Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing - Archive ouverte HAL Access content directly
Conference Papers Year :

Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing

(1) , (2) , (2) , (3, 4) , (4) , (5, 6) , (3) , (1)
1
2
3
4
5
6

Abstract

Accurate segmentation of cerebral structures remains, after two decades of research, a complex task. In particular, obtaining satisfactory results in terms of topology, in addition to quantitative and geometrically correct properties is still an ongoing issue. In this paper, we investigate how recent advances in multilabel topology and homotopy-type preserving transformations can be involved in the development of multiscale topological modelling of brain structures, and topology-based post-processing of segmentation maps of brain MR images. In this context, a preliminary study and a proof-of-concept are presented.
Fichier principal
Vignette du fichier
Tor-Diez ISMM 2019.pdf (256.69 Ko) Télécharger le fichier
Vignette du fichier
Tor Diez ISMM 2019 Poster.pdf (1010.69 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01982972 , version 1 (23-03-2019)

Identifiers

Cite

Carlos Tor-Díez, Sylvain Faisan, Loïc Mazo, Nathalie Bednarek, Hélène Meunier, et al.. Multilabel, multiscale topological transformation for cerebral MRI segmentation post-processing. International Symposium on Mathematical Morphology (ISMM), 2019, Saarbrücken, Germany. pp.471-482, ⟨10.1007/978-3-030-20867-7_36⟩. ⟨hal-01982972⟩
159 View
138 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More