Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films
Résumé
Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization. Conductivity anisotropy ratio up to 1000 has been achieved from PS-b-PSLiTFSI thin films by comparing Li-ion conductivities of out-of-plane (aligned) and in-plane (antialigned) cylinder morphologies at 40 degrees C. Blending of PS-b-PSLiTFSI thin films with poly(ethylene oxide) homopolymer (hPEO) enables a substantial improvement of Li-ion transport within aligned cylindrical domains, since hPEO, preferentially located in PSLiTFSI domains, is an excellent lithium-solvating material. Results are also compared with unblended and blended PSLiTFSI homopolymer (hPSLiTFSI) homologues, which reveals that ionic conductivity is improved when thin films are nanostructured.