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Researching Mathematics Teaching, Resources and Teacher 

Professional Development 

 
Stefan Zehetmeier, Bettina Rösken-Winter, Despina Potari, Miguel Ribeiro 

 
 
 

 

Mathematics teaching and mathematics teacher professional development are areas 
where research has increased substantially in the last years. For the last ERME 
conferences, a large number of proposals was related to this research area (e.g., three 

topic groups were formed at CERME9 in 2015: TWG18 on mathematics teacher 
education; TWG19 on mathematics teaching; and TWG20 on resources for teaching). 

 

In this ongoing field of research, many issues need further investigation. We need to 

better understand the underlying characteristics of mathematics teacher education and 
the professional development contexts that have a positive impact on teachers’ 

professional learning, even with respect to sustainability. Also, further discussion and 
research are needed on how to link research findings and how to bridge theoretical 
and methodological approaches to mathematics teacher pre-service and in-service 

education. 
 

Studying mathematics teaching goes beyond teachers’ classroom behavior. It 

encompasses teachers’ actions and meaning-making as these relate to instruction. This 
includes, amongst others, task selection and design, classroom communication and 

assessment as well as the interplay between goals and actions as classroom 
interactions unfold in the context of broader institutional, educational, and social 

settings. A central question for investigation is what kind of methodological and 
theoretical tools are necessary to address this complexity. 

 

In terms of resources, the focus of research for the last decades has been on teachers’ 

beliefs and knowledge. More recently, teachers’ identity, tasks, and teaching 
resources have received attention. Moreover, mathematics teacher educators’ 

knowledge and development has been an emerging field. Aiming at achieving a better 
understanding, characterizing and/or evaluating the content of teachers’ knowledge, 
several theoretical and methodological frameworks have been developed and 

discussed. Yet, further discussion seems to be needed in order to better describe the 
content of such knowledge, its relationships with (and influence on) teachers’ beliefs, 

goals and identity as well as with mathematics teaching. 
 

These three strands (mathematics teacher education, teaching and resources) are far 
from being disconnected. The ERME Topic conference “Mathematics Teaching, 
Resources and Teacher Professional Development” (5-7 October 2016, Humboldt-

Universität zu Berlin, Germany) served as a platform for investigating in what ways 
these strands are linked - as regards research questions, methodologies and theoretical 

perspectives. The International Programme Committee was chaired by Stefan 
Zehetmeier (Austria), Miguel Ribeiro (Brazil), Bettina Rösken-Winter (Germany), 

and Despina Potari (Greece). 
 

The conference focused on exchanging participants’ knowledge and experiences, and 
on networking between scholars from different countries and cultures. In sum 69
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scholars (60 from Europe) from 16 countries (12 from Europe) participated in this 
conference and submitted 37 papers and 14 posters. All submissions were peer-
reviewed and a selection was made according to the quality of the work and the 
potential to contribute to the conference themes. Finally, 27 papers and 12 posters 
were accepted and presented at the conference. 

 

 

Note: This text is based on: Zehetmeier, Rösken-Winter, Potari & Ribeiro (2016), 
Mathematics Teaching, Resources and Teacher Professional Development, Newsletter 
of the European Mathematical Society, pp. 46-47, EMS Publishing House. 
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From collaborative research to Mathematics Teacher’s Specialised 

Knowledge: a story of knowledge 
 

José Carrillo 
 

University of Huelva, Spain, carrillo@uhu.es 
 

In 1999, our research group was approached by a group of primary teachers looking 

for advice on using problem solving tasks in their teaching. We decided to use this 

opportunity to follow these teachers’ professional development over time. After ten 

years, we focused our attention on teacher knowledge with the aim of developing an 

analytical model capable of describing and interpreting the teacher’s subject-related 

knowledge, and exploring ideas for future application in pre- and in-service teacher 

training. The resulting model is the Mathematics Teacher’s Specialised Knowledge 

(MTSK) model, developed and applied collaboratively by the research group in 

conjunction with a team of researchers and teachers, and composed of several 

domains and subdomains, including mathematical knowledge, pedagogical content 

knowledge and beliefs. 
 

Keywords: collaborative research, professional development, teachers’ knowledge, 

specialised knowledge, beliefs. 
 

INTRODUCTION 
 

After many years of doing research into Mathematics Education, and having 

competed for grants for numerous research projects at local, regional, national and 

international levels, and having reflected on the significance of lines of research and 

research questions, I find myself at times wondering whether it is truly us researchers 

who define these lines and these questions, or whether they are in fact determined by 

external influences. In other words, do researchers make inroads into new areas or is 

it the other way around? In all probability it is an ingenuous question; after all, there 

are surely many other human activities which are apparently subject to outside forces. 

We should not be surprised, then, that research (especially into Mathematics 

Education), like so much other human activity, is channeled according to social and 

political interests, which at times establish which lines should take priority. 
 

Often such interests are motivated by the multiple areas of knowledge within the 

university itself as they jostle for predominance. But other times the reason for a 

particular line of research comes from outside the university context. In this instance 

it came from the beneficiaries of this research, the teachers themselves. And thus 

begins the story I would like to narrate about how a group of teachers triggered a 

major shift in the way the researchers into Mathematics Education at the University 

of Huelva carried out their research with teachers. 
 

GENESIS OF THE PIC 
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Our (researchers') interest in teachers and their work dates back many years. In the 

80s and 90s this took the form of contributing to in-service training programmes. The 

first doctoral theses (Carrillo, 1996, published 1998; Contreras, 1998, published 

1999) explored aspects of teachers’ approach to their work (the way they solved 

problems, their conceptions regarding mathematics, teaching and learning 

mathematics and the use of problem solving activities as a teaching approach). 

Nevertheless, the key moment for us was the founding of the Collaborative Research 

Project, or PIC (from the Spanish ‘Proyecto de Investigación Colaborativa’). 
 

This event took place in 1999 when a group of primary teachers approached the 

Mathematics Education Department at the University of Huelva seeking support for 

their intention to carry out a problem-solving based methodological innovation at 

their school. It is not customary for teachers outside the university context to make 

this kind of approach, the traffic is usually in the other direction with researchers 

typically attempting to persuade teachers at schools and colleges to participate in 

their theses and research projects, often finding themselves coming up against a 

reluctance to be videoed or make a long-term commitment. We can say, then, that we 

had been presented with a golden opportunity. The teachers had noted learning 

obstacles in their classrooms and had already identified a problem-solving approach 

as an ideal vehicle for learning mathematics. Further, they freely recognised that their 

own backgrounds had not equipped them with the appropriate training to be able to 

bring the desired innovation into effect. 
 

An obstacle immediately presented itself when they outlined the kind of collaboration 

they were looking for: essentially they wanted us to provide them with a bank of 

problem-solving activities for use in class at our earliest possible convenience. The 

department discussed their proposal and quickly agreed on a counter-proposal. We did 

not feel professionally comfortable with simply passing on some prêt-a-porter activities, 

however well-designed and ultimately rewarding they might be, and we were far from 

convinced that to do so was sufficient in itself to bring about the change in attitude 

towards mathematics that they were seeking. So instead we suggested creating a work 

group under the acronym PIC (see above), which would act as a forum for reflection on 

our conceptions about mathematics and how it might be channelled in class, and in 

particular about what we could understand by the term ‘problem’ and an approach 

structured around the concept. We suggested planning problem-solving based lessons 

together and then conducting feedback sessions to reflect on how things had gone. This 

suggestion was accepted, though not unanimously, and several teachers decided not to 

form part of the PIC. Notwithstanding, the PIC came into being and is still functioning 

today. In this respect, one has to recognise that the professional motivation of the 

teachers was and keeps on being stronger than some hindering factors (as the high 

involvement required by the group, or the level of demand of the designed tasks). No 

direct implication of 
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the institutions (schools) has been occurred, but the PIC has often received the 

support by the Andalusian Government. 
 

From their early desire for a bank of off-the-peg problem-solving activities, the 

members of the PIC came to focus their interest on beliefs, conceptions and the use of 

problem-solving in Primary Education. In reality, the greatest shift was that, 

following a short period of working together, the centre of interest became 

professional development. For the teachers, this meant reflecting on the 

methodological implications of adopting a problem-solving approach. For the 

researchers, this meant seizing the opportunity to study the process of professional 

development among the teachers. The PIC became a collaborative forum for the 

promotion and study of professional development. And we went from doing research 

into teachers to doing research with teachers (Carrillo and Climent, 2002). 
 

THE WORK OF PIC 
 

As mentioned above, the PIC was, and still is, a space within the domain of 

Mathematics Education devoted to professional development. Nevertheless, we came 

up against an unexpected obstacle from the start: the teachers made it clear that “we 

don’t want to do mathematics,” and were adamantly opposed to taking on any type of 

mathematical problem or indeed any task that required significant mathematical 

effort. They had little confidence in their own mathematical abilities and were ill 

disposed to “go through that kind of suffering.” 
 

What is the point of professional development, we wondered, if you are not prepared 

to pit yourself against some sort of mathematical task? And what role could the PIC 

play in the promotion (and study) of professional development? 
 

By way of answer, we would say that the PIC is characterised as follows: 
 

Teachers and researchers share objectives: in the first instance, this refers to the 

professional development of the teachers themselves, but it includes, too, the 

development of the university lecturers’ research work, as well as their capacities 

in the field of teacher training. 
 

The work is collaborative: each participant brings with them his or her knowledge 

and experience of teaching, and shares their needs and interests. 
 

The focus is on teaching and learning mathematics: situations drawn from 

participants’ experience of teaching, and the challenges they face as they go about 

their job represent the hub around which all discussions in the group meetings 

revolve. 
 

Within the confines of the PIC, professional development can be conceived of as a 

gradual improvement in the quality of one’s self-reflection (Climent and Carrillo, 

2003), and can be measured by the number of elements and the degree of complexity 

the teacher is able to bring into play in this reflection. Certainly, our objective has 
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never been to study professional development in terms of the teacher’s approximation 

to some pre-established teaching ideal laid down by the researchers. 
 

It was along such lines, then, that the PIC began to take shape. Despite the teachers’ 

reluctance to “do mathematics”, they were in fact more than happy to talk about their 

experiences of mathematics in the classroom. This proved sufficient to initiate a 

collaborative enterprise that has continued to this day. In truth, the teachers’ initial 

resistance was not unusual as many primary teachers readily admit to being weak 

when it comes to mathematics and have scant inclination to remedy the situation, 

tending instead to lean heavily on whatever textbook they use to plug the gaps in their 

knowledge. What marked this group of teachers out was their decision to do away 

with the coursebook, or at least to take a highly selective approach to it so as to shift 

their mathematics teaching towards a problem-solving based approach. It was a 

significant difference. 
 

Over the time, to the perennial questions of reflection on beliefs and problem-solving 

were added other areas of interest, which included planning activities using ICT. The 

composition of the PIC also widened its scope to include lower and upper secondary 

teachers, students on Master’s programmes and in the final year of the degree in 

primary teaching, and even an education inspector. In this way the PIC met the 

formative needs of different groups; in particular, it bridged the gap between initial 

and in-service training. For the researchers, we found we were able to nurture a 

growing interest in aspects of teacher knowledge, which emerged from the reflections 

about mathematics triggered by the activities discussed in the PIC sessions. 
 

TEACHER KNOWLEDGE 
 

We (researchers) can identify 2009 as the year in which we became seriously involved in 

doing research into group members’ knowledge, within the context of the PIC, and 

beyond (studying individual teachers). Our guiding text in this respect was the MKT 

model (Mathematical Knowledge for Teaching) (Ball, Thames and Phelps, 2008). 
 

Over the course of this period of reflection about teacher knowledge, the teachers in the 

PIC became aware that their lacunas were holding back their professional development. 

As said above, the PIC is a collaborative group (Feldman, 1993). The participants share 

their knowledge and experiences. The work is characterised by a permanent look at the 

students' needs and learning features. At that time, in the context of the design of tasks, 

the teachers realised that their knowledge was not enough to approach students' needs 

accurately. Their commitment in the group, their claims in group sessions and 

interviews, and their proposals about issues to be dealt with in future projects made it 

clear. As a consequence, there followed a significant shift in attitude as the teachers 

recognised they needed to “know more mathematics”. This represented a major step 

forward from the original refusal, although it did not go as far as embracing the 

opportunity to deepen their knowledge on their own account or facing the challenge of 

more demanding mathematics. However, it did mean that they 
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were now prepared to leave their comfort zone and garner the necessary mathematics 

for carry out certain activities in class. Moreover, when they used the term “in class”, 

they did not understand this as a specific group in a specific year, rather they began to 

think in terms of the treatment a mathematical item might have over the course of the 

full educational cycle. This, too, represented a significant shift in attitude, as teachers 

often tend to “specialise” in certain year groups and forget about what might be 

happening in others. 
 

Nevertheless, there remains the question of how to interpret “more” (with regard to 

teachers and researchers) when the teachers said they wanted to “know more 

mathematics”? Are we talking about quantity or quality? And for that matter, which 

mathematics? It is our belief that the response to these questions is specialised 

knowledge; that is, the kind of knowledge the teachers already had and which they 

needed to extend. This naturally led us to draw not only on the work of Shulman 

(1986) and his original division of teacher knowledge into domains, most particularly 

Subject matter knowledge and Pedagogical content knowledge, but also the work of 

Ball et al (2008) in applying the model to the case of mathematics teachers, 

introducing a subdomain of Specialised knowledge (Subject content knowledge) 

within the domain of mathematical knowledge. We were also influenced by the 

importance given to knowledge of connections in Rowland et al’s (2009) model 

(Knowledge quartet) and in the work of Fernández et al (2010), and Ma’s (1999) 

notion of packages of knowledge, which gives an integrated vision of knowledge. 

Taking inspiration from critical aspects of these and other studies, we developed the 

MTSK model (Mathematics Teacher’s Specialised Knowledge). 
 

THE MATHEMATICS TEACHER’S SPECIALISED KNOWLEDGE MODEL 
 

In the MTSK model (figure 1), in addition to the subdomains of Mathematical 

knowledge (MK) and Pedagogical content knowledge (PCK), we consider the 

domain of beliefs (about mathematics and about mathematics teaching and learning). 

We feel that an extrinsic perspective or organization of MK (in which specialized 

knowledge is defined as a distinct component) justifies (mathematics) teaching as a 

profession, but can be difficult to share across different educational systems. By 

contrast, we chose to adopt an intrinsic organization, in which it is easier and clearer 

to characterize the subdomains. Moreover, the specialization concerns not only the 

MK, but the whole model. That is to say, from this perspective, specialization 

represents mathematics-related knowledge used/needed in/for teaching, regardless of 

whether it is shared with other professions. 
 

We (researchers) are aware that our own beliefs about mathematics and about 

mathematics teaching and learning have exerted an influence on the model and 

likewise our research paradigm, but the same can be said of any research group. We 

are convinced that lesson observation provides relevant information about the 

teacher’s knowledge, but at the same time, we recognise that in itself it is not 
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sufficient and needs to be complemented by additional sources, which can include 

questionnaires, (individual and group) interviews, teacher participation in forums, 

and so on. We are mindful that in giving priority to lesson observation there is a 

danger that one’s interpretation of events can be overly influenced by what one wants 

to see in the teacher. The case comes to mind of a teacher carrying out an engaging 

mathematical activity with his pupils. The researchers took the design of this activity 

as evidence of his Knowledge of mathematics teaching; however, when asked 

afterwards about his reasons for using it, his reply could not have been clearer: “it 

was the next one in the book.” 
 

An advantage of the MTSK model is that it can be applied to any educational level. 

To date, we have carried out studies (all following qualitative methodology) at Pre-

school (in progress), Primary (ages 6-11), Secondary (12-15), Baccalaureate (16-17) 

and University levels. Evidently, in the case of Primary Education, it should be noted 

that, although the figure of mathematics specialist does not strictly apply, the role of 

mathematics teacher can be understood as any teacher doing mathematics with their 

class. At Pre-school, the subject of mathematics does not even exist, but there are 

elements of mathematics embedded within the syllabus for this level, and the 

mathematics teacher can likewise be understood as any teacher covering these 

elements. Various content areas have been studied using the MTSK model: algebra, 

fractions, functions, geometry (polygons and polyhedra), and infinity. The 

demarcation of the subdomains in figure 1, and likewise the development of 

categories pertaining to each of the subdomains, derive from both the literature (as 

mentioned in the previous section) and specific studies, taking a top-down bottom-up 

approach (Grbich, 2013). 
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Figure 1: The MTSK model 
 

In order to demonstrate some of the characteristics and descriptors of each 

subdomain, we will take a concrete example of the model being applied, in this 

instance to a teacher we shall refer to as Enrique (pseudonym). 
 

Enrique’s MTSK 
 

Enrique teaches the 5th year (age 10) at a state Primary School in a small town on the 

coast in the province of Huelva. There are 25 pupils in his class, of varying levels and 

from diverse socio-economic backgrounds. 
 

In the lesson extract we will analyse, he aims to guide his pupils towards reaching a 
definition of polygon. In point of fact, the pupils have already studied polygons in 

their 4
th

 year, but Enrique is aware that they need to do more work on mathematical 

definitions and believes they should be capable of arriving at a meaningful definition 
for themselves. In the follow-up interview to this lesson, he says: 
 

E (Enrique): Even when they give you a correct definition, they don’t have all the 

possible polygons in mind. What’s more, they rarely get to grips with a 

proper mathematical definition, instead they have a set of properties, which 

might be enough to define a polygon or might not be. 
 

