A Misbehavior Authority System for Sybil Attack Detection in C-ITS
Abstract
Global misbehavior detection is an important back-end mechanism in Cooperative Intelligent Transport Systems (C-ITS). It is based on the local misbehavior detection information sent by Vehicle's On-Board Units (OBUs) and by RoadSide Units (RSUs) called Misbehavior Reports (MBRs) to the Mis-behavior Authority (MA). By analyzing these reports, the MA provides more accurate and robust misbehavior detection results. Sybil attacks pose a significant threat to the C-ITS systems. Their detection and identification may be inaccurate and confusing. In this work, we propose a Machine Learning (ML) based solution for the internal detection process of the MA. We show through extensive simulation that our solution is able to precisely identify the type of the Sybil attack and provide promising detection accuracy results.
Origin : Files produced by the author(s)
Loading...