Community-Aware Node Ranking in Complex Networks - Laboratoire Interdisciplinaire Carnot de Bourgogne
Communication Dans Un Congrès Année : 2024

Community-Aware Node Ranking in Complex Networks

Stephany Rajeh

Résumé

Centrality measures are widely used to rank influential nodes in complex networks. However, traditional ranking schemes often concentrate top-ranked nodes within the same region, limiting their effectiveness in network-wide influence. To address this limitation, we propose a community-aware ranking scheme that distributes influential nodes across different communities, ensuring broader coverage. We evaluate the proposed scheme using the Susceptible-Infected-Recovered (SIR) model on both synthetic and real-world networks across six centrality measures. Our results demonstrate that the community-aware ranking consistently achieves a larger outbreak size compared to the classical descending order scheme, making it more effective for applications such as viral marketing, misinformation control, and vaccination strategies. This approach is adaptable to various network types and centrality measures, offering a robust tool for enhancing diffusion processes.
Fichier principal
Vignette du fichier
ComplexNetworkStephanyRanking.pdf (1.35 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04755478 , version 1 (27-10-2024)

Identifiants

  • HAL Id : hal-04755478 , version 1

Citer

Stephany Rajeh, Hocine Cherifi. Community-Aware Node Ranking in Complex Networks. International Conference on Complex Networks and Their Applications, Dec 2024, Istanbul, Turkey. ⟨hal-04755478⟩
25 Consultations
23 Téléchargements

Partager

More