Various elements of MTSK are brought into play here. In the first part of his 

utterance, Enrique demonstrates his awareness of his pupils’ knowledge gap between 

the definition of polygon and the set of polygons to which that definition corresponds 

(Knowledge of features of learning mathematics in relation to students’ learning 

difficulties), as sometimes happens when a pupil fails to recognise a concave 

quadrilateral as a polygon despite the fact that it fulfils all the requirements of the 

definition. Further, Enrique gives some indication of his knowledge of what 

constitutes a definition in mathematics (Knowledge of practices in mathematics in 

relation to the necessary and sufficient conditions of a definition). And finally, 

Enrique’s insistence on the pupils developing a meaningful definition is a 

demonstration of his beliefs about mathematics teaching and learning. 
 

In the lesson itself, Enrique brings a bag to class filled with different flat shapes cut out 

of card. He invites various pupils to each take a shape from the bag and stick it on the 

board. He instructs them to divide the shapes into two groups, one on the left and one on 

the right, but gives no further instructions and no indication as to rationale they should 

use to form the groups. Nevertheless, those on the left correspond to polygons (including 

concave polygons) and those on the right to non-polygons (shapes with partial or total 

curved outlines, including a circle). In this respect, Enrique displays Knowledge of 

mathematics teaching regarding the underlying design of this activity. He has clearly 

considered a wide variety of flat shapes for his pupils to sort into two groups with the 

awareness that in doing so the pupils would necessarily have to consider what features 

are common to each group, something fundamental for 
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developing definitions (and again connected to his Knowledge of practices in 

mathematics). 
 

Following this initial phase, Enrique then tells the pupils to look carefully at the 

group on the left, and asks if they can remember a name to describe them. After a few 

moments of pondering, one of the pupils replies that they are called polygons, upon 

which Enrique tells the class that their task is now to define what a polygon is, in 

order to do which, they need to focus on the features common to the set of shapes in 

each group. When a pupil suggests that one of the features common to polygons is 

that they have corners, Enrique observes that although this is true, there are also 

shapes in the other group, which have corners. He adds: 
 

E: When we define something, we try to find the common features, but in such a way that 

we also exclude the shapes that don’t have all the features. 
 

Here we can see evidence for Enrique’s Knowledge of practices in mathematics 

regarding the features of mathematical definitions. 
 

The lesson continues with Enrique writing on the board the features suggested by the 

pupils. In order to ensure that the figures on the right are excluded, he writes a 

negative feature: polygons do not have curves. He goes on to draw a shape (an open 

polygonal chain) which fulfils all the features the pupils have provided up to this 

moment, intending that the pupils should reject it from the set of polygons (as they 

subsequently do) on the grounds that polygons are closed shapes. He then adds this 

feature to the list on the board. In this instance, in addition to Knowledge of practices 

in mathematics, Enrique also demonstrates Knowledge of topics, with respect to the 

topic of polygons (definition and properties). 
 

In the next stage of the lesson, Enrique then draws a convex polygon on the board 

and asks whether the polygon is constituted by the line or what is inside the line. In 

the follow-up interview we asked what were his reasons for asking this question: 
 

E: Well, they need to know the difference between a polygon and its outline. Up to now 

we have just talked about the outline; in the definition we’ve only 

mentioned features relating to the sides. I know that a lot of the pupils are 

not sure about this. 
 

In this instance, two aspects of MTSK come together: Knowledge of topics (definition 

of a polygon and appropriate examples) forms a connection with Knowledge of 

features of learning mathematics (knowledge of typical areas of student difficulty). 
 

At this point, it would be useful to give brief descriptions of the subdomains 

mentioned so far. Knowledge of topics comprises mathematical procedures, 

properties, rationale, representations and models, as well as contexts, problems and 

meanings. Knowledge of practices in mathematics is about knowing how to proceed 

in solving problems, how to validate and provide proof in mathematics, the role of 

symbols and the use of formal language, specific practices in mathematical work (eg, 
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modelling), and how to generate definitions. Knowledge of mathematics teaching 

comprises teaching theories, specific mathematical characteristics of educational 

materials for teaching a specific content, and strategies, techniques and tasks for 

teaching mathematical content. Knowledge of features of learning mathematics 

comprises learning theories, strengths and difficulties, modes of students’ interaction 

with the content, and the interests and expectations of learners concerning particular 

content. We found evidence of Enrique’s knowledge with respect to these four 

subdomains, and additionally evidence of his beliefs about teaching and learning 

mathematics. Evidence of the other two subdomains was not found in this particular 

excerpt. However, we can provide an example of Knowledge of the structure of 

mathematics from another extract, in this case drawn from a PIC session in which 

participants discuss the connections between the treatment of a topic from Pre-school 

to Secondary level. Various members contribute: 
 

PIC1: When you use a scale, for instance S: 1:500, in Secondary Education, you are 

bringing in the notion of geometrical proportion between two objects (a 

rectangle and a room), that is to say, the similarity of shapes. 
 

PIC2: This is based on the conservation of the shape and the existence of a numerical 

proportion between the lengths of the corresponding sides. 
 

PIC3: It implies an extension of the concept of equivalent fractions, where the numerator 

and denominator are whole numbers, through the notion of ratio, which is 

an expression of a multiplicative relation between quantities, like double or 

triple. 
 

PIC2: These relations offer greater precision in estimating whether one object is bigger 

than another, something we do in Pre-school. 
 

Finally, the last of the six subdomains, Knowledge of mathematics learning 

standards, is composed of knowledge about learning expectations at different levels, 

expected levels of conceptual or procedural development at different stages of 

education, and the different treatment of topics as they are revisited over the full span 

of the educational cycle. By learning standard, we mean any instrument designed to 

measure students’ level of ability in understanding, constructing and using 

mathematics, and which can be applied at any specific stage of schooling.  
 

CLOSING COMMENTS 
 

The professional lives of the members of the PIC and of us researchers became 

interlinked in 1999 (especially who belong to the PIC from the very beginning), 

constituting a productive forum for sharing experiences and knowledge. Although our 

research work goes beyond the confines of the PIC, it is fair to say that the PIC has 

played a decisive role in our professional development. 
 

This paper has illustrated how the MTSK model can be applied, taking the analysis of 
the knowledge deployed by a primary teacher as an example, and attempting to show 
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how this knowledge is interconnected and complex. Like any analytical model, 

MTSK deconstructs the object of study into its constituent parts. As a result, it is able 

to provide a fine-grained analysis (down to the level of categories and their 

corresponding descriptors within each subdomain, which space prevents us from 

presenting here), but at the same time, those of us who carry out research with the 

model, are aware of the holistic nature of knowledge and are always at pains to 

underline the interconnectedness of the subdomains. 
 

At another level, MTSK also provides support in planning lessons (including 

designing activities), whether in the context of in-service training or professional 

development (such as the PIC), or indeed pre-service training. Whatever the context, 

it is essential to be able to reflect on the knowledge that is brought into play the 

teacher concerned. 
 

Among the challenges that we have set ourselves (in addition to continuing to make 

progress in describing the subdomains and categories, and considering in more detail 

the meaning of MTSK in Pre-school Education) it to apply MTSK to different topics, 

to develop a parallel model in other subject areas (one is already under development 

for the area of Biology, which might well take the name BTSK), improve the picture 

of interconnections between subdomains, further explore the affective domain 

(including beliefs), and map out a model of Mathematics Teacher Educators’ 

(Specialised) Knowledge (for which there are already research projects underway). 
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The DZLM (German Centre for Mathematics Teacher education) is a joint research 

and development institution of seven German universities to set new standards and 

prototypes for the professionalization of mathematics teachers. The programmes are 

developed through research-based design principles, and models for domains of 

teachers’ and facilitators’ knowledge and competences. In the following, we will 

elaborate on DZLM’s models and principles by presenting two exemplary courses to 

implement the new national standards for upper secondary level teachers: one 

focussing the use of digital tools for teaching and learning mathematics, and one 

focussing on probability and statistics as a new subject for most teachers. 

Keywords: professional development, teachers’ competences, facilitators’ 

competences. 

PROFESSIONAL DEVELOPMENT - STATE OF THE ART IN GERMANY  

Teacher professional development is essential to further develop mathematics teaching 

(Borko 2004). In recent years, a shift can be stated in better conceptualizing and 

grounding professional development by means of research. It is no more aimed at 

eliminating shortcomings, but the development goes more into the direction of a 

continuous process of professionalization (Rösken-Winter & Szczesny, 2017). That is 

why the duration and formats of professional development should change from single 

short courses to courses consisting a mixture of several face-to-face-meetings, as well 

as blended learning phases for supporting teachers (Fishman et al. 2013). But these 

conclusions from research findings did not yet lead to be realized in the practice of 

teacher education in Germany.  

To get an idea why these change processes are difficult, it is necessary to briefly 

describe the educational structure in Germany. Teacher education in Germany is 

mainly structured in three phases. The first phase at university takes 3,5 to 5 years, 

depending on students’ aims to become a primary or secondary teacher. Although there 

are standards for teacher education published by the Society of Didactics of 

Mathematics together with the main teacher association for mathematics, these are not 

compulsory but just recommendations. There is still a big variety how to conceptualize 

the education at university as the official guidelines are very vague and allow still many 

ways of how to decide and realize the content of the education. This is the same for the 

second part of teacher education, which happens over 18 months at special centers for 

pre-service-education, run by the regional school administration. During this phase, the 

future teachers have to teach at a school, partly supervised and assessed, and partly in 
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their own responsibility. In-service education is not compulsory and is offered under 

the authority of the school administration and by free providers (such as teacher 

networks, universities, teachers’ association). There are currently no standards or 

guidelines for professional development, and facilitators do not receive specific 

education to be prepared for this job. They are mainly qualified teachers who are 

denominated by their governments to act as trainers and facilitators.  

The DZLM (German Center for Mathematics Teacher Education) was launched in 

2011 with the aim to support und pursue the existing programs and structures for 

continuous professional development (CPD) nationwide, networking all reforms in this 

field, and develop new research-based exemplary courses. DZLM is a joined endeavor 

of different researchers from different universities, collaborating with representatives 

from school administration of all sixteen Federal States and teachers from school 

practice. DZLM follows a design-based research paradigm (van den Akker et al. 2006) 

when designing and researching programs for different target groups of teachers and 

topics. DZLM offers qualification of facilitators, in-service-teacher-education, out-of-

field-teaching and acts as a network platform for information and exchange. For all 

programs of professionalization - so also for DZLM – the main challenge is the issue 

of scaling (Coburn 2003). Therefore, our research aims at understanding the change 

processes and how to overcome problems and obstacles to optimize the programs. 

Currently DZLM is in the second funding period (2016-2019) with the aim of 

establishing it as a permanent nation-wide operating institute for research and 

development in the field of mathematics teacher professionalization.  

One important issue for the DZLM was to establish design principles as guidelines for 

designing and analyzing CPD courses. This has been done in a cooperative process of 

all DZLM-researchers reviewing the current state of research in the field. Based on this 

comprehensive literature review six design-principles have been generated to provide 

criteria of efficient teachers’ professionalization:  

 

 Competence-orientation: Crucial for effects and efficacy of professionalization 

is the clear focus on content to improve and deepen teachers’ knowledge, and 

performance in teaching (Garet et al. 2001; Timperley et al. 2007). As an 

important guideline to address the different areas of relevant content, DZLM has 
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established a framework for teachers and facilitators (see fig. 1) (cf. Lipowsky 

& Rzejak 2015; Garet et al 2001). 

  

 

Figure 1: DZLM-Competence framework for PD courses 

 Participant-orientation: Centering on the heterogeneous and individual 

prerequisites of participants. Moreover, participants get actively involved into 

the PD unit instead of pursuing a simple input-orientation (Clarke 1994; Krainer 

2003). 

 Stimulation of cooperation: Motivating participants to work cooperatively, 

especially between and after the face-to-face phases, ideally sustainable 

professional learning communities are initiated (Krainer 2003, Bonsen & 

Hübner 2012)  

 Case-relatedness: Using cases such as videos of teaching or students’ 

documentations, which are relevant for the school practice, to enable new 

perspectives, and to realize further dimensions of teaching effects (Borko 2004; 

Timperley et al. 2007; Lipowsky & Rzejak 2015).  

 Diverse instruction formats: During PD courses, it is important to realize a 

mixture of different formats (like lectures, individual and collaborative work). 
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Also phases of attendance, self-study and e-learning should alternate (Deci & 

Ryan 2000; Lipowsky & Rzejak 2015.   

 Fostering reflection: Continuously encouraging participants to reflect on their 

conceptions, attitudes, and practices (Deci & Ryan 2000; Putnam & Borko 

2000).  

Taking these principles seriously naturally yields to the necessity to realize CPD 

initiatives in long-term formats as well (Rösken-Winter et al. 2015). 

The following two examples of PD-courses illustrate the work of the DZLM. Both 

examples are from North Rhine-Westphalia (NRW). It is the biggest Federal State in 

Germany in terms of numbers of inhabitants (18 millions of 82 million in the whole of 

Germany). The Federal States are responsible for any educational issues. The 

nationwide standards in mathematics (KMK, 2012) serve as recommendation, but most 

of the curricula in the Federal States follow these standards. In the previous years two 

main innovations for upper secondary level and the final centralized examination 

(Abitur) have been brought up in NRW. It is on the one hand the introduction of graphic 

calculators (GC) as compulsory tools (by decree in 2012) in classrooms and 

examinations. On the other hand the new state curricula in NRW (2014) fixed 

stochastics (probability and statistics) as an obligatory topic for all students (six months 

teaching of stochastics in all mathematics classrooms). The main argument for the 

introduction of the GC was to support a deeper understanding of mathematics by 

interactive visualization, relieve from routine calculations and routine analyses of data, 

and by supporting modeling with more realistic examples. Regarding stochastics, in 

particular the use of the GC for simulations is suggested. 

For both topics – an introduction on using and teaching with GCs and on teaching 

stochastics - the DZLM has collaborated strongly with the educational administration 

in NRW and realized two PD-courses: “GC compact” and “Stochastics compact”. In 

the following we present both courses to illustrate the work of the DZLM.  

 

DESIGN PRINCIPLES - REALIZED IN THE PD-COURSE “GRAPHIC 

CALCULATORS COMPACT” 

The DZLM together with the Ministry of Education in NRW were in charge of 

developing, delivering, and evaluating the long-term professional development (PD) 

course to integrate graphic calculators (GC) in mathematics classrooms. The project is 

situated in the context that applying graphic calculators is compulsory in upper 

secondary level teaching, and in final centralized exam (called “Abitur”) since the 

beginning of 2014. The design of the course was realized in different design cycles, the 

first cycle can be characterized as a strong collaboration within a group of teachers, 

researchers, and one person from the school administration. The course was realized in 

2014 - 2015. It consists of four one-day modules (eight hours each) over a half year 
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with phases of own experiences and elements of blended learning in between (mainly 

networking to exchange materials).  

The DZLM design principles served as main guideline for the design from the 

beginning.  

Competence-orientation:  

The PD course covers different dimensions of teachers’ competencies, which can be 

summarized in four main goals. The teachers should be able to use a tool in a flexible 

way, to design tasks integrating the technology, to organize the classroom in a 

technology-based environment, and to develop appropriate formats and tasks for 

assessment with the graphic calculator tool. The four modules were dedicated to these 

four goals: Introduction into working with GCs – Designing tasks by integrating the 

use of GCs – Classroom organisation in a technology based environment - Assessment. 

The concrete design of the single modules was based on research results. From the 

beginning of the course we highlighted relevant subject matter aspects when teaching 

functions and derivatives integrating technology. For example, we pointed out the 

importance of developing concept images (Tall & Vinner 1981, Bingolbali & 

Monaghan 2008) and “Grundvorstellungen” (vom Hofe & Blum 2016) of functions 

and derivativesm and offered tasks to initiate a fluent use and change between 

mathematical representations (Duval 2002). Besides these basic aspects systematic 

evidence is presented on typical student errors, pre- and misconceptions in the field of 

functions (Swan 1985; Hadjidemetriou and Williams 2002; Barzel and Ganter 2010). 

Additionally, we always explicated the role of technology as well as possible 

advantages and burdens when using technology (Barzel 2012). All these goals are 

made transparent for all participants, thus enabling teachers to clearly see the relation 

to their own teaching practice, and to increase their motivation while attending the 

course. The task to introduce the technical facilities during the first module was the 

task “power flower” shown in Figure 2 (Barzel & Möller 2001). This task served as an 

investigative open task as well as an example for meaningful tasks when integrating 

technology, and offered opportunities to reflect on the value of technology concerning 

the above-mentioned aspects of pedagogical content knowledge. Module 2 offered a 

sample of modelling tasks in the field of mathematical topics for upper secondary level, 

also including opportunities of data logging. Module 3 picked up the power flower task 

(Figure 2) to discuss classroom organisations and the point that technology can either 

be used to introduce a new topic (e.g. here power functions) or to deepen knowledge 

during a final phase of exercise. Module 4 focussed on exam situations. Current 

examination tasks were analysed as to whether the use of graphics is necessary, 

supportive, neutral or forbidden. Another perspective of reflecting the tasks was the 

role of the technology, for what the graphics are used for: for discovery learning, for 

conceptualizing, for enabling individual approaches, for taking over procedures or for 

controlling. This categorization is also suggested by the current German standards for 

mathematics in upper secondary level (KMK 2012)  
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Figure 2: Task to get familiar with the GC : “Create this picture on your screen!” 

