Multivariate wavelet Whittle estimation in long-range dependence - Archive ouverte HAL Access content directly
Journal Articles Journal of Time Series Analysis Year : 2016

Multivariate wavelet Whittle estimation in long-range dependence

(1, 2, 3, 4) , (5, 6, 7)
1
2
3
4
5
6
7

Abstract

Multivariate processes with long-range dependent properties are found in a large number of applications including finance, geophysics and neuroscience. For real data applications, the correlation between time series is crucial. Usual estimations of correlation can be highly biased due to phase-shifts caused by the differences in the properties of autocorrelation in the processes. To address this issue, we introduce a semiparametric estimation of multivariate long-range dependent processes. The parameters of interest in the model are the vector of the long-range dependence parameters and the long-run covariance matrix, also called functional connectivity in neuroscience. This matrix characterizes coupling between time series. The proposed multivariate wavelet-based Whittle estimation is shown to be consistent for the estimation of both the long-range dependence and the covariance matrix and to encompass both stationary and nonstationary processes. A simulation study and a real data example are presented to illustrate the finite sample behaviour.
Fichier principal
Vignette du fichier
AchardGannaz2015_rev.pdf (772.43 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01079645 , version 1 (03-11-2014)
hal-01079645 , version 2 (30-10-2015)

Identifiers

Cite

Sophie Achard, Irène Gannaz. Multivariate wavelet Whittle estimation in long-range dependence. Journal of Time Series Analysis, 2016, 37 (4), pp.476-512. ⟨10.1111/jtsa.12170⟩. ⟨hal-01079645v2⟩
396 View
318 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More