Combining Data-Driven and Knowledge-Based AI Paradigms for Engineering AI-Based Safety-Critical Systems - Archive ouverte HAL Access content directly
Conference Papers Year :

Combining Data-Driven and Knowledge-Based AI Paradigms for Engineering AI-Based Safety-Critical Systems

(1) , (2) , (3, 4) , (5, 4)
1
2
3
4
5
Juliette Mattioli
Souhaiel Khalfaoui
  • Function : Author
  • PersonId : 1131105
Bertrand Leroy
  • Function : Author

Abstract

The development of AI-based systems entails a manifold of doubled-hard challenges. They are mainly due, on one side, to the technical debt of involved engineering disciplines (systems, safety, security), their inherent complexity, their yetto-solve concerns, and, on the other side, to the emergent risks of AI autonomy, the trade-offs between AI heuristics vs. required determinism, and, overall, the difficulty to define, characterize, assess and prove that AI-based systems are sufficiently safe and trustworthy. Despite the vast amount of research contributions and the undeniable progress in many fields over the last decades, a gap still exists between experimental and certifiable AIs. The present paper aims at bridging this gap "by design". Considering engineering paradigms as a basis to specify, relate and infer knowledge, a new paradigm is proposed to achieve AI certification. The proposed paradigm recognizes existing AI approaches, namely connectionist, symbolic, and hybrid, and proffers to leverage their essential traits captured as knowledge. A conceptual meta-body is thus obtained respectively containing categories for Data-, Knowledge-and Hybrid-driven. Since it is observed that research strays from Knowledge-driven and it rather strives for Data-driven approaches, our paradigm calls for empowering Knowledge Engineering relying upon Hybrid-driven approaches to improve their coupling and benefit from their complementarity.
Fichier principal
Vignette du fichier
SafeAI2022_Mattioli-Pedroza-Khalfaoui-Leroy.pdf (572.3 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03622260 , version 1 (28-03-2022)

Identifiers

  • HAL Id : hal-03622260 , version 1

Cite

Juliette Mattioli, Gabriel Pedroza, Souhaiel Khalfaoui, Bertrand Leroy. Combining Data-Driven and Knowledge-Based AI Paradigms for Engineering AI-Based Safety-Critical Systems. Workshop on Artificial Intelligence Safety (SafeAI), Feb 2022, virtual, Canada. ⟨hal-03622260⟩
125 View
166 Download

Share

Gmail Facebook Twitter LinkedIn More