Participant-orientation:  

The participant-orientation combines two challenges: Taking up heterogeneous 

competences and conditions, and fostering participants’ self-responsibility. 

Initially, a preliminary questionnaire regarding the teachers’ conditions, expectations 

and needs with respect to content and didactical issues can help to adapt the course to 

the specific target group. All tasks during the course are created to use them in the 

classroom with students as well. Accompanying material and information about the 

tasks show possible solutions, typical errors and misconceptions, an idea how and 

where to integrate the tasks in the learning process, and the relevant role of technology. 

To foster self-efficacy and self-responsibilities it is important to include a lot of 

opportunities which activate the participants – for example such as working on tasks 

in pairs and small groups, and initiating discussions and reflections about the material. 

Furthermore, at the end of each course, participants were actively involved in providing 

recommendations for content and methodology that should be included in the 

following meetings. Between the different face-to-face-meetings of the modules we 

offered a support-hotline to keep in touch - especially when problems arose.   

Stimulation of cooperation  

Aiming at sustainable cooperation processes we already stimulated to build 

professional learning communities (PLC) with teachers from one school or 

neighbouring schools during the first face-to-face-meeting. This stimulation was 

accompanied by a short input about the importance and power of intense collaboration 

in PLCs. The single PLC´s already worked together during the course. For the time 

after the course we highly recommend working collaboratively: To cooperate when 

designing tasks for use in the classroom, to share individual values and beliefs, to 

analyse students` solutions and other cases from the classroom.  

Case-relatedness  

All modules relate to practical experiences by discussing ideas based on specific cases 

from classrooms. On the one side, we brought cases into the courses such as specific 
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student results and examples. And on the other side, we asked the participants to bring 

own cases from their classrooms to provide both a starting point for discussion, and an 

impulse for reflection. Figure 3 gives an impression of how such cases are used – here 

to discuss the challenge how students’ documentation and language should look like 

when computer algebra is used. Here, we used the recommendations of Schacht (2017) 

to distinguish that the use of technical expressions in the documentations can be 

allowed when learning to get familiar with the technology but that the use of 

consolidated mathematical language must be used at the end of the learning process.   

 

Figure 3: Is this documentation acceptable or not? 

Various instruction formats  

To ensure active participation and the experience of self-efficacy, various instruction 

formats are used throughout all face-to-face-meetings. The whole PD-course includes 

phases of attendance, self-study and e-learning to initiate cycles of input, learning, 

practical try-outs and reflections. 

Fostering reflection  

Participants are inspired to become “reflective practitioners” (Schön 1983) by 

stimulating cooperative reflection as well as self-reflection continuously with respect 

to tasks, students’ solutions and thinking, scenarios of classrooms and on own 

conceptions, attitudes, beliefs, teaching routines and practices. Participants were 

encouraged to think deeply about the possible transfer of the teaching material into 

their own classrooms, and the impact on the own teaching style. 

The whole PD-Course was realized in 2014/15 for three groups of teachers at different 

locations in NRW with about 100 participants. The accompanying research focuses on 

teachers’ beliefs on the use of technology and their self-perception on how and how 

often they use the technology (Thurm et al. 2017). On the other side, Klinger (2017) 

investigated students’ competencies in the field of function and derivatives to include 

this knowledge into the PD-courses (Klinger 2017). The current version of the course-

material is enlarged now on digital tools instead of graphic calculators and it is 

published under Creative Commons license on the national DZLM server:  

https://www.dzlm.de/fort-und-weiterbildung/fokusthemen/digitalisierung. 
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DOMAINS OF KNOWLEDGE FOR TEACHERS AND FACILITATORS – 

THE PD-EXAMPLE “PROBABILITY AND STATISTICS AT UPPER 

SECONDARY LEVEL” 

In this section, we will focus on the design of a PD-course from the perspective of the 

facets of teachers’ knowledge that we addressed. The course also considered the design 

principles of the previous section, but we will not make this explicit.  

Context and overall design of the course 

In this second part of our paper, we will illustrate how the content of a PD course was 

selected and the design was developed based on several circles of implementation and 

further elaboration. The course we will focus on is the PD course for upper secondary 

Gymnasium teachers, which we named “Stochastics Compact”. Stochastics is used in 

Germany for the combination of probability and statistics. The course lasted four 

month with four and later five one day meetings. We started with version 1.0 in 2013 

in the state of North Rhine-Westphalia, the current version is version 4.0. A total 

number of 400 teachers have participated in the various versions of the course. 

The versions 1.0 to 2.0 of the course were designed by a DZLM – Team that consisted 

of teachers, young and senior researchers including the second author of this paper. 

From version 3.0 onwards we entered into a collaborative project with three facilitators 

from the federal state of Thuringia and five facilitators from the region of Arnsberg 

(3.6 million inhabitants) in North Rhine-Westphalia, with whom we developed new 

versions of the material and jointly used the material in our courses. The collaborative 

development, implementation and reflection aimed at improving the materials and 

qualifying the three plus five facilitators at the same time, we call them “project 

facilitators” in contrast to the other facilitators that will use the material but who were 

not part of the developmental team. All eight facilitators were experienced teachers 

that have been active as facilitators since many years, however, long-term PD courses 

such “Stochastics compact” were new for them. The fact that we brought version 2.0 

of the course into the collaboration was a good starting point. 

In Arnsberg, the regional administration supported a collaboration that lasted more than 

three years and three development cycles. The materials have reached a final stage 

(version 4.0) in October 2017 and are ready for use by all mathematics facilitators of 

the Arnsberg region. We have published a further elaborated version of a part of the 

material under Creative Commons license on the national DZLM server 

(https://www.dzlm.de/fort-und-weiterbildung/fokusthemen/leitideen). 

The factors that finally influenced the design of the materials are multifaceted as is 

shown in Figure 4. 
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Figure 4: Influencing factors for the PD material 

The picture (Figure 4) depicts some tensions between different views of the needs of 

mathematics teachers. The DZLM team is rooted in the knowledge base and research 

and development tradition of stochastics education. The new curricula do not take into 

account all the suggestions and ideas from this tradition, and did not share all the 

emphases and decisions that were taken when setting up the new curricula in 

stochastics. Our course is compatible with the new curricula, but tries to influence how 

these new curricula are interpreted and realized in the classrooms from the perspective 

of stochastics education. The syllabus of the curriculum allows options for school-

based developments and variation and we intend to use this scope for development. We 

address teachers as independent personalities that we support in developing their own 

view of stochastics and stochastics education, we do not treat them just as curriculum 

implementers. We base the selection of PD content on analyses of difficulties of 

students and teachers and on a view that we consider as “fundamental ideas” for 

teaching stochastics at upper secondary level (Burrill and Biehler, 2011; Biehler and 

Eichler, 2015). We build on insights on how technology can be used to support 

students’ learning in stochastics (Biehler, R., Ben-Zvi, D., Bakker, A., & Makar, K., 

2013). Moreover, we suggest teaching approaches and material that we had used in 

university courses for future teachers or that we had tested in experimental classrooms, 

for instance Meyfarth (2006) on hypothesis testing, Prömmel (2013) on the use of 

simulations and Wassner et al. (2004) for Bayesian reasoning. 
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Figure 5: Subject matter components of the course and related research 

 

An example of the modul:  Connecting data and chance 

For making our approach more concrete, we describe an example of the topic 

“connecting data and chance” (from the first module of the course). 

We start with the following “landmark” activity that we are suggesting as a classroom 

activity when introducing stochastics at upper secondary level: as a challenging 

problem for students which will also show the power of computer based simulations 

for solving problems in probability. 

 

Figure 6: The 10-20-Test problem. 

Activities in the PD course include: teachers guess intuitively, some initial discussion 

about reasons for the choices, use simulation to decide the question (estimate the 

probabilities to pass the test just by guessing). In all our courses, all three answers were 

initially chosen by at least some of the teachers, always stimulating interesting and 

lively discussions. 
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We start with simulation by hand (with a coin) where the small sample size usually 

does not provide a clear answer, and then we move to computer based simulation (with 

a GC) to get more precise and certain results. Estimating the passing probability will 

be supplemented by visualizing the whole distribution of “proportion of correctly 

answered questions” (see Figure 7). This is the basis for integrating the results into an 

elaborated intuitive view of how the distribution of relative frequency changes with 

increasing sample size. 

 

Figure 7: Simulation and visualization of the distributions with the TI Nspire 

Some teachers can relate the picture on the right side of Figure 7 to their intuition that 

the relative frequency tends to be closer to the expected value of 0.5 when the sample 

size is larger. This stems from intuitions about the law of large numbers, although most 

of our teachers have never seen such a display as the law of large number is often only 

visualized as a trajectory, where the relative frequency “approaches” the theoretical 

probability. 

The left side shows the simulated distribution of the number of successes, where the 

spread is increasing. We support our teachers in relating this to their previous 

knowledge. The number of successes of guesses during the testing can theoretically be 

modeled as random variables 𝑋𝑛with a binomial distribution, expected values at 5 and 

10, and a standard deviation of 𝜎 = √𝑛 ∙ 0.5 ∙ 0.5, which increases with n. The right 

hand side is a simulation of the random variable 𝑌𝑛 =
𝑋𝑛

𝑛⁄ , whose standard deviation 

is 
𝜎

𝑛
=

√0.5∙0.5

√𝑛
. 

A next step is to widen the question to what will happen, when we further increase the 

sample size n. Some teachers know that the middle 95% prediction interval around 0.5 

can be theoretically calculated as [0,5 − 1,96 ∙
𝜎

𝑛
; 0,5 + 1,96 ∙

𝜎

𝑛
 ] , which is roughly 

[0,5 −
1

√𝑛
; 0,5 +

1

√𝑛
 ]; its width is 

2

√𝑛
. The so-called normal approximation of the 

binomial distribution is used for deriving this interval. This is also called the “one-
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over-squareroot-of-n-law”. This knowledge is considered as knowledge “at the 

mathematical horizon” in the sense of Ball and Bath (2009). This cannot and should 

not become the topic of instruction at the beginnig of the stochastics course, but is 

important for teachers’ orientation. 

We then introduce to our teachers a way for introducing the “one-over-squareroot-of-

n-law” just based on simulations and visualizations by means of “the prediction 

activity”. Based on simulated data, the percentile commands are used to find the middle 

95%-interval (Figure 8, left side) and the GC is then further used to explore how the 

width of this interval depends on the sample size n (see Figure 8, right side). 

  

 

Figure 8: Left side: empirical 95%-prediction intervals  

Right side: Trying to fit a curve to the width of the middle 95%: Functions such 

as 
𝒌

𝒏
 do not work for any 𝒌; 

𝒌

√𝒏
 fits well for 𝒌 = 2. 

It is claimed (without proof) that this law can be generalized to any p and n. For n 

repitions of a random experiment with success probability p the following inequality 

holds with 95 % probability for the relative frequencies 𝑓𝑛 : |𝑝 − 𝑓𝑛| ≤
1

√𝑛
  (95%-

prediction interval). We argue that this knowledge is important for students,when they 

have to relate data and chance: instead of a vague idea that the relative frequency tends 

to approach the probability p with increasing n, an interval can be provided, in which 

we can expect the relative frequency with 95% certainty. 
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We also argue for introducing the inverse statement (with some horizon knowledge on 

confidence intervals that we cannot elaborate on here). If p is unknown we observe a 

relative frequency  𝑓𝑛, this value cannot be “far” from the true probability p:  |𝑝 − 𝑓𝑛| ≤
1

√𝑛
. The practical value for students is that if they simulate n – times and observe n, 

they can provide a so-called 95% - intuitive confidence interval for p, namlely 

[𝑓𝑛 −
1

√𝑛
, 𝑓𝑛 +

1

√𝑛
 ].  

This knowledge is not obligatory in the syllabus but we argue that a sound dealing with 

simulations in the classroom requires knowledge about how precisely the unknown 

probability can be estimated from the relative frequency and how certain this 

estimation is.  

Table 1: Prediction and confidence intervals for standard sample sizes 

Sample size Radius of 95% - prediction interval / 

intuitive confidence interval  

50 ± 0,14 

100 ± 0,10 

1.000 ± 0,03 

10.000 ± 0,01 

 

We suggest that teachers at least communicate a rule of thumb table to their students 

containing interval widths for “standard” sample sizes (Table 1). 

 

Facets of teachers’ knowledge and beliefs 

We base our course on models of teachers’ knowledge, on Hill et al. (2008, p. 377), 

among others. The authors distinguish Common Content Knowledge (CCK), 

Knowledge at the Mathematical Horizon (HK), Specialized Content Knowledge 

(SCK), Knowledge of Content and Students (KCS), Knowledge of Content and 

Teaching (KCT) and Knowledge of Curriculum (KC). This classification however 

leaves open, what counts as “knowledge” and what the warrants are for the respective 

knowledge base. We try to overcome the situation that this knowledge is solely based 

on opinion and experience, and introduce results from research in psychology and 

mathematics education as evidence for our suggestions and claims. 

An extension that takes into account the various facets when we include technology 

was developed in Wassong and Biehler (2010, p. 2) 
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Figure 9: Extended domain map including facets of knowledge on technology 

We will illustrate only some of the facets, refering to the above example. TK 

(Technological Knowledge) includes basic aspects of using the graphic calculator, 

TCK (Technological Content Knowledge) includes how to use the GC for simulations 

in stochastics and TPCK (Technological Pedagogical Content Knowledge) includes 

how to use the GC so that students can develop a better understanding of the law of 

large numbers through interactive experiments and simulations. KCT includes the 

suggested activities (10-20-test, prediction activity) and which representations to use 

for the simulated distributions. We already mentioned the knowledge at the 

mathematical horizon (HK), that is backgroud knowledge by which teachers can judge 

whether our suggested simplications are still an adequate elementarization of genuine 

mathematical content, and why the topics are important to teach. KCS, knowledge of 

content and students, includes misconceptions concerning the role of sample size. On 

a practical level, we include a variety of students’ answers and reasoning to the 10-20-

test problem to prepare teachers what can be expected in the classroom. Moreover the 

discussion in the PD-course itself - where some teachers have the same misconception 

at the beginning - is also a source for this knowledge. A mixture of KCS and HK is 

provided by drawing the teachers’ attention to psychological studies, which show the 

insensitivity to sample size of many students and adults, and the need to better teach 

this for improving individuals’ capacity to adequately reason under uncertainty. We 

quote the “maternity ward problem”, which has the same structure as the 10-20-test 

problem, form original sources:  

A certain town is served by two hospitals. In the larger hospital about 45 babies 

are born each day, and in the smaller hospital about 15 babies each day. As you 

know, about 50% of all babies are boys. The exact percentage of baby boys, 

however, varies from day to day. Sometimes it may be higher than 50%, 

sometimes lower. […] Which hospital do you think is more likely to find on one 

day that more than 60% of babies born were boys. (Sedlmeier and Gigerenzer, 

1997, p. 36, based on reearch by Kahneman and Tversky, 1972). 
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We learned however, that making reference to the psychologial literature alone is not 

always convincing enough for our teachers. So we asked teachers in our course to 

become researchers themselves in that they should give the 10-20-test problem to a 

selection of their students. Teachers of the 2014 course asked their students (n = 1163). 

The results can be seen in Table 2, which convincingly show how widespread these 

wrong preconceptions are. 

Table 2: Students’ response to the 10-20-test ( n = 1163, convenience sample) 

% Grade 5 - 9 Grade 10 - 12 

Test 1 16 18 

Test 2 41 27 

Equal chance 43 55 

 

In order to give an impression what can be acchieved by teaching, in Table 3 we refer 

to the experimental course of Prömmel (2013, p. 493) 

 

Table 3: Students’ response to the maternity ward problem before and after 

teaching 

% pre post Pre: adequate 

reasoning 

Post: adequat 

reasoning 

Test 1 is correct 26 77 18 59 

 

This result resonates well with teachers experience that even the best teaching will not 

change all students minds, but that teaching can be successful for the majority of 

students. 

Research on teachers’ knowledge before and after the course 

What have teachers learned during the course? Our boundary conditions do not make 

it possible to administer a knowledge test before and after the course. Therefore we use 

a questionnaire after the course and ask the teachers to subjectively assess their 

knowledge gain throughout the course (Nieszporek and Biehler, 2017; Lem and Bengo, 

2003). This questionnaire covers various facets of teachers’ knowledge, for instance 

CK “I can construct and perform a hypothesis test with fixed significance level?”, KCS 

and KCT “I know typical misinterpretations of hypothesis tests and can 

elucidate/clarify them?”. For assessing self-efficay we use items such as “By 

participating in the course, I have developed sufficient competencies and have received 

enough inputs, encouragements and stimuli for the (further) development of materials 

for my concrete classroom practice”. 
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The result sof these questionnaires are vey encouraging but show a high variability in 

the answer of the teachers that has to be explained by deeper analyses of our data. 

