tree. ALEA : Latin American Journal of Probability and Mathematical Statistics, 2023, 20 (1), pp.885. ⟨10.30757/ALEA.v20-32⟩. ⟨hal-04825036⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More