Mining Periodic Patterns with a MDL Criterion - GREYC codag
Communication Dans Un Congrès Année : 2018

Mining Periodic Patterns with a MDL Criterion

Résumé

The quantity of event logs available is increasing rapidly, be they produced by industrial processes, computing systems, or life tracking , for instance. It is thus important to design effective ways to uncover the information they contain. Because event logs often record repetitive phenomena, mining periodic patterns is especially relevant when considering such data. Indeed, capturing such regularities is instrumental in providing condensed representations of the event sequences. We present an approach for mining periodic patterns from event logs while relying on a Minimum Description Length (MDL) criterion to evaluate candidate patterns. Our goal is to extract a set of patterns that suitably characterises the periodic structure present in the data. We evaluate the interest of our approach on several real-world event log datasets.
Fichier principal
Vignette du fichier
393.pdf (381.88 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01951722 , version 1 (11-12-2018)

Identifiants

Citer

Esther Galbrun, Peggy Cellier, Nikolaj Tatti, Alexandre Termier, Bruno Crémilleux. Mining Periodic Patterns with a MDL Criterion. ECML/PKDD 2018 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Sep 2018, Dublin, Ireland. pp.535-551, ⟨10.1007/978-3-030-10928-8_32⟩. ⟨hal-01951722⟩
214 Consultations
393 Téléchargements

Altmetric

Partager

More