 

FUTURE PERSPECTIVES   

Both courses are being further developed, published and used in other Federal States. 

The research on the stochastics course will be part of the Ph.D. project of Ralf 

Nieszporek, who will also focus on how facilitators shape and implement the jointly 

developed material. Oliver Wagener and Joyce Peters-Dasdemir investigate in their 

Ph.D. projects how multipliers use the published DZLM-material for the PD-courses 

regarding the use of digital tools, and how teachers use the materials of the PD-course 

in their classrooms. 
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When assessing teachers’ competence of analysing specific classroom situations, the 

representation format of the classroom situation might impact on the quality of the 

teachers’ answers. However, relatively little is known about the role of, for example, 

video, comic or transcript-like text formats in assessment instruments. This paper 

consequently focuses on this research need and presents results from a study which 

uses a format-aware design. For facilitating connections with prior research, more 

than 160 pre-service teachers were asked to analyse the use of representations in six 

learning support situations. The findings support the empirical unidimensionality of 

the competence construct under Rasch analysis while taking into account the three 

different representation formats of the classroom situations. 
 

Keywords: vignette-based assessment, competence of analysing, noticing. 
 

INTRODUCTION 
 

Teachers have to draw on their resources (Schoenfeld, 2011) when they need to analyse 

observations in the classroom – at the same time, the competence of analysing is in 

itself an important resource of mathematics teachers (cf. Kuntze, Dreher & Friesen, in 

press): In learning support situations, for instance, teachers have to link criterion 

knowledge with observations, in order to analyse whether a reaction to a students’ 

question is helpful. A key area of such criterion knowledge is knowledge related to the 

use of representations in the classroom (Dreher & Kuntze, 2015a), as it is a prerequisite 

for effectively analysing whether students might encounter problems with e.g. 

unnecessary changes of representations or with the potential disconnectedness of 

representation registers. However, the format in which a classroom situation is 

presented to teachers might make a difference: Whereas Dreher & Kuntze have used 

text vignettes only, Herbst, Aaron & Erickson (2013) have compared video and 

animation formats, i.e. formats marked by temporality. To our knowledge, there is 

hardly any empirical study which is “format-aware” in the sense that the design 

includes multiple formats (text, comic, video) and the possibility of taking into account 

their role in the corresponding measurement instrument. 
 

Correspondingly, in order to establish validity with this respect, this study makes an 

attempt of assessing teachers’ competence of analysing the use of representations with 

a multi-format test instrument coupled with a multi-matrix design in the 
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assignment of formats to teachers, so that the role of the format can be taken into 

account. 
 

We will in the following give an overview of the theoretical background, present the 

research questions, inform about design and sample, report about key results and 

discuss them in a concluding section. 
 

THEORETICAL BACKGROUND: THE COMPETENCE OF ANALYSING 

THE USE OF REPRESENTATIONS IN THE CLASSROOM 
 

According to Duval (2006), mathematical objects are only accessible through 

representations that can stand for them in many different ways (Goldin & Shteingold, 

2001). In this sense, multiple representations often complement each other and 

emphasise different facets of the same mathematical object (Duval, 2006). For building 

up a rich concept image of a mathematical object (Ainsworth, 2006) which facilitates 

flexible ways of problem solving (Lesh, Post & Behr, 1987), learners have to integrate 

multiple representations. This points to the core role of changes between different 

representation registers (Duval, 2006): Changing representations is at the same time a 

valuable learning opportunity and a potential learning obstacle, as it is cognitively 

complex and often leads to difficulties in understanding (Ainsworth, 2006; Duval, 

2006). Students thus should be supported when dealing with multiple representations: 

reflecting on and creating connections between different representation registers plays 

a key role (Duval, 2006; Bodemer & Faust, 2006) and unreflected changes of teachers 

between disconnected representations may cause understanding problems of students 

(Sjuts, 2002). 
 

Consequently, teachers have to master the professional requirement of identifying and 

interpreting relevant observations regarding the use of representations in the classroom 

(Friesen, Dreher & Kuntze, in press). In particular, for reacting adaptively and 

optimally to the learners’ needs, teachers should be able to analyse how changes 

between representations take place. Such analysing of classroom situations means that 

observations are connected with relevant professional knowledge – for instance, 

specific criterion knowledge may be used for the observations’ interpretation (e.g. 

Dreher & Kuntze, 2015a; Friesen, Dreher & Kuntze, in press). 
 

Analysing classroom situations regarding the use of representations is hence an 

important competence for mathematics teachers: professional competencies in 

Weinert’s (1999) definition are specific and context-dependent abilities to cope with 

professional requirements, which is clearly the case here. Studies showing that such 

analysing is an aspect of teacher expertise (Dreher & Kuntze, 2015a) and that it can be 

fostered through focused professional development activities (e.g. Friesen, Dreher & 

Kuntze, in press) further support the relevance of this competence construct. 
 

We see the competence as a hierarchical and one -dimensional variable, as the criterion 

knowledge (e.g. Duval, 2006) can be seen as a consistent unit which can be applied for 

analysis in various contexts. The requirements of the situation contexts 
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however may differ in complexity, as teachers might have different preferences for 

specific representation registers which can interfere with analysis steps (cf. qualitative 

findings in Dreher & Kuntze, 2015a), i.e. support or impede a critical analysis of the 

use of representations in the classroom interaction. For instance, we found examples 

of teachers who were very in favour of a specific representation register and who were 

not aware of the problem of disconnectedness between representations when the 

(unnecessary) change into this favoured representation register occurred – their 

preference of representation registers was so dominant that they did not enter in a 

criteria-based analysis process (Dreher & Kuntze, 2015a). We conclude from these 

findings that it might be more difficult for teachers to analyse the use of representations 

when the registers used by the teacher observed in the classroom situation are among 

the commonly favoured representation registers. 
 

The role of the representation format of the classroom situation to analyse 
 

Another issue which might influence the complexity of analysing the use of 

representations in the classroom is the way the classroom situation is represented. As 

it is almost impossible to reproduce real classroom situations identically, classroom 

situations have to be somehow represented in order to make them available for 

assessment. Figure 1 shows three representation formats, namely a transcript-like text 

format, a comic format and two screenshots from a video format representation of the 

same situation. It is obvious that these formats provide different information, and that 

they make available identical information elements in different ways. Even if the three 

representations of this learning support situation have been produced in a structured 

procedure which aimed at eliminating any contradictions such as different wording or 

different drawings of representations (cf. Friesen & Kuntze, in press), there are 

important systematic variations among the different representation formats: 

Temporality, for instance, makes a difference between video format on the one side 

and text and comic formats on the other side: For example, the speed issue in 

interaction is much less visible in a comic and in a transcript. Moreover, the formats 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Representation of a learning support situation in transcript-like text, comic 

and video format (comic drawn by Juliana Egete) 
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differ in the amount of potentially relevant and irrelevant context information. It might 

make a difference for the analysis if, for example, the characters in the comic format 

were all smiling, whereas the colour of the furniture in the background is rather 

irrelevant for the analysis – and invisible in the text format, for instance. The individual 

persons in the classrooms are almost absent in the text format, whereas they are more 

visible in the comic format and appear as real human beings in the video. According to 

Weinert (1999), aspects of teacher competence are of contextualised nature, so that the 

amount and methods of contextualisation in vignettes used in assessment instruments 

may play a role. When assessing competence by referring to professional requirements 

of teachers as reflected in vignettes (Oser, Salzmann & Heinzer, 2009), format might 

matter. Even if many researchers discuss the potential of video-based forms of 

assessment (e.g. Blömeke, Gustafsson & Shavelson, 2015; Seidel et al., 2011; Sherin 

et al., 2011) there are only very few studies like e.g. the study by Herbst & Kosko 

(2013) and Herbst, Aaron & Erickson (2013), in which different formats are compared 

empirically and systematically. 
 

We see analysing as “an awareness-driven, knowledge-based process which connects 

the subject of analysis with relevant criterion knowledge and is marked by criteria-

based explanation and argumentation” (Kuntze, Dreher & Friesen, in press). 

Classroom situations as represented in different formats can be such subjects of 

analysis. We assert that the process of analysing is not linear (Friesen, Dreher & 

Kuntze, in press). In any case, in the teachers’ answers, only the results of the analysis 

will be visible – perhaps only in parts. However, as our focus is on the competence of 

analysing regarding a specific area of criterion knowledge, namely the use of 

representations, and as the articulation of analysis results is part of this competence, 

the teachers’ answers are very informative. When assessing this competence, we have 

to be aware that both different classroom situations and format might influence the 

complexity of vignettes. For this reason, research designs should take this potential 

interaction into account, so that the potential impact of the representation format is not 

confounded with the competence construct. 
 

Moreover, among the teachers’ perceptions of the vignettes, there might also be other 

extraneous disturbing factors for analysis: If, for instance, teachers do not perceive a 

vignette as authentic, this might be detrimental to getting engaged with the 

corresponding classroom situation. Under this perspective, motivation might play a 

role as well. The extent to which teachers feel part of the classroom situation or to 

which they feel to be able to connect with their experience can be considered as further 

indicators for the facility of teachers’ engagement with a classroom situation. For this 

reason, an assessment instrument should also be aware of perceptions such as 

authenticity, motivation, immersion, and resonance (e.g. Seidel et al., 2011; 

Kleinknecht & Schneider 2013). 
 
 
 
 
 
 
 

 

39 



As the instrument was intended to describe teacher growth during initial teacher 

professional development, this study focuses on pre-service teachers. From an earlier 

study with a pilot-like vignette-based subtest (e.g. Dreher & Kuntze, 2015a, b), we 

were able to extract also expectations related to other possible samples. 

 

RESEARCH INTEREST 
 

In contrast with the key role of representations in the mathematics classroom, empirical 

evidence about the competence of analysing the use of representations is scarce. 

Against the background of the considerations above, assessment instruments are 

needed which take into account the potential role of representation formats. Moreover 

for such an instrument, it should be examined whether teachers’ perceptions are 

positive as far as authenticity, motivation, immersion, and resonance are concerned. 
 

Consequently, this study aims to find out whether an assessment instrument comprising 

of vignettes in text, comic, and video format can be used to empirically describe the 

competence of analysing classroom situations regarding the use of representations 

empirically with one competence dimension. 
 

In particular, the following research questions are in the foreground: 
 

(1) Do the pre-service teachers rate authenticity, motivation, immersion, and 

resonance related to the vignettes as positive? 
 
(2) Can the competence of analysing the use of representations in classroom 

situations be empirically described by a one-dimensional Rasch model? 
 
(3) Are there any systematic differences in the empirical difficulty of vignettes for 

different vignette formats (text, comic, video)? 
 

DESIGN AND SAMPLE 
 

For assessment, six classroom situations were conceived which all consisted of 

learning support situations in year 6. According to the situations’ design, they start with 

the teacher being asked for help by a group of students who have a difficulty with 

solving a given problem and who are using a certain representation (algebraic or 

pictorial). The teacher reacts with a change of representation without connecting with 

the representation of the students or encouraging reflection about the connections of 

the two representations. So in all six cases the reaction is non-optimal according to the 

theory about the use of representations as outlined at the beginning of this article. The 

change of representations could for this reason potentially lead to further problems in 

the students’ understanding rather than support it. 
 

These learning support situations were each represented in the formats of transcript-like 

texts, comics and videos (cf. Fig. 1) . After producing the video vignettes, the text and 

comic formats were adjusted so that the wording of the dialogues and the fraction 

representations were congruent (Friesen & Kuntze, in press). For each vignette, the 
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pre-service teachers were asked to what extent the teachers’ reaction helped the 

students regarding the use of representations. The participants’ open format answers 

were coded according to a theory- based top-down categorisation: code “0” was 

assigned to the answer if it referred at most to representations used by the teacher 

without making any connections to the students’ question/representation, code “1” was 

used when the answer referred to representations used by both students and teacher and 

did not mention that the unexplained change of representations might be problematic, 

and code “2” stands for answers which referred to representations used by both students 

and teacher and mentioned that the unexplained change of representations might be 

problematic. The pre-service teachers’ answers were coded independently by two 

raters with good inter-rater reliability (Cohen’s κ=0.85). 
 

Moreover for each vignette, the pre- service teachers were asked to answer rating scale 

indicator items for authenticity, motivation, immersion, and resonance which were 

adapted from the study of Seidel et al. (2011). 
 

The pre-service teachers were asked to comment on each of the six situations. In a 

randomised way, each participant received one out of six test booklets as shown in 

Figure 2, so that the vignette formats were rotated according to a multi-matrix design. 

The videos were about 1.5 minutes long and could be paused and repeated.  
 

Test booklet  
I 

 
II 

 
III 

 
IV 

 
V 

 
VI 

 

number 
      

 

            
 

             
 

Situation 1  Text  Text  Comic  Comic  Video  Video 
 

Situation 2  Comic  Comic  Video  Video  Text  Text 
 

Situation 3  Video  Video  Text  Text  Comic  Comic 
 

             
 

Situation 4  Text  Video  Video  Comic  Comic  Text 
 

Situation 5  Comic  Text  Text  Video  Video  Comic 
 

Situation 6  Video  Comic  Comic  Text  Text  Video 
 

             
 

 

Figure 2: Overview of the six test booklets with rotated vignette formats 
 

 

The sample consisted of 162 pre-service mathematics teachers (66.9% female; aged on 

average 21.55 years (SD=2.38)). The pre-service teachers were at the beginning of their 

professional education (average number of semesters: 1.80 (SD=1.40)). 

 

RESULTS 
 

An important prerequisite for the pre-service teachers’ engagement with the learning 

support situations is that they see the vignettes’ authenticity positively, that they are 

motivated when reflecting about the vignettes, and that they can personally imagine to 

be part of the situations (immersion) as well as find it possible to connect to their prior 

classroom experience (resonance). The average ratings concerning these 
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variables were all positive, regardless of the particular classroom situation and 

representation format, respectively (mean values ranging from 4.1 to 4.7 on a scale 

from 1 to 6, SD ranging from 0.8 to 1.2). For the first research question, we may hence 

state in particular that none of the classroom situations was seen as non-authentic and 

that also from the point of view of the other variables no impeding factors for analysis 

could be identified. 
 

For answering the second research question, the pre-service teachers’ answers were 

coded and a score per item was assigned according to the codes. Taking all items 

together, only 25.1% of the answers mentioned the unexplained change of 

representations and evaluated this change of representation as potentially problematic 

(corresponding to code “2”). A chi -square test revealed that there was no significant 

correspondence of vignette format (text, comic, video) and the pre-service teachers’ 

analysis scores related to the classroom situations (χ
2
(4) = 7.09). 

Based on the codes assigned to the answers, we applied a partial credit Rasch model as 

partial marks were awarded in an ordered way according to the top-down coding (cf. 

Bond & Fox, 2015). The six vignettes in the three formats were considered as one item 

each, resulting in 18 items altogether. The Rasch analysis revealed good fit values for 

all 18 items (0.91 ≤ wMNSQ ≤ 1.16; - 0.6 ≤ T ≤ 1.0), so that all of them fitted 

sufficiently to the Rasch model (Bond & Fox, 2015). Consequently, the results indicate 

that the Rasch requirement for unidimensionality is fulfilled empirically and that each 

item contributes meaningfully to the competence of analysing as imple-mented in the 

test instrument. The EAP/PV reliability amounts to 0.45, which is rather low, but this 

has to be seen against the background of missing data by design (see multi-matrix 

design in Fig. 2) and of the comparatively small number of items, so that the reliability 

value can be considered as satisfactory (Bond & Fox, 2015). 
 

The Wright map (Figure 3) displays both items and persons located on the same 

competence dimension (highest values located on the right of the logit scale). As a 

consequence of the polytomous scoring (codes 0, 1, 2), the Wright map contains two 

difficulty thresholds per vignette: above threshold estimate 1, scoring code 1 is more 

likely than scoring code 0 and above threshold estimate 2, scoring code 2 is more likely 

than scoring code 1 (Bond & Fox, 2015). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: Wright map of the partial-credit Rasch model 
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Looking at the item difficulty estimates for all 18 items, it can be remarked that the 

step between code 0 and 1 is empirically easier (mostly negative logit scores) than the 

step between code 1 and 2 (mostly positive logit scores) – this is consistent with the 

expectation. The distribution of the persons does not exceed the range of the most 

difficult thresholds – also this finding conforms our expectations about samples of pre-

service teachers at the beginning of their professional education (cf. Dreher & Kuntze, 

2015b, as mentioned above). 
 

Turning to the third research question, the Wright map suggests that the presentation 

format of the six learning support situations does not make a systematic difference for 

empirical item difficulty. If, for instance, the video vignettes had been more difficult 

than other vignettes, then the video vignette difficulty thresholds would have 

systematically appeared more to the right than their comic- and text-format 

counterparts, which is not the case in the Wright map in Figure 3. 
 

The difficulty estimates can be interpreted as interval data (Bond & Fox, 2015), so that 

analyses of variance can be calculated for checking whether there is an association of 

item difficulty and vignette format. In line with the chi-square test reported above, the 

comparison of text vignettes (items 1- 6), comic vignettes (items 7-12) and video 

vignettes (items 13- 18) did not yield any significant format-related differences 

(F=0.047, df=4; p= .996). 
 

