Bayesian Optimisation of a Metasurface using a Penalised Objective Function - Archive ouverte HAL Access content directly
Conference Papers Year :

Bayesian Optimisation of a Metasurface using a Penalised Objective Function

Abstract

This study formulates the design of a metasurface as an unconstrained optimisation problem. The objective function is assumed to be expensive to evaluate and the performance of the optimisation process is assessed by the number of objective function evaluations. This characteristic of the problem motivates the use of a bayesian optimisation strategy called Efficient Global Optimisation (EGO). An undesirable modeling property of a natural objective function is solved by jointly minimising a necessary condition of optimality. We show numerically that penalising the objective improves the speed and robustness of the optimisation process.
Fichier principal
Vignette du fichier
BO_FSS_ROADEF_1.pdf (588.03 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03595256 , version 1 (03-03-2022)

Identifiers

  • HAL Id : hal-03595256 , version 1

Cite

Kilian Bihannic, Jérémy Omer, Renaud Loison, Guillaume Reille. Bayesian Optimisation of a Metasurface using a Penalised Objective Function. 23ème congrès annuel de la Société Française de Recherche Opérationnelle et d'Aide à la Décision, INSA Lyon, Feb 2022, Villeurbanne - Lyon, France. ⟨hal-03595256⟩
72 View
26 Download

Share

Gmail Facebook Twitter LinkedIn More