Fixing non-positive energies in higher-order homogenization - Institut Jean Le Rond d'Alembert
Pré-Publication, Document De Travail Année : 2024

Fixing non-positive energies in higher-order homogenization

Manon Thbaut
Basile Audoly
Claire Lestringant

Résumé

Energy functionals produced by second-order homogenization of periodic elastic structures commonly feature negative gradient moduli. We show that this undesirable property is caused by the truncation of the energy expansion in powers of the small scale separation parameter. By revisiting Cholesky's LDLT decomposition, we propose an alternative truncation method that restores positivity while preserving the order of accuracy. We illustrate this method on a variety of periodic structures, both continuous and discrete, and derive compact analytical expressions of the homogenized energy that are positive and accurate to second order. The method can also cure the energy functionals produced by second-order dimension reduction, which suffer similar non-positivity issues. It naturally extends beyond second order.
Fichier principal
Vignette du fichier
cholesky-truncation.pdf (472.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04760885 , version 1 (30-10-2024)

Licence

Identifiants

  • HAL Id : hal-04760885 , version 1

Citer

Manon Thbaut, Basile Audoly, Claire Lestringant. Fixing non-positive energies in higher-order homogenization. 2024. ⟨hal-04760885⟩
37 Consultations
8 Téléchargements

Partager

More