DISCUSSION AND CONCLUSIONS 
 

This study’s aim was to explore whether it is possible to implement a vignette-based 

assessment instrument for the competence of analysing the use of representations in 

the mathematics classroom, taking into account the role of different vignette formats. 

We were able to build on the work by Herbst et al. (2013): In comparison, the vignette 

formats included in this assessment instrument (text, comic, video) were very different, 

as, for instance, Herbst and colleagues had conserved the aspect of temporality across 

their vignette formats (video and animation formats). We thus consider our choice of 

vignette formats as relatively wide-spread within the spectrum of possible formats. The 

results indicate that despite this wide-spread choice of vignette formats, it is still 

possible to empirically reproduce a single competence dimension, and that in the case 

of the competence of analysing the use of representations, the analysis difficulty is not 

systematically determined by the vignette format. In particular, the pre-service 

teachers’ competence of analysing was not connected with item design factors such as 

temporality, individuality of the persons shown or the context information that were 

implemented to different degrees in the three vignette formats. We have hence 

identified an empirically one-dimensional competence construct which is not 

dependent from the format of the vignettes used in the assessment instrument. 
 

This finding can also be interpreted as supporting the validity of our instrument: The 

competence construct had been deduced from theory, the vignettes conceived 
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according to theoretical considerations related to analysis requirements, and the 

representations and the wording of the dialogues had been kept constant throughout the 

vignette formats even if the information provided in the vignettes varied with respect 

of other aspects as described above. These representations and the way they were dealt 

with might thus have been the core subject of analysis, as intended in the instrument’s 

design.  

Moreover, the test items’ fit to a one -dimensional Rasch model without exception is a 

very positive finding also for further research: the competence of analysing the use of 

representations can not only be measured independently from the different vignette 

formats, but the results facilitate the investigation of factors that make the analysis of 

the use of representations difficult for teachers. As this study suggests that the vignette 

formats text, comic and video are comparably effective to assess pre-service teachers’ 

competence of analysing the use of representations, further research focusing on this 

competence could explore design variations within only one of these formats.  

 

ACKNOWLEDGEMENTS 
 

The data presented in this paper stems from the ANAKONDA-M project work mainly 

carried out by the second author. ANAKONDA-M is connected to the framework 

project EKoL (supported by the Ministry of Science, Research and the Arts in Baden-

Wuerttemberg, Germany). The data gathering of this study is further supported by 

research funds from Ludwigsburg University of Education. 

 

REFERENCES 
 

Ainsworth, S. E. (2006). DeFT: A conceptual framework for considering 

learning with multiple representations. Learning and Instruction, 16, 183-198. 
 

Blömeke, S., Gustafsson, J.-E. & Shavelson, R. (2015). Beyond dichotomies:  

Competence viewed as a continuum. Zeitschrift für Psychologie, 223, 3-13. 
 

Bodemer, D., & Faust, U. (2006). External and mental referencing of multiple 

representations. Computers in Human Behavior, 22, 27-42. 
 

Bond, T. & Fox, C. (2015). Applying the Rasch Model. Fundamental 

Measurement in the Human Sciences. New York: Routledge. 
 

Dreher, A. & Kuntze, S. (2015a). Teachers’ professional knowledge and 

noticing: The case of multiple representations in the mathematics classroom. 

Educational Studies in Mathematics, 88(1), 89-114. 
 

Dreher, A. & Kuntze, S. (2015b). Teachers Facing the Dilemma of Multiple 

Representations Being Aid and Obstacle for Learning: Evaluations of Tasks and 

Theme-Specific Noticing. Journal für Mathematik-Didaktik, 36(1), 23-44. 
 

Duval, R. (2006). A cognitive analysis of problems of comprehension in a 

learning of mathematics. Educational Studies in Mathematics, 61, 103-131. 
 
 
 
 

 

44 



Friesen, M., Dreher, A. & Kuntze, S. (in press). Pre-Service Teachers’ Growth 

in Analysing Classroom Videos. CERME Proceedings 2015. 
 

Friesen. M. & Kuntze, S. (in press). Creating classroom situations in text, comic 

and video format for professional learning and mathematics teacher assessment. 

PME 2016. 
 

Goldin, G., & Shteingold, N. (2001) . Systems of representation and the 

development of mathematical concepts. In A. A. Cuoco & F. R. Curcio (Eds.), 

The role of representation in school mathematics (pp. 1-23). Boston: NCTM. 
 

Herbst, P., Aaron, W. & Erickson, A. (2013). How Preservice Teachers Respond 

to Representations of Practice: A Comparison of Animations and Video. [Paper 

at the 2013 Annual Meeting of the AERA, San Francisco]. 
 

Herbst, P. & Kosko, K.W. (2013). Using representations of practice to elicit 

mathematics teachers’ tacit knowledge of practice: a comparison of responses to 

animations and videos. Journal of Math. Teacher Educ., 17(6), 515-537. 
 

Kleinknecht, M. & Schneider, J. (2013). What do teachers think and how do they 

feel when they analyze videos of themselves teaching and of other teachers 

teaching? Teaching and Teacher Education, 33, 13-23. 
 

Kuntze, S., Dreher, A., & Friesen, M. (in press). Teachers’ resources in analysing 

mathematical content and classroom situations. CERME 2015. 
 

Lesh, R., Post, T., & Behr, M. (1987). Representations and translations among 

representations in mathematics learning and problem solving. In C. Janvier (Ed.), 

Problems of representation in the teaching and learning of mathematics (pp. 33-

40). Hillsdale, NJ: Lawrence Erlbaum. 
 

Oser, F., Salzmann, P. & Heinzer, S. (2009). Measuring the competence-quality 

of vocational teachers: An advocatory approach. Empirical Research in 

Vocational Education and Training, 1, 65-83. 
 

Schoenfeld, A. (2011). Toward professional development for teachers grounded 

in a theory of decision making. ZDM, 43(4), 457-469. 
 

Seidel, T., Stürmer, K., Blomberg, G., Kobarg, M., & Schwindt, K. (2011). 

Teacher learning from analysis of videotaped classroom situations. Teaching 

and Teacher Education, 27, 259-267. 
 

Sherin, M., Jacobs, V., Philipp, R. (2011). Mathematics Teacher Noticing.  

Seeing Through Teachers’ Eyes. New York: Routledge. 
 

Sjuts, J. (2002). Unterschiedliche mentale Konstruktionen beim Aufgaben-lösen. 

Journal für Mathematik-Didaktik, 23(2), 106-128. 
 

Weinert, F. E. (1999). Concepts of Competence. Munich: Max Planck Institute 

for Psychological Research. 
 
 
 
 
 

 

45 



High inference rating system for an evaluation 
 

of metacognitiv-discursive teaching and learning quality 
 

Edyta Nowińska 
 

University of Osnabrück and Adam Mickiewicz University in Poznań,  

enowinska@uni-osnabrueck.de 
 

This paper discusses the design of a rating system for the assessment of the meta-

cognitive-discursive quality (MDQ) of a class discourse. It focusses on this system 

understood as a research tool aiming at a reliable and valid evaluation of MDQ in a 

class, but it also refers to the usefulness of this tool when applying it as an analytical 

or diagnostic tool in teacher education. The preliminary results of a research project 

aiming at an evaluation of this rating system indicate that a two-step procedure 

designed for its application enhance the accuracy of the discourse analysis and 

evaluation, and it allows a detailed analysis of the relation between teacher’s and 

students’ metacognitive behaviour. 
 

Keywords: metacognition, discursivity, rating system, evaluation. 
 

INTRODUCTION 
 

Despite the recognition of the important role of metacognition in student’s learning 

process (cf. Hattie, 2009; Wang, Haertel, & Walberg, 1990), little is known about the 

implementation of metacognition in classroom instruction and on relations between 

teachers’ and students’ metacognition in a class. Assuming that enhancing learners’ 

metacognition is essential for promoting learning, research on the implementation of 

metacognition into the school practice, and on supporting teachers in establishing a 

metacognitive-discursive culture in their classes definitely merits future research (cf. 

Mevarech & Kramarski, 2014; Depaepe et al., 2010). One challenge for this kind of 

research had been described by Veenman et al. (2006, p. 10): “Teachers are absolutely 

willing to invest effort in the instruction of metacognition within their lessons, but they 

need the tools for implementing metacognition as an integral part of their lessons”. 

This statement raises the issue of the kind of tools that would be appropriate as 

diagnostic tools for analysing and assessing metacognitive practices of individual 

teachers in their classes (in teacher-student and student-student interactions), and for 

identifying strategies for improving them to help the students to become metacognitive 

learners. 
 

This paper reports on a research project aimed at developing and evaluating a rating 

system for analysing and assessing the metacognitive-discursive quality (MDQ) of a 

class discourse (RSMDQ) (Nowińska, in print). RSMDQ can be used in different settings 

and for various research and practical aims: 
 

 as a research tool to evaluate the metacognitive-discursive quality in a given 
teaching-learning group (e.g. when a relation between this quality and the 
students’ learning success should be investigated),
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 as an analytical tool in in-service and pre-service teacher education (e.g. to learn 

how to analyse a classroom discourse, identify variables influencing the 
effectivity of the discourse with regard to various aspects of the learning process, 

and to learn how to design effective classroom discourses),
 as a diagnostic tool in in-service teacher professional development programmes 

(e.g. to analyse and diagnose the metacognitive-discursive quality in a particular 

class of an individual teacher, and to find strategies for improving its potential 

for promoting learners’ metacognitive behaviour and their learning process).
 

This paper explains the design of RSMDQ and exemplifies its use as a research tool but 
it also discusses the usefulness of RSMDQ in the other two settings. 
 

METACOGNITION IN A CLASSROOM DISCOURSE 
 

The origin of research in metacognition in mathematics education lies in learners’ 

difficulties in solving problems, and is closely related to the question of how to learn 

and teach solving non-routine problems. When applying to learning mathematics in a 

class, metacognition refers to a broader spectrum of activities then during problem 

solving. The groundwork for the operationalisation of the concepts of metacognition 

with the objective of making it understandable und evaluable in terms of empirical 

observations of classroom situations has been done by Cohors-Fresenborg and Kaune 

(2007), as they constructed a category system for an interpretative, transcript-based 

analysis of metacognitive and discursive activities (CMDA)
1
 in a class discourse. Their 

paper presents this category system, explains and exemplifies in detail the use of it. 

CMDA does not differentiate between metacognitive processes understood as 

cognition about (one’s own or of the others) cognition – in particular when problem 

solving – and cognition about the results from cognition (calculation, verbal or written 

information, argumentations, questions). Also in the second case the purposeful 

application of such cognitive behaviour at the appropriate moment results from 

metacognitive thoughts, and reflects the intention to control and understand the given 

calculation, information, argumentation or question. According to this 

conceptualisation, the objectives of metacognition
2
 in learning mathematics are, for 

example, to plan the use of mathematical tools, methods, and representations to justify 

an argumentation or to explain an idea; to control and evaluate the accurateness of 

argumentations, the adequateness of external (e.g. formal) or internal representations 

of mathematical concepts, the correctness of the use of tools and procedures; to reflect 

on the ways of reasoning, defining or proving, and on similarities and differences in 

conceptions and arguments. Since a learning process in a class can only lead to a deep 

understanding of concepts, representations and  
 

 
1 The complete German version of CMDA is presented in Cohors-Fresenborg, Kaune, & Zülsdorf-Kersting (2014).  

2 Metacognition in this context is decomposed into planning, monitoring and reflexion. The colors used here refer to the 
colors used in CMDA. In the same way two colors are used for discursivitiy and negative discursivity. 

 
 
 
 

 

47 



tools, if the planning, monitoring and reflection related to them are connected 

accurately to the matter discussed and take students’ ways of thinking into 

consideration, discursivity is needed to facilitate the productive use of metacognition 

in classroom discussions (Cohors-Fresenborg et al., 2014, p. 7). Discursivity means 

activities carried out to improve the precision and accuracy in a discourse: orchestrating 

single utterances to a comprehensible discourse unit and orientation on students’ ways 

of thinking. Examples of discursive activities are precise (re-)for-mulating and 

comparing of learners’ ideas, strategies, conceptions and misconceptions, connecting 

them with precisely represented mathematical concepts or argumentations, and also 

confronting the learners with problems regarding the intended precision. On the 

contrary, negative discursivity means activities with a negative influence on the 

precision and accuracy in the discourse. Examples are: the use of inadequate 

vocabulary or superficially clear sentences with an unclear sense, incorrect logic 

structure of an argumentation, and bringing into the discourse an alternative idea 

without references to what has been said and discussed before. 
 

This broad perspective on metacognition in a classroom discourse was used to design 

RSMDQ. It makes it possible to investigate relations between teachers’ and students’ 

metacognitive activities and the mechanisms facilitating and hindering the 

effectiveness of metacognition in everyday teaching and learning situations.  

 

RATING SYSTEM FOR AN EVALUATION OF MDQ IN A DISCOURSE 
 

In the ongoing research project
3
, the Group Cognitive Mathematics at Osnabrueck 

University (in cooperation with the University of Kassel and The German Institute for 

International Educational Research - DIPF) works on the development and evaluation 

of a rating system for a video-based analysis (by a category system) of metacognitive 

and discursive students’ and teacher’s activities in classroom discourse, and for the 

evaluation (by rating scales) of the MDQ of the analysed discourse. By means of a 

generalizability study (Cronbach et al., 1972; Praetorius et al., 2012) the reliability of 

the designed rating system (RSMDQ) will be evaluated, and a decision study will be 

conducted to determine how many lessons from a given teaching-learning group, and 

how many raters would be needed to get reliable statements about the MDQ of the 

discourse in this group. 
 

Ideas for the design of the rating system 
 

The design principles for the development of RSMDQ result from the fact that 

metacognition and discursivity are intertwined and can be carried out with a different 

local quality (e.g. elaboration, precision, relevance for the discussed question). Both 

constructs have to be analysed in teacher-student and student-student interactions, and 

their potential to promote learners’ metacognitive behaviour and an understand-ding 

use of mathematical tools have to be analysed. Consequently, it is necessary to  
 

 
3 The project is supported by Deutsche Forschungsgemeinschaft under reference Co96/8-1. 
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look at several complementary aspects of the interactions and to integrate them in a 

complex assessment. This can only be achieved by a high inference rating system, but 

the use of such a system demands complex qualitative decisions and a high degree of 

the necessary conclusions. This leads, in general, to a reduced reliability of the 

assessment (Praetorius et al., 2012). An improvement of the reliability through 

reducing the focus of the evaluation to observable metacognitive behaviour aspects 

does not make sense. Right from the design stage for such a rating system, it has to be 

prevented that, as a consequence of the pressure to get a satisfactory reliability, only 

the surface structure of the lesson is evaluated and the deep structure neglected. This 

could provide incorrect predictions as to what extent a ‘good’ surface structure of a 

lesson can promote an understanding learning and lead to sustainable results of this 

process (cf. Nowinska, 2011). 
 

In the ongoing research project a new idea to cope with this research problem was 

developed. To obtain reliable assessments, despite the needed complexity of the 

interpretative discourse analysis, the rating process is designed as a two-steps 

procedure. The decision was made, not to dramatically reduce the complexity of the 

category system CMDA but to adapt it for a video-based analysis, and to use it as an 

analytical tool for a detailed interpretation of the discourse in the first step. The same 

rater uses his interpretation as a basis for the global evaluation of MDQ of the whole 

discourse in the second step. The obligation for an elaborated interpretation causes that 

the rater deals with the videos very intensively, and therefore it can be expected that 

the evaluation of MDQ will be reliable and accurate. 
 

The idea of using these two steps seems to play a crucial role contributing to the 

usefulness of RSMDQ as a research tool, and also as an analytical and diagnostic tool. 

The result of the first step provides a detailed ‘map’ of metacognition and discursivity 

in class interactions and makes these constructs ‘visible’ for researchers, raters and 

teachers. This enhances the accurateness of the subsequent evaluation, and helps an 

individual rater or teacher to better understand the weak and strong aspects of an 

individual teacher’s efforts in promoting metacognition and learning process with 

understanding. To make this usefulness comprehensible to the reader of this paper, a 

reference example will be used in the following sections. The subsequent analysis of 

this example shows how the ‘map’ of the metacognitive and discursive activities 

identified in the given discourse can be analysed with RSMDQ to find an accurate 

evaluation of MDQ. 
 

The reference example 
 

The example presents transcript-excerpts from a discussion in a grade 7 classroom in 

one German secondary school. In the previous lesson the teacher (T.) introduced two 

types of equivalent transformations (ET) to solve linear equations by writing them on 

the board. Up to the end of the lesson the ETs have not been explained and justified. 

The first (second) ET regards ‘the addition and subtraction of the same number (term) 

on both sides of an equation’. Two equations have been solved by a sole 

 
 
 
 

 

49 



application of these transformations. In this lesson the students have to solve the 
equation 4-x=6. 
 

Thomas 

 
 

The task was 4-x=6. I thought, we could bring x to the other side of the equal 

sign, and this would make the task easier. Namely, quite simply, plus x, then 

one has 4=6+x. And now one can see, if one wants to have only x, one has 

there also the six, hence minus six. And then it is 2=x. 
 

Kevin: 
 

I would say this is correct. 
 

Thomas: 
 

Rafael. 
 

Rafael 
 

I would say, the result, er, I would say it is correct, but I do not know how 

you got the idea. I did not understand how you, er, how you got 4=6+x. [a 

few minutes later:] 
 

T. 
 

