Difference algebraic relations among solutions of linear differential equations - Institut de Mathématiques de Toulouse
Article Dans Une Revue Journal of the Institute of Mathematics of Jussieu Année : 2017

Difference algebraic relations among solutions of linear differential equations

Résumé

We extend and apply the Galois theory of linear differential equations equipped with the action of an endomorphism. The Galois groups in this Galois theory are difference algebraic groups and we use structure theorems for these groups to characterize the possible difference algebraic relations among solutions of linear differential equations. This yields tools to show that certain special functions are difference transcendent. One of our main results is a characterization of discrete integrability of linear differential equations with almost simple usual Galois group, based on a structure theorem for the Zariski dense difference algebraic subgroups of almost simple algebraic groups, which is a schematic version, in characteristic zero, of a result due to Z. Chatzidakis, E. Hrushovski and Y. Peterzil.
Fichier principal
Vignette du fichier
1310.1289v1.pdf (648.78 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-01691112 , version 1 (04-11-2024)

Identifiants

Citer

Lucia Di Vizio, Charlotte Hardouin, Michael Wibmer. Difference algebraic relations among solutions of linear differential equations. Journal of the Institute of Mathematics of Jussieu, 2017, 16 (1), pp.59-119. ⟨10.1017/S1474748015000080⟩. ⟨hal-01691112⟩
228 Consultations
5 Téléchargements

Altmetric

Partager

More