Contribution à la résolution de problèmes d'optimisation combinatoire : méthodes séquentielles et parallèles - Archive ouverte HAL Access content directly
Theses Year : 2012

Contribution à la résolution de problèmes d'optimisation combinatoire : méthodes séquentielles et parallèles

(1)
1

Abstract

Combinatorial optimization problems are difficult problems whose solution by exact methods can be time consuming or not realistic. The use of heuristics permits one to obtain good quality solutions in a reasonable time. Heuristics are also very useful for the development of exact methods based on branch and bound techniques. The first part of this thesis concerns the Multiple Knapsack Problem (MKP). We propose here a heuristic called RCH which yields a good solution for the MKP problem. This approach is compared to the MTHM heuristic and CPLEX solver. The second part of this thesis concerns parallel implementation of an exact method for solving combinatorial optimization problems like knapsack problems on GPU architecture. The parallel implementation of the Branch and Bound method via CUDA for knapsack problems is proposed. Experimental results show a speedup of 51 for difficult problems using a Nvidia Tesla C2050 (448 cores). A CPU-GPU implementation of the simplex method for solving linear programming problems is also proposed. This implementation offers a speedup around 12.7 on a Tesla C2050 board. Finally, we propose a multi-GPU implementation of the simplex algorithm via CUDA. An efficiency of 96.5% is obtained when passing from one GPU to two GPUs.
Les problèmes d'optimisation combinatoire sont souvent des problèmes très difficiles dont la résolution par des méthodes exactes peut s'avérer très longue ou peu réaliste. L'utilisation de méthodes heuristiques permet d'obtenir des solutions de bonne qualité en un temps de résolution raisonnable. Les heuristiques sont aussi très utiles pour le développement de méthodes exactes fondées sur des techniques d'évaluation et de séparation. Nous nous sommes intéressés dans un premier temps à proposer une méthode heuristique pour le problème du sac à dos multiple MKP. L'approche proposée est comparée à l'heuristique MTHM et au solveur CPLEX. Dans un deuxième temps nous présentons la mise en œuvre parallèle d'une méthode exacte de résolution de problèmes d'optimisation combinatoire de type sac à dos sur architecture GPU. La mise en œuvre CPU-GPU de la méthode de Branch and Bound pour la résolution de problèmes de sac à dos a montré une accélération de 51 sur une carte graphique Nvidia Tesla C2050. Nous présentons aussi une mise en œuvre CPU-GPU de la méthode du Simplexe pour la résolution de problèmes de programmation linéaire. Cette dernière offre une accélération de 12.7 sur une carte graphique Nvidia Tesla C2050. Enfin, nous proposons une mise en œuvre multi-GPU de l'algorithme du Simplexe, mettant à contribution plusieurs cartes graphiques présentes dans une même machine (2 cartes Nvidia Tesla C2050 dans notre cas). Outre l'accélération obtenue par rapport à la mise en œuvre séquentielle de la méthode du Simplexe, une efficacité de 96.5 % est obtenue, en passant d'une carte à deux cartes graphiques.
Fichier principal
Vignette du fichier
These_LALAMI.pdf (899.27 Ko) Télécharger le fichier
Loading...

Dates and versions

tel-00748546 , version 1 (05-11-2012)

Identifiers

  • HAL Id : tel-00748546 , version 1

Cite

Mohamed Esseghir Lalami. Contribution à la résolution de problèmes d'optimisation combinatoire : méthodes séquentielles et parallèles. Automatique. Université Paul Sabatier - Toulouse III, 2012. Français. ⟨NNT : ⟩. ⟨tel-00748546⟩
1287 View
1953 Download

Share

Gmail Facebook Twitter LinkedIn More