How about the others? This could call in your minds the second type of the 

equivalence transformations. (8sec) Have a look into your notes. [one minute 

later:] 
 

Johanna 
 

Actually, I only calculated 4-6. I got 2. [...] I do not understand why one has 

to do all these complicated steps with x, if one can just calculate 4-6. 
 

T. 
 

Johanna, we are looking for the number x. We have already said it several 

times during last lesson. We are trying to change the equation, to transform 

it so that at the end we get the answer to the question: What is x? On the left 

side, there is minus x. This does not satisfy Thomas. 
 

Thomas suggests (and justifies) a plan to solve the equation and to make it easier first. 

Kevin and Rafael control the result obtained by Thomas. Rafael gives a critical 

reflective question concerning Thomas’ plan. Johanna reflects on her difficulties in 

understanding the sense of Thomas’ idea, and justifies her critical remarks by pointing 

to an easier way of solving the equation. The transcript shows that the learners are 

autonomous in planning the way for solving the equation, in critical controlling of the 

use of mathematical tools, and in reflecting on the sense, usefulness and complexity of 

these tools. They also try to understand what their classmates think. Their single 

metacognitive activities indicate a great potential for understanding the idea of solving 

equations, but – since the different learners’ conceptions of solving an equation have 

not been elaborated and compared with each other – they do not produce a 

comprehensible discourse unit. The teacher does not initiate deep reflection on the 

mathematical activity. Instead of that, he only points to the type of ET (written on the 

blackboard) that has to be used there. 
 

The first step: local categorizing of metacognitive and discursive activities 
 

In the first (video-based) coding step the rater interprets each students’ and teacher’s 

contribution. He decides whether a given contribution indicates metacognitive and 

(negative) discursive activities, he interprets the kind of these activities, and describes 

them with codes from the category system. This interpretation is based on 
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the category system adapted
4
 for this purpose from Cohors-Fresenborg and Kaune 

(2007). The choice of one category from the category system demands from the rater 

a careful consideration with regard to alternative categories, and a justification which 
one of them is the most adequate in the given case. Thus, the rater sets for himself a 

local interpretation of the discourse, and gets an overview of the kind and quality 
(precision and elaboration) of each individual activity on the one side, and of the 

coherence of the whole discourse on the other side. 
 

One result of the categorizing is presented to the rater in a form called category line. It 

can be considered as a map or an abstract representation of the discourse process and 

its metacognitive and discursive content. The category line is to be read from top to 

bottom. For each student’s and teacher’s contribution there is a short horizontal 

segment with the name of the speaker. The segments for student’s contribution are 

represented on the right side of the vertical line, and these for the teacher (T.) on the 

left side. Under each segment there are codes for metacognitive and discursive 

activities identified by the rater in the respective contribution. The following figure 

shows three excerpts from the category line generated to for the entire 10-minutes long 

discourse including the discussion shown in the reference transcript. 
 

The first excerpt shows 

many metacognitive and 

discursive activities on the 

students’ side; due to the 

absence of codes on the left 

side one knows that they are 

carried out without a de-

mand given by the teacher. 

This could be interpreted as   

a great potential for under-
standing the mathematical  
activities discussed in this lesson. The second piece shows metacognitive activities 

combined with negative discursive actions. The teacher's monitoring activity M4 is not 

coherent, and it does not explain the understanding difficulties signalized by the 

students (ND3b). Two students’ activities do not precisely refer to the structure of the 

given equation (ND3a), and include incorrect vocabulary (ND2) hindering the 

understanding of what is meant. The learners try to explain there the sense and the 

validity of the ET suggested by Thomas (R1, R4, rR6b). Due to the negative 

discursivity their efforts do not contribute to clear the problematic issue. The third 

piece shows many codes for negative discursivity indicating that the teacher does not 

take students’ difficulties into consideration when explaining the equation (ND4, 

ND3b). The missing reflective and discursive intervention on his side hinders the 
 
 

 
4
 The further developed version of this category system can be found here: http://www.mathematik.uni-

osnabrueck.de/fileadmin/didaktik/Projekte_KM/Kategoriensystem_EN.pdf 
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understanding of the mathematical activity carried out in the discourse. The local 

absence of metacognition and discursivity has to be considered in the evaluation of 

MDQ to make this evaluation accurate, and to draw valid conclusions from it. 
 

This requires a high degree of the necessary analytical reasoning. Taking into 

consideration only the observable fact that the learners are quite autonomous in 

practicing planning, monitoring and reflection would hinder the validity of the intended 

evaluation and its explanatory value with regard to the expected students’ mathematical 

understanding (like in the study in Depaepe et al., 2010). 
 

The second step: global assessment of MDQ of a classroom discourse 
 

MDQ of a classroom discourse is evaluated by means of seven high inference rating 

scales. Each of them consists of a guiding question (GQ) focusing rater’s attention on 

aspects to be analysed and evaluated complementary, and of several answers to the GQ 

describing in detail how these aspects are reflected in the discourse. Different answers 

describe qualitatively different situations. Their order reflects the increasing quality of 

the discourse with regard to the relevant aspects. The rater has to choose the one that 

best describes the given situation, and to justify the choice. In the following, the guiding 

questions will be explained. To each of them the answer for the entire 10-minutes long 

discourse including the discussion in the reference transcript will be given in brackets, 

written in italics, e.g.: (Answer no. 1 out of 4). 
 

The first GQ focuses on teacher-students interactions and their potential to facilitate 

learners’ autonomy in practicing metacognition. There are four answers to it. The 

answer no. 1 describes the case that metacognitive activities are carried out almost 

exclusively be the teacher, and it cannot be indicated that the teacher is aimed at 

fostering metacognitive skills by the learners or – alternatively – only a few 

metacognitive activities are practiced by the teacher and by the students, and no effort 

is made to use these activities accurately to better explain and understand the subject 

of the discussion. In the case explained in answer no. 4 the learners are autonomous in 

practicing and regulating metacognition, and they make effort to precisely elaborate 

the subject of the discussion. (Answer no. 4 out of 4) 
 

The second GQ focuses on justifications combined with metacognitive activities, on 

efforts made with them to better understand the subject discussed, and on promoting 

learners’ autonomy in justifying. It should be assessed whether justifications are 

practiced and valued as being important in the culture established in the class. There 

are four answers, analog to these to the first GQ. To choose the right answer one has 

to take into consideration the extent to which the teacher and the learners really make 

efforts to precisely explain and elaborate the content discussed. Hereby it is important 

to distinguish between the syntactic form of a justification and the content of it. An 

utterance with the formal form of a justification does not necessarily have any relevant 

explanatory content in the given context. Such utterances are called ‘pseudo 

justifications’. Situations with a high number of such ‘justifications’ left 
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without critical comments and corrections hinder the development of the reasoning 
skills of the learners. (Answer no. 2 out of 4) 
 

An accurate evaluation of MDQ has to differentiate between lots of disconnected 

teacher’s and students’ metacognitive and discursive activities, and an orchestrated 

discourse producing accurate explanations and justifications for issues discussed in the 

class. The third GQ focuses on the interplay of the metacognitive and discursive 

activities carried out, on their potential for understanding the subject-specific issues 

discussed in the class (questions, tools, methods, argumentations) and for organising 

and systemising mathematical knowledge in students’ minds. The first answer refers 

to a discourse without any productive use of metacognitive and discursive activities. 

The second answer describes the case that the understanding can only be indicated by 

an individual learner. The third refers to the case that the interplay of these activities 

contributes to a deep understanding in the class. (Answer no. 2 out of 3) 
 

Discursivity is in the focus of the fourth GQ. It evaluates to what extend the discourse 

integrates learners’ ways of thinking, and is aimed at making students’ and teacher’s 

utterances comprehensible for others and accessible for further analysis regarding 

individual ways of thinking and reasoning, or differences between what was said or 

written and what was meant by that. (Answer no. 1 out of 5) 
 

The fifth GQ deals with negative discursivity and with efforts made to prevent it. The 

answers to this GQ describe the extent to which negative discursivity hinders the 

reciprocal understanding in a class and the understanding of the subject-specific issues 

(tasks, tools, methods or ways of reasoning). (Answer no. 1 out of 5) 
 

The sixth GQ focuses on stringently guided discourse units called ‘debates’. The 

answers to this GQ vary between situations without any (even short) debate, and 

between situations with at least one long debate guided by the learners and 

characterized by the use of discursive and metacognitive activities with justifications. 

The other two middle answers refer to situations with only short and not elaborated 

debates guided by the learners or to situations with a longer debate guided by the 

teacher. (Answer no. 1 out of 4) 
 

The quality of the classroom discussion can change dramatically if a challenging and 

complex issue is being discussed. The cognitive challenge of such an issue must be 

stated more precisely and clear in order to find appropriate tools, methods, and ways 

of reasoning to elaborate the issue. This requires the use of elaborate metacognitive 

and discursive activities, and the inclusion of a meta-knowledge with regard to the 

subject matter. The seventh GQ focuses on situations with challenging and complex 

issues, and on the efforts made by the teacher and by the student to orchestrate the 

individual utterances, arguments, ideas and conceptions into a coherent discourse unit. 

This GQ plays an important role in comparing MDQ of two classes discussing issues 

with different complexity, and also in a long-term evaluation of MDQ in an individual 

class. The answers vary from the case without complex issues or with an 

 
 
 
 
 

 

53 



‘intellectual chaos’ when discussing such issues, to situations with noticeable efforts 

made by the teacher or by the learners to find appropriate methods and ways of 

reasoning to elaborate the given issue. (Answer no. 2 out of 4) 

 

DISCUSSION 
 

The evaluation of the 10-minutes long discourse including the reference transcript 

leads to the following assessment. For the first GQ the highest answer (no. 4 out of  

4) has to be chosen because the learners are autonomous in practicing metacognition, 

and make efforts to understand the mathematical activity being the core issue of the 

lesson. This assessment is supported by the category line showing lots of codes for 

students’ metacognitive activities. Nonetheless, this remarkable, observable 

characteristic of the discourse does not automatically lead to a high quality of other 

aspects of MDQ being substantially relevant for understanding the discussed 

mathematical tools and formal representations. For the second GQ answer no. 2 (out 

of 4) has to be chosen: there are only a few mathematical justifications and they seem 

to play no relevant role in the classroom culture. For the fourth and fifth GQ answers 

no. 1 have to be chosen: the discourse does not respect students’ difficulties, questions 

and ways of thinking. Consequently, answer no. 2 (out of 3) for the third GQ states that 

no relevant understanding processes have been initiated in the class. Such processes 

can only be indicated in the case of one single student. And, furthermore, due to the 

intellectual chaos and the absence of any attempts to clarify the reasons of the 

fundamental understanding difficulties externalised in students’ critical remarks and 

questions, the rater has to choose the answer no. 2 (out of 4) for the seventh GQ. 
 

This evaluation leads to the following conclusion. A complex analysis was needed to 

describe and evaluate the metacognitive and discursive activities in the discourse 

including the reference example. The question whether the learners are autonomous in 

practicing metacognition had to be split from the question whether their activities 

promote an understanding learning process. Also the question whether the learners take 

the responsibility for managing the discourse and the use of mathematical tools had to 

be split from the question whether the discourse produces a coherent mathematical 

argumentation. Furthermore, it was substantially crucial to split the question whether 

the teacher allows the students to be responsible for solving the equation from the 

question whether he acts co-responsible for the quality and results of students’ 

activities. None of the separated questions can give an accurate and valid evaluation of 

the MDQ of the discourse. Quite to contrary, these aspects have to be analysed and 

evaluated complementary. 
 

The implementation of the two-step rating procedure – in which the rater first locally 

and precisely analyses metacognitive and discursive activities, and in which he gives 

the global evaluation of MDQ immediately after a sophisticated interpretation of the 

results from the first step – is a promising design to fulfill the requirements of 
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reliable and valid assessments. It also proved as an effective method in educating raters 

and pre-service teachers in conducting a detailed discourse analysis, and in 

differentiating between strong and weak aspects of observable sight structures and of 

deep structures of teaching-learning situations. This opens new possibilities for 

research aiming at implementing metacognition in classes, and in enhancing its 

effectiveness in promoting students’ understanding in learning mathematics.  
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This paper aims to discuss the curriculum of teacher-training programmes for pre-

service mathematics teachers drawing on a three-year long research within a master’s 

programme in mathematics teaching for middle and high school pre-service teachers. 
We found the advantages on using deliberative dialogue to discuss how a group of pre-

service teachers analyse the role of families during the mathematics learning school 

process. We conclude that teacher-training programmes developing competences may 

help future teachers to deal with potential conflicts when performing their work as 

teachers of mathematics. Although the ‘practicum’ is a short period, we have evidence 
of discussions regarding a developmental influence on social citizenship transversal 

competencies for teacher development. 
 
Keywords: professional development, citizenship competence, deliberative dialogue 
 
INTRODUCTION: SCOPE AND PURPOSE 
 
We aim to encourage future teachers of mathematics to improve their professional 

practice by equipping them with didactical tools based on a rigorous theoretical 

foundation (Zavlasvsky & Sullivan, 2011). According to previous studies, for future 

teachers it is important to be aware of the increasing democratic participation of family 

members through out-of-school mathematical practices (Diez-Palomar, 2015). The 

Spanish education system express that mathematics teachers should be competent not 

only for understanding mathematical practices, nut also includes other general 

professional competencies such as having tutorial skills to make a bridge between the 

school system and family involvement. Our aim in this paper is to describe some 

changes observed among pre-service teachers (for middle and high school), during the 

three-year lifespan of an inter-university training program in Spain by introducing 

social/ecological aspects during didactical analysis in training courses. We expect to 

provide solid criteria to redesign mathematical tasks to allow family (and other 

members of the school community in a broader sense) to participate within the process 

of learning in mathematics. 
 
 
THEORETICAL BACKGROUND  
We start from a context in which traditional models of instruction still dominate 
mathematics education especially at the high school and University level (Barquero et 
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al 2011). Most high school mathematics teachers see mathematics as a rigid and fixed 

body of knowledge, and they think that their responsibility is just to transmit this 

knowledge to their students. In such a framework, the intentionality of the deliberative 

dialogue (Skovsmose &Valero, 2001; Serradó, Vanegas & Gimenez, 2015) is to 

facilitate the establishment of explicit democratic mathematics practices for future 

teachers involving families and learn from it. We assume deliberative dialogue as a 

communicative episode considering: (a) the reasons or lack of reasons for people’s 

preliminary opinions and judgements before actually making a final statement, (b) the 

pros and cons of possible decisions before actually making them, and (c) the benefits 

and losses of possible courses of action, before engaging in them.” (Serradó et al., 2015, 

p. 291) 
 

In fact, we know that two main variables influence mathematics participation and 

deliberation in rich tasks: the activity proposed, and the management. Regarding the 

management, interactive groups developed within the learning communities (Valls & 

Kyriakides, 2013) provide evidence that family involvement opens the possibility to 

increase learning interactions in [and out] of the classroom; such kind of practices 

improve students’ mathematics achievements (Díez-Palomar & Cabré, 2015). 

Learning communities draws on the participation of members of the educational 

community (in a broad sense, including families, neighbours, or anyone who want to 

collaborate with the school), to implement successful educational actions –SEAs– 

(Flecha, 2012). Family involvement is one of those SEAs. Epstein (2011) has pointed 

out the difference between parental engagement, parents’ participation, and family and 

community partnership, when talking about family and mathematics involvement. 

When parents (or other family or community members) want to support their children 

in learning mathematics, most of the times they have to go back to their schooling to 

remember their “mathematics”. In doing so, some conflicts emerge due to the changes 

in terms of curriculum that we have experienced in the last decades. Those “changes” 

(mathematics reform) make difficult for parents to help children with their school 

assignments (Hoover-Dempsey & Sandler, 1997). Some families start to recognize that 

they can no longer help their children. In such cases, family and community 

involvement depends on the large task to build individuals’ identities to become what 

Civil (2001) calls “resources”, as leaders or facilitators of their children learning. 

Drawing on our experience doing research in this domain, we can recognize that almost 

all future teachers are unaware of these ideas, and have pre-judgements about the role 

of families in relation to the school system. 
 

In order to address that situation of [potential] conflict we want to introduce a 

theoretical framework, the deliberative dialogue that enables us to address the 

difficulties in clarifying the fuzzy border between participation, deliberative dialogue 

and their children’s mathematical learning. We understand that deliberate dialogue on 

mathematics classroom should enable vertical and horizontal forms of communication 
that support face-to-face and on-line dialogue and negotiation through deliberative 

interaction involving teachers, students and family members. The role of the teacher’s 

change is associated to deliberate dialogue and crucial when 
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it comes to management, power, responsibility and judgement (Serradó, Vanegas & 
Giménez 2015). 
 

In our study we call ‘professional tasks’ those that we propose to future teachers in 

order to encourage them to perform didactic analysis and to develop the associated 
competencies. We understand ‘competence’ as the ability to design, apply and evaluate 

sequences of learning by means of didactic analysis techniques and involving the use 

of quality criteria. It is generally hypothesized that someone may reflect and improve 

their competence in terms of the analysis of mathematical classrooms, in order to make 

best use of the opportunities for being a teacher as ‘teacher enquirer’ (Mason & 
Johnston-Wilder, 2004). 
 

