Henri Poincaré et l'espace-temps conventionnel - Archive ouverte HAL Access content directly
Journal Articles Cahiers de philosophie de l'université de Caen Year : 2008

Henri Poincaré et l'espace-temps conventionnel

(1)
1

Abstract

According to the conventionalist doctrine of space elaborated by the French philosopher-scientist Henri Poincaré in the 1890s, the geometry of physical space is a matter of definition, not of fact. Poincaré's Hertz-inspired view of the role of hypothesis in science guided his interpretation of the theory of relativity (1905), which he found to be in violation of the axiom of free mobility of invariable solids. In an effort to save the Euclidean geometry that relied on this axiom, Poincaré extended the purview of his doctrine of space to cover both space and time. The centerpiece of this new doctrine is what he called the ``principle of physical relativity,'' which holds the laws of mechanics to be covariant with respect to a certain group of
transformations. For Poincaré, the invariance group of classical mechanics defined physical space and time (Galilei spacetime), but he admitted that one could also define physical space and time in virtue of the invariance group of relativistic mechanics (Minkowski spacetime). Either way, physical space and time are the result of a convention.
Dans les années 1890, Henri Poincaré élabora une doctrine de l'espace selon laquelle la géométrie de l'espace physique est conventionnelle. Suite à la découverte de la théorie de la relativité en 1905, Poincaré a été amené à affirmer la nécessité d'une nouvelle convention, dans laquelle la géométrie de l'espace est remplacé par celle de l'espace-temps.
Fichier principal
Vignette du fichier
hpetc.pdf (303.08 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

halshs-00377077 , version 1 (20-04-2009)

Identifiers

  • HAL Id : halshs-00377077 , version 1

Cite

Scott Walter. Henri Poincaré et l'espace-temps conventionnel. Cahiers de philosophie de l'université de Caen, 2008, 45, pp.87-119. ⟨halshs-00377077⟩
298 View
664 Download

Share

Gmail Facebook Twitter LinkedIn More