Analytical obstructions to the weak approximation of Sobolev mappings into manifolds - Institut Camille Jordan
Pré-Publication, Document De Travail Année : 2024

Analytical obstructions to the weak approximation of Sobolev mappings into manifolds

Résumé

For any integer $ p \geq 2 $, we construct a compact Riemannian manifold $ \mathcal{N} $ , such that if $ \dim \mathcal{M} \geq p $, there is a map in the Sobolev space of mappings $ W^{1,p} (\mathcal{M}, \mathcal{N}) $ which is not a weak limit of smooth maps into $ \mathcal{N} $ due to a mechanism of analytical obstruction. For $ p = 4n -1 $, the target manifold can be taken to be the sphere $ \mathbb{S}^{2n} $ thanks to the construction by Whitehead product of maps with nontrivial Hopf invariant, generalizing the result by Bethuel for $ p = 4n -1 = 3 $. The results extend to higher order Sobolev spaces $ W^{s,p} $, with $ s \in \mathbb{R} $, $ s \geq 1 $, $ sp \in \mathbb{N} $, and $ sp \geq 2 $.

Fichier principal
Vignette du fichier
wkw1pmctrex.pdf (682.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04843303 , version 1 (17-12-2024)

Identifiants

  • HAL Id : hal-04843303 , version 1

Citer

Antoine Detaille, Jean van Schaftingen. Analytical obstructions to the weak approximation of Sobolev mappings into manifolds. 2024. ⟨hal-04843303⟩
0 Consultations
0 Téléchargements

Partager

More