In this paper we discuss data emerging from a teaching research project based on an 
inquiry and reflective practice framework in which we design and implement diverse 

teacher training cycles as teaching experiments that include the competence “family 

involvement” within the training program. From the outset, the development of these 

cycles, was explained by means of six types of professional tasks (Giménez, Font & 

Vanegas, 2013): 
 

Analysis of mathematical practices, objects and mathematical 

processes; Analysis of didactic interactions, conflicts and norms; 
 

Evaluation of tasks and classroom episodes using quality criteria, including 
ecological issues; 

 

Design and implementation of a lesson in their [pre-service teachers] period of 
internship; 

 

Analysis and evaluation of the suitability of the didactic implemented 

unit; Improvement of their lessons designs (for future implementation).  
 

According to this perspective, the mathematical activity plays a central role in terms of 

systems of operative and discursive practices. From these practices, the different types 

of related mathematical objects emerge; building cognitive or epistemic configurations 

within them. Problem-situations support and contextualize the mathematical activity; 

languages (symbols, notations, and graphics) may serve as tools for action; arguments 
justify the procedures and propositions embedded within the concepts. Such a 

perspective is compatible with methodologies based upon critical mathematics 

education perspectives (Skovsmose &Valero, 2001). 
 

METHODOLOGY 
 

This proposal was conducted in the frame of the Master's Final Project (MFP) in a 
program of teacher training conducted at the University of Barcelona. In this paper, we 
draw on data collected concerning the tasks of type c 
 

We collected video-recorded observations of two sessions devoted to the interaction 

analysis and two sessions for ecological suitability analysis including two deliberative 
dialogues about family involvement and future teachers’ reflections at the end of the 

workshops. The sample includes two groups of 35 pre-service teachers. 
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At the beginning, future teachers made many naive comments related to the role of 

interactions and norms when analysing classroom episodes and about the role of 

families when we talked about teacher interactions and norms. Before that, future 

teachers designed and implemented tasks to see mathematical objects and processes, 

showing constructs as cognitive and semiotic conflicts and epistemic obstacles. In 

doing so, a new criteria for valuing mathematical quality was introduced (mathematical 

richness of processes, coherence, analysing the errors, connectedness, etc.) (Giménez, 

Font & Vanegas & 2013). We use some case studies emphasizing the role of 

contextualisation against formalism, referring episodes from practicum experiences of 

previous future teachers. 
 

To observe the role of interactions, several episodes were analysed to describe types of 
norms (socio-mathematical, epistemic, or simply interactive norms. It was introduced 

the tools of ontosemiotic perspective for suitability criteria (Godino, 2014). Two 

classes of measurement were analysed by using the model of Scott and Mortimer, not 

only looking for patterns of models of management, but describing the role of the 

teacher. 
 

For the purposes of this paper, we focus on analysing a school mathematical practice 

with the introduction of equations to have a first didactical analysis. We see the student 
conflicts, norms and interactions (Font, Planas & Godino, 2010). After that, we 

selected a professional task in which we start with the description of a school session 

where the teacher explains to a group of parents two ways to solve an equation with a 

single unknown (ax+b=c). The teacher uses the “balance” metaphor to solve the 

equation by searching the arithmetic solution by compensation processes. 
 

We frame the discussion with the pre-service teachers by presenting an episode of a 

group of parents participating in a mathematics workshop addressed to families. This 

workshop was oriented to teach them strategies in order to help their children to solve 

homework at home, as well as providing them resources (manipulative, handouts, etc.) 

to use them with their children. This is a regular way that parents use to become 
engaged in their children’s education (Hoover-Dempsey & Sandler, 1997).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Two ways of solving equations 
 

In that episode the teacher was using the blackboard to explain two different common 
ways to solve equations (Figure 1). He was working [teaching] with 5 mothers and 1 
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father. First, he asked the participants in the group how they would solve the equation 

2x+5=40-3x. The teacher wrote some participants’ procedures in the blackboard and a 

used a short debate for epistemic analysis purposes. We talk about mathematical 

objects and processes involved, relate this episode with a previous episode about 

equations analysed in a previous session, and identifying some potential cognitive 
conflicts. 
 

Then, he narrated how some teachers explain the same topic in the school and how to 

focus on meanings. He wrote this procedure on the blackboard (right side in the figure 

1), alongside the participants’ solution. Two participants complained that they did not 

understand what the teacher was doing; they claimed that they feel confused One of 

them protested: “where are all these ‘fives’ coming from?” All participants claimed 

that was the first time for them to see the “balance” metaphor to solve equations.  
 

The teacher explained that, in order to eliminate the “five” in the expression 2x+5 

(written on the left side of the equation), and isolate the unknown, he needed to take 

away (“sacar” in Spanish version) “five” from both sides of the equal sign. “If not, the 

balance scales [in this case meaning the instrument] will lose its balance [meaning 
equilibrium]”. The teacher was using the metaphor of the balance scales to justify his 

answer as well as explaining the meaning of an equation and the solution process. After 

he had finished his explanation, the following dialogue took place: 

 

 

1 Teacher: What do you think? It is OK? 

2 Mothers: Yes… great (the mother who asked the question talks loader). 

3 Mother: It is ‘cos at home we did not understood it… 

4 Teacher How come? 
 

5 Mother:… at home I did not understand it in this way. This that you just 
 

6 explained to us, my daughter was telling me “Mum, we have to put 

 this 

7 here!”, so I said: “where do you put it?” because I knew it [how to 

8 solve the equation] in the other way… the old way (moan in the 

9 background, like approving her words), and I was not able to 

10 understand  it  because  there?  was no explanation in  the  book  [the 

 textbook]. 

11   Teacher: But, now do you understand it better? 
 

12 Mother:(voices of other mothers saying “yes”) more or less. What happens is 
 

13 that here  it? is very easy [in the workshop]… but I… (she  starts 

 laughing 

14 and making with her hands showing that sometimes tasks are 

15 very difficult for her). mimics 
 

16 Teacher:…well… the other way is the same… but you must…  
17 Mother:(at the same time) Now I understand, because, because…  
18 Teacher:(at the same time)… for everyone… 
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19 Mother: … she explains that she does it that way, and I did not know how to  

20 explain it… 
 
 

Parents use the procedure of moving all the “numbers” to one side of the equal sign, 

and the unknown to the opposite side. This was a regular teaching strategy used in 
textbooks of the seventies, to introduce the properties of equalities.  
 

The participants then discussed the features emerging from this episode. In the analysis 

of the didactic interactions, as well as the conflicts and norms, some claims about the 

role that families should play within the learning process at home emerged during the 

deliberative process; in fact, the pre-service teachers projected their own social 

representation about “family role in supporting their children’ learning process” within 

their own discourse. After that, it was discussed how parents interact with their children 

when solving mathematics items. “It was completely new for me” told a future teacher. 

“We are learning what it is an important mathematics consideration, but nobody 

explained us what happens at home. The difficulties are really the difference 

understanding, not the procedure” (FT 17). Using other episodes, the trainer discussed 

that the differences among parents and school, could interfere in children’s learning, 

because the argument “My teacher taught me in a different way, so yours is wrong” 

could be used by individuals to justify an answer that is wrong, independently from the 

way used to get the result. 

 

We describe the future teachers change and behaviour by means of content analysis 

and social analysis by observing illocutionary assumptions and their role during the 

debate according Epstein (2011) ideas. The belief of the importance of the 
responsibility in family (and other community members) participation, as a democratic 

value, and the role of teacher in such an environment can be analysed through a theory 

of argumentation for Mathematics Education purposes (Garuti & Boero, 2002) and of 

decomposition of the speaker’s role (Krummheuer, 2007). Here the speakers are future 

teachers when discussing about the role of parents, but also the parents in the episode. 
We see the global arguments, to observe commonalities, and local arguments about 

individual approaches.  
 

DISCUSSION 
 

As the practice of analysing episodes is not strong, many expected mathematical 
comments disappear with future teachers. Nevertheless, future teachers identify the 

consequences of the balance metaphor and take away procedure. For instance if you 
have negative numbers, you cannot remove. Thus cognitive analysis during training 

process seems not to be enough, but necessary. 
 

After presenting the episode, an interesting discussion among the pre-service teachers 

happened. Some of them explained that when children are 13-14 years old, many 
families are no longer able to help their children to solve their homework tasks. “Many 

parents don’t remember how to solve equations”. One of the pre-service teachers (FT) 

claims: 
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21 FT3: I would like to say that almost half of us have work with children, and 

22  all of us have met parents who say the same that this woman [in the 

23  video]; that they do not understand what we (as teachers) say, or that 

24  there is not communication at all. Thus, in the triangle [the triangle 

25  teacher-student-content]  something  is  missing.  In  fact,  you  always 

  must look for external help. 

 

After that, another of the pre-service teachers claimed: 
 
 

27 FT 5.:  about this question… regarding the issue that a father or a mother who  

28 wants to help their child, and they see that it is like the Babel tower, 

29 right? That mathematics is like that… like I know how to solve the 

30 problem, but it is not like… this is the symbolic language… but why? 

31 If parents must adapt themselves to the new methodologies… 

32 Understand them is OK… I mean, to understand the method that your 

33 father  used  to  explain  the  lesson  to  you?,  and  use  it  to  solve  the 

 equations; 
34 but from the other side, it is also important to see that not always can 

 we 

35 expect that teachers can see how parents solve [tasks] at home. We 

36 cannot be always that way in the classroom. What I see more 

37 complicated in the other issue: and it is something that happened to me 

38 once, because my father is a professor in the university, and some 

39 friends of us use to say that he is very good. So when I was child, and I 

40 went home, I used to tell my mom, I am going to work with him… and 

41 he used to say: hummm… hummmm… this way to explain things is 

42 very weird, the way we used years ago is better… and was forced to 

43 solve the tasks again and again (…) But a person is not a machine… 

44 Do we have to ask them to start studying again? Do they have to come 

45 back to the school to be able to understand the language we use in the 

46 school? 

 

 

As the discussion advanced, the deliberative process produces a change in the opinion 

of the participants in the session. They start to question the “norms” already accepted 

about the role that families must play in terms of their children’ mathematics learning. 

“It is important that parents can help the students, knowing what they are doing” (FT7) 

“parents must know about maths”(FT 14). When analysing the data, we identify a 
social network, because many people talk in the group, and respond to a previous 

statement, as a chain of arguments. Mathematics appear after some requests, never 

immediately. 
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As global arguments, we found that some future teachers affirm that parents should not 

interfere within teachers’ work; they just have to do “their work”, which is “to make 
sure that their children attend school and do the homework every day.” Other 

participants disagreed with these types of claims. 
 

The conflict presented when discussing the episode, provokes a reaction against the 

role of a “parent” involved in school topics. Participants argued to include such kind 

of considerations in the definition of competences that teachers must develop / acquire 

in a teacher-training programme (to learn how to teach mathematics in middle and high 

school). One of the participants claims: 

 
 

47 FT 12:  (with experience working in high schools): Now that I saw that video, I 

48 would do many things differently. At least I would be more aware 

49 about what is the problem that parents have. 
 

 

In fact, deliberative democrats specifically accentuate the need of recognising 

mathematical properties as generalised processes. There is a need of arguing for 

convincing in a way that different views have to be adjusted or confronted by means 

of argumentation in order to decide our common destiny on mutually acceptable terms 
(Englund, 2006). This is what happens in the pre-service teacher debate, giving 

opportunities for qualitatively better deep understanding about how to best involve 

students and parents, and move beyond superficial comments about the issue. In fact, 

“the most important is not to help the parents to know how to solve the equations, but 

to understand that some of them do not understand the meaning of the metaphors that 
we use to explain” (FT 23). 
 

FINAL COMMENTS 
 

After three years of training experience, we found much evidence to suggest that future 
teachers really transform their attitude towards using a “didactical approach” to inform 
their [future] professional work as teachers. 
 

On the other hand, we recognized the final master degree programme as the starting 

point for developing research competency for future teachers including other type of 

aspects, in addition to the instrumental, epistemological and cognitive components of 
the “competence to teach mathematics”. In fact, it gives opportunities for students to 

learn and recognize problems related to their professional context. The results show 

that deliberative debates can improve didactical analysis, when analysing the quality 

of interactions of future teachers. It also improve knowledge about sociocultural and 

critical aspects of professional development (Skovsmose & Valero, 2001). 
 

Case study served not only for epistemic issues, but also for ecological suitability. The 
deliberate dialogue promoted during the professional task, contributes to problematize 

some of these social representations, opening possibilities to re-design the school 
mathematical tasks to include families’ points of view. 
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In addition, future teachers need to spend adequate time to discuss the analysis of norms 

not only within mathematics classrooms, but also to understand out-of-school parental 

involvement. In summary, this study contributes to our understanding of some 

ecological variables that influence professional development. Even in the school 

practicum, future teachers learn from the debates during the Master in terms of 

amplifying the indicators of quality criteria (Godino, 2014) before the classroom 

practice. The future teachers reflect about mathematics classroom interactions in 

different ways. Following our research findings we intend to promote “didactical 

analysis” beyond the banality, considering classroom situations as an integral and 

dynamic system evolving in time, promoting autonomous mathematical thinking and 

independent validation of results as future teachers (Laborde, Perrin-Glorian, 

Sierpinska, 2005). 
 

NOTES 

 
This work was realized in the framework of projects EDU2015-65378-P and EDU2015-64646-P from the Ministry of 

Economy and Competitivity in Spain. 
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The process of interpretation and assessment of students’ mathematical 

productions represents a crucial aspect of teachers’ practices. In such processes, 

teachers rely on the so-called interpretative knowledge, which includes particular 

aspects of their mathematical and pedagogical knowledge, their view of 

mathematics, and their values. In this paper, we analyze and discuss prospective 

primary teachers’ interpretative knowledge gained through their assessment of 

different subtraction algorithms. 
 

Keywords: prospective teachers’ interpretative knowledge; prospective teachers’ 

beliefs; subtraction algorithms. 
 

INTRODUCTION 
 

In practice, teachers are required to continuously interpret students’ mathematical 

behaviors, speech, and productions. In this process of interpretation, teachers 

introduce some affective aspects, including their beliefs, their values (for example, 

in the evaluation of the seriousness of an error), and their expectations (Liljedahl 

and Oesterle, 2014). Closely linked with the affective aspects, teachers’ knowledge 

is also exhibited through interpretation and evaluation processes. In previous 

studies, this type of knowledge was referred to as interpretative knowledge (e.g., 

Ribeiro, Mellone, & Jakobsen, 2013; Ribeiro, Mellone & Jakobsen, to appear) and 

has emerged as a potentially significant construct both for researchers in 

mathematics education and for teacher educators. 
 

Indeed, through the observation and discussion of teachers’ interpretations of 

students’ mathematical productions (and comments), researchers can gain insight 

into teachers’ mathematical and pedagogical knowledge, beliefs, values, and 

expectations. On other hand, it allows teacher educators to develop significant 

discussions and mathematical knowledge with prospective teachers by highlighting 

the potential for mathematical exploration through students’ productions, 

especially those containing errors or proposing non-standard solutions (Borasi, 

1996). 
 

Within this framework, we have developed a wider project aiming to access 

mathematical teachers’ knowledge, beliefs, values, and expectations implicit in 

these processes of interpretation—during the initial as well as continuous 

education. Imbedded in such project, a particular kind of tasks has been 

conceptualized and implemented. One of the core aspects of the nature of such a 
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task is rooted in asking (prospective) teachers to give sense to pupils’ productions 

(some of which can be considered incomplete, containing errors, or simply based 

on non-standard reasoning) in response to a posed problem, as well as provide them 

with constructive feedback (e.g., Ribeiro et al., 2013). The work we have conducted 

to date has mainly focused on mathematical teachers’ knowledge. Here, on the 

other hand, also teachers’ beliefs are explored, in order to broaden our 

understanding of the nature and factors that influence prospective teachers’ 

reasoning and argumentation when giving meaning to students’ productions. In 

particular our analysis shows how some prospective teachers’ beliefs about 

mathematics, together with their lack of knowledge about the mathematical 

proprieties at the roots of algorithm, prevent them to appreciate the correctness of 

an algorithm different from the “traditional one”. 
 

The study of the arithmetical operations and the relative algorithms is one core 

aspect of most primary school curricula around the world (e.g., NCTM, 2000). 

Nevertheless, the approach, the focus, and the algorithms related to the whole 

number arithmetic, in some cases, differ from one country to another. Such 

diversity of algorithms and of the mathematical rationality sustaining them can be 

perceived as a source for deepening teachers’ beliefs and understanding of not only 

the algorithms, but also the whole number arithmetic in general. Indeed, if from 

one side we agree with Bass (2015) when he mention that “A numerical 

computation, of a say a sum of two numbers, is not about understanding what the 

sum means. Instead, give two numbers A and B in notation system S, a calculation 

is a construction of a representation of A+B in same notation system S.” (p. 11). 

On other side, we consider that the navigation among (between) different 

algorithms of one same operation can enhance the opportunity to unpack both the 

different meanings of the operation as well as the features of the notation system 

of representation. This was one of the reasons that motivated us to conduct inquiry 

into the subtraction algorithm(s). Indeed, the knowledge and awareness of the 

mathematical aspects (such as the properties of the arithmetical operations or the 

decimal positional representation of numbers) involved in arithmetic operations, as 

well as the relative algorithms, are perceived as a crucial aspect of (primary) 

mathematic teachers’ knowledge. 
 

