Spectral sequences of a Morse shelling - Algèbre, géométrie, logique
Article Dans Une Revue Homology, Homotopy and Applications Année : 2022

Spectral sequences of a Morse shelling

Résumé

We recently introduced a notion of tilings of geometric realizations of finite relative simplicial complexes and related those tilings to the discrete Morse theory of R. Forman, especially when they have the property of being shellable, a property shared by the classical shellable complexes. We now observe that every such tiling supports a quiver which is acyclic precisely when the tiling is shellable and then, that every shelling induces two spectral sequences which converge to the relative (co)homology of the complex. Their first pages are free modules over the critical tiles of the tiling.
Fichier principal
Vignette du fichier
Spectral.pdf (312.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03036638 , version 1 (02-12-2020)
hal-03036638 , version 2 (26-11-2021)

Identifiants

Citer

Jean-Yves Welschinger. Spectral sequences of a Morse shelling. Homology, Homotopy and Applications, 2022, 24 (2), pp.241-254. ⟨10.4310/HHA.2022.v24.n2.a11⟩. ⟨hal-03036638v2⟩
111 Consultations
82 Téléchargements

Altmetric

Partager

More