THEORETICAL FRAMEWORK 
 

In the last decades, the research in mathematics education has emphasized the need 

to consider affect in the interpretation of the teaching/learning process of the 

mathematics. In particular, Thompson (1992) underlines the role of teachers’ 

beliefs in classroom practices: beliefs that Philipp (2007, p. 258) defines as “the 

lenses through which one looks when interpreting the world”. In this context, 

Grootenboer (2008, p. 479) refers explicitly to “the pervasive influence of beliefs 

on teaching practice” and scholars debate about how to recognize their central role 

also in programs devoted to mathematics teachers’ development. 
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In their overview of the literature, Liljedahl and Oesterle (2014) underline as on the 
one hand beliefs are organized in systems, on the other hand the different types of 
beliefs systems that may affect teaching: beliefs about mathematics, beliefs about 

the teaching of mathematics, beliefs about the learning of   
mathematics, beliefs about students, beliefs about 

teachers’ own ability to do mathematics, to teach 

mathematics, etc.   
Complementary to the role of beliefs and values in 

teachers’ practices and mathematical  
understanding (as well as knowledge development), 

interpretative knowledge is perceived as one core 

element of the content of teachers’ knowledge. Such 

interpretative knowledge is deemed to support 

teachers in giving sense to students’ productions, 

always perceiving such productions as learning 

opportunities, even when they are non-standard or 

contain errors (e.g.,  
Ribeiro et al., 2013). Such knowledge would allow teachers to develop and 

implement ways to lead students in building knowledge, starting from their own 

reasoning, even when it differs from that expected by the teacher. 
 
The development of pupils’ mathematical knowledge starting from their own 

reasoning, in our view, is possible only if the teacher activates a real process of 

interpretation, shifting from an evaluative listening and to a more flexible 

hermeneutic listening activity (Davis, 1997). In particular, in our framework the 

teacher’s evaluative listening is conceived as process trough which the teacher sees 

if there is a fitting between pupils’ productions and the mathematical scheme of 

correct answers he/she has. While a real interpretation process, linked also with 

Davis’s notion of hermeneutic listening (1997), is linked to teacher’s flexible 

attempt of redrawing a mathematical learning path that embodies pupils’ 

productions. This vision makes our notion of interpretative knowledge different 

from other mathematical teachers’ knowledge conceptualization, in the sense that 

errors/non standard reasoning are not conceived as something to avoid. Rather this 

framework puts errors/non standard reasoning at the core of mathematical teachers’ 

knowledge as source to capitalize that really shapes the dynamics in mathematics 

educational process (Borasi, 1996). 
 
Aimed at framing the relationships between interpretative knowledge and beliefs, 

we ground our work in the Mathematics Teachers Specialized Knowledge— 

MTSK—conceptualization (Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013; 

see Figure 1). Indeed, in accordance with such approach, all of the teachers’ 

knowledge is specialized, and teachers’ beliefs are considered a core aspect 

influencing, and being influenced by, teachers’ knowledge. Such beliefs are rooted 

in all their previous experiences, both as students and as teachers 
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Figure 1. MTSK 
conceptualization. 



undergoing their initial (and continuous) teachers’ education. Moreover, these 

beliefs not only affect teachers’ attitudes and actions, but also have a direct and 

crucial link with their mathematical knowledge (MK, considered in the left part in 

Figure 1), thus shaping their perception of the mathematics education process(es) 

(pedagogical dimension, depicted in the right part of Figure 1). 
 

Although the MTSK considers six sub-domains of teachers' knowledge, in the 

scope of this work, we only address two of the MK sub-domains. In particular, 

concerning the context of subtraction in the set of natural numbers N, we focus on 

the Knowledge of Mathematical Topics (KoT) and the Knowledge of the Structure 

of Mathematical (KSM). 
 

KoT includes teachers’ knowledge pertaining to the definition and justification of 

the mathematical content (e.g., the difference between a and b, when a > b, 

corresponds to the search of the unique c that satisfies the equation c + b = a); 

properties, issues, and associated procedures such as algorithms; different forms of 

representation (e.g., decimal positional representation of numbers, columns or 

linear arrangement of algorithms); phenomenology (e.g., comparing, taking away, 

and compensation, see, for example, Fuson et al., 1997). 
 

The KSM refers to teachers’ knowledge of an integrated system of connections. 

Such system allows teachers to understand and develop advanced concepts from 

an elemental standpoint, as well as elemental concepts from approaches 

considering an advanced mathematical standpoint. Concerning subtraction in N, it 

is related to, for example, the same operation in other number sets; subtraction 

involving other mathematical entities (e.g., algebraic variables, vectors, matrices, 

functions); the potential transition from the elemental aspects of subtraction in N 

to other advanced aspects such as, for example, the use of finite-difference methods 

in finding the solution of differential equations. 
 

When considering KoT and KSM pertaining to interpretative knowledge, the 

content of such sub-domains should allow teachers to look for the potentialities 

embedded in students’ productions and comments (even if students are unaware of 

them). For example, when giving meaning to different subtraction algorithms, such 

knowledge should allow teachers to perceive, understand, and appreciate each of 

the different mathematical aspects required to explain the different steps followed 

by the student to find the solution. 
 

Obviously, when teachers’ beliefs about mathematics (Liljedahl & Oesterle, 2014) 

are exclusively linked with a procedural, instrumental (Skemp, 1971) approach 

to/view of mathematics (also due to the set of experiences they have been immersed 

in), such beliefs implicitly shape the ways they perceive the content of their own 

KoT and KSM and what they deem necessary to be included in these sub-domains. 

The aim of this study is to explore the relationship between teachers’ beliefs and 

their revealed KoT and KSM in the light of the interpretative knowledge. We 

hypothesize that teachers’ beliefs related to an instrumental 

 
 
 
 
 

 

69 



vision of mathematics (Skemp, 1971) can be an obstacle to their interpretation of 

students’ productions if these differ from that anticipated by the teacher. 
 

METHOD 
 

In this study, we explore the nature of beliefs, KoT, and KSM revealed by a group 

of Italian prospective primary teachers when solving a particular interpretation task 

in the scope of a Mathematics Education course in which the second and the third 

author were the educators. 
 

In particular, our sample included 40 prospective primary teachers in the third year 

of the five-year professional primary teacher training program provided in Italy. 

The task was administered during one of the first sessions of the course. It 

commenced by instructing the prospective teachers to find a solution to a given 

subtraction and afterwards to pose problems involving such operation (Figure 2). 
 
 

Consider the following subtraction: 51−17. 
 

a) Find the result and explain verbally how you obtained it 
 

b) Pose two problems that involve this operation 
 

Figure 2. First part of the task. 
 

After completing this first part of the task, prospective teachers were given another 

sheet containing seven pupils’ productions to the same problem. The prospective 

teachers were asked to reflect and comment on the mathematical correctness (and 

adequacy ) of these productions, and to propose possible feedback that could be given 

to each of the seven pupils in order to support their mathematical learning. For brevity, 

we focus our attention on three of the pupils’ algorithms only (Figure 3), along with 

the corresponding prospective teachers’ comments and reactions. 
 
 
 
 
 
 
 
 
 

 

Figure 3. Three subtraction algorithms/representations. 
 

Each of the pupils’ algorithms included in the task have been selected with a 

particular rationale. In particular, concerning the three discussed in this work, 

Alda’s algorithm (the one traditionally used in Italian schools) was included in 

order to access prospective teachers’ beliefs and aspects included in their KoT and 

KSM when discussing and giving meaning to such “traditional” algorithms. 

Bruno’s and Claudia’s algorithms (the first is essentially rooted in the decimal 

representation of numbers and the properties of subtraction, whereas the second is 

grounded in the handiness of working with tens) were included to discuss 

prospective teachers’ knowledge and ability to interpret and grasp the correctness 
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of algorithms that differ from their preferred solution (Alda’s algorithm) and the 

emerging beliefs in this process of interpretation and sense given. 
 

We commence the analysis with a qualitative discussion on teachers’ beliefs that 

emerged in the evaluation of the pupils’ algorithms shown in Figure 2. Next, we 

intertwine this discussion with the contents of their KoT and KSM, whereby our 

analysis is grounded in the argumentation they present when giving meaning to the 

algorithms provided (e.g., reference to subtraction properties, definitions, 

representation issues or advanced mathematical aspects). Finally, we present a 

more quantitative analyses of the links between teachers’ KoT and KSM that 

sustain their ability to interpret students’ solutions. 
 

DISCUSSION 
 

All the 40 prospective teachers’ answers converge on considering Alda’s solution 

as “mathematically adequate.” In ten several cases, the judgment of adequateness 

is related only with the consideration that Alda has solved the subtraction in the 

same way the prospective teachers would, as noted in the following comment: 
 

“Alda’s solution is based on correct mathematical reasoning, and is the 

same as the one provided by me.” 
 

“For me, the adequate solution is Alda’s solution because it is also how I 

perform the subtraction” 
 

Moreover, in ten cases, the adequateness is attributed to the fact that Alda’s 

algorithm is the “traditional” one, i.e., the one “learned at school,” as evident in the 

following answer: 
 

“Alda solved the subtraction in an adequate way. She firstly subtracted the 

11 from the 7 (by borrowing a ten) and then she subtracted 1 from the 4 (the 

5 became 4 because it loaned a ten to the units) I think that the reasoning is 

‘adequate’ because the procedure followed to solve the problem is the 

traditional one /the one taught in the school.” 
 

This last prospective teacher’s answer is based on considering Alda’s algorithm 

adequate. It is rooted in recognizing it as the “traditional” approach, expressing it 

using the same wording used when learning it at primary school. These two facts 

provide this prospective teacher the guaranty of correctness– no references to 

subtraction properties or number representation issues are considered important. 
 

None of prospective teachers’ interpretations of Alda’s algorithm provides a 

reference to the subtraction definition, properties, or potential different meanings. 

In this sense, the provided interpretations of Alda’s algorithm allow us to recognize 

a very basic prospective teachers’ KoT, as they do not seem to know the actual 

rationale underpinning the algorithm (as all are using the mnemonic they have 

learned while primary students). Alternatively, it is possible that they find referring 

to such rationales unimportant or irrelevant (as seen, in some cases, 
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they just mention that, as Alda’s algorithm is the same as their solution, it must be 

an adequate one). 
 

On the other hand, it is important to highlight that none of the other algorithms is 

assessed as adequate, even if some are deemed correct. This discrepancy suggests 

that prospective teachers do not consider correct and adequate as synonymous. In 

particular, 15 teachers considered Bruno’s and Claudia’s solutions inadequate or 

even wrong, for various reasons, mostly because they differ from the approach they 

know (they named traditional), as noted below: 
 

“The answers given by the other children are inadequate because they 

don’t reflect the traditional solving method for the subtraction.” 
 

“I think  [Bruno] doesn’t understand the action of taking away.” 
 

In this last comment, the prospective teacher refers only to one of the subtraction 

meanings (taking away), thus revealing the need for more extensive work on 

developing prospective teachers’ KoT, revealing also her beliefs about 

mathematics concerning the uniqueness of a process to find the solution. In this 

sense, the link between beliefs about mathematics stemming from their previous 

experiences (“there is only one correct answer—the traditional one”) and their 

revealed KoT is evident. 
 

In some other cases, alternative solutions are considered confusing: 
 

“The calculation is very personal. The result is correct, but the solving 

method is not very clear [Claudia].” 
 

“Alda performed the calculation correctly. Claudia and Bruno 

confused me, I don’t know . . .” 
 

These comments point to the low interpretative ability rooted in the belief that only 

“the traditional algorithm is correct” (probably related to a more general belief 

concerning the uniqueness of a correct mathematical answer). Moreover, in all 15 

answers that consider Claudia’s and Bruno’s solutions inadequate or wrong, no 

references to issues that could be include into the content of KoT are made. Finally, 

in these answers, very few attempts were made to recognize the student’s purpose 

or strategy. 
 

In fact, only 17 of the 40 prospective teachers provided an answer accepting, 
without negative comments, Bruno’s or Claudia’s productions. Nine of these 
answers mainly focus on the validity of the algorithms based on the use of the so-

called “invariantive”1 property of subtraction in order to justify the proposed 

procedure:  
 
 
 
 

 
1 The invariantive property refers to the fact that the difference between two numbers does not 
change if the same number is added or subtracted to both the original numbers.
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“Claudia added 8 units to 51 and to 17; she therefore used the invariantive 

property.” 
 

“I think that Claudia’s reasoning is correct because it is based on the 

invariantive property in order to make the calculation easier, owing to the use 

of ‘rounded’ numbers.” 
 

Another critical point of our inquiry concerns prospective teachers’ proposals of 

possible feedback to these students. It is interesting to note that very few teachers 

suggested any feedback and those that did (feedback perceived as explaining the 

“correct” process) tended to provide a set of actions aimed at explaining the 

traditional algorithm, or using the meaning of subtraction as “taking away,” as 

noted below: 
 

“I could help the children with stimulating questions as: What is the 

subtraction? What does taking away mean?” 
 

Moreover, regarding the KSM, which we consider an important knowledge to refer 

in mathematics teacher education, it is important to underline that, in prospective 

teachers’ answers, we recognized none references to KSM. Finally, our analyses 

showed that in solving this task in the complex system of beliefs (Liljedahl & 

Oesterle, 2014) the beliefs about mathematics seemed crucial, in particular the pne 

according with only “the traditional algorithm is correct”. As we observed probably 

this is related to a more general belief concerning the uniqueness of a correct 

mathematical answer and in our analysis it appeared always intertwined with a 

presence of a poor KoT. 
 

CONCLUSION 
 

Aimed at deepening our understanding of the type and nature of potential links 

between prospective teachers’ interpretative knowledge and beliefs, we designed a 

particular mathematical task. This task required the prospective teachers to interpret 

different students’ subtraction algorithms and provide feedback to those they consider 

incorrect. The choice of the task follows the MTSK theoretical framework, which 

underscores the importance of ensuring that tasks utilized in teacher education are 

directly connected to the work of teaching. Moreover, we recognized the potential of 

arithmetic operations algorithms to bring out insights about the prospective teachers’ 

views and understanding of mathematics and its teaching. 
 

One of the findings stemming from our work pertains to the fact that majority of 

the prospective teachers’ answers are rooted in a very firm belief about 

mathematics that only the “traditional” algorithm—the one they are familiar with 

(Alda’s one)—should be considered correct. Moreover, even in this case, the 

revealed KoT is at the level of description of the different steps of the procedure, 

thus revealing prospective teachers’ difficulties in arguing about the mathematical 

reasons of the correctness of the traditional algorithm. 
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Almost half of the prospective teachers deemed the traditional algorithm as the only 

correct one, as we could in statements like “Alda’s algorithm is THE right one.” The 

use of the definite article “the” highlights the prospective teachers’ believes on the 

uniqueness way for finding the answer to the given subtraction: it should be interesting 

to investigate if perspective teachers believe that – in general – a mathematical task 

has an unique answer and an unique way to be solved. Such belief about mathematics 

is present in prospective teachers who also show a poor KoT, which determines a very 

narrow space of solutions to the posed problem (Ribeiro et al., 2016). This example 

evidences the role of mathematical knowledge and the view/belief of what means 

mathematically epistemologically incorrect answers, are a relevant obstacles in the 

development of a strong interpretative knowledge. 
 

On the other hand, in many of the prospective teachers answers which consider 

Bruno’s and Claudia’s algorithms inadequate, we found that subtraction is 

described assuming only one of its three possible meanings, like in the statements 

“I think he [Bruno] doesn’t understand the action of taking away.”. This finding 

supports, once again, the idea that the failure of the interpretation process is 

intertwined with the content of teachers’ KoT. In that sense, it will also be 

important (and interesting) to deepen our knowledge of the meanings of subtraction 

presented in the problems teachers posed in the first part of the task. It was also 

interesting to observe the differences in use (and the corresponding beliefs) of the 

terms “correct” and “adequate” by some prospective teachers. Indeed, according to 

some study participants, Bruno’s and Claudia’s algorithms are correct but not 

adequate. This finding clearly requires further investigation. 
 

Moreover, it is important to underline that almost half of the prospective teachers 

who grasped the correctness of Bruno’s and Claudia’s algorithms used the elements 

of KoT (in particular the invariantive property) to justify their correctness. This 

finding, yet again, reveals the essential role of KoT in the development of the 

interpretative knowledge. 
 

We showed that the absence of key elements of KoT together with particular beliefs about 

mathematics prevent (prospective) teachers to trigger these processes. Our proposal to 

place the idea of interpretative knowledge as the core of the Mathematical Knowledge for 

Teaching, underlines a need of a different mathematics education culture that induces 

teachers to activate real interpretation processes and to use/capitalize pupils’ answers as 

sources. A possible further step is to clarify the essence of the interpretative knowledge 

and to identify possible key experiences that trigger in teachers’ practices attitudes 

oriented to a real listening and interpreting of pupils’ answers. In this direction, it is 

important to highlight that our proposal is also conceived as a potentially effective 

approach to working on teachers’ beliefs and knowledge. Indeed in our classes analyzing 

and discussing with prospective teachers the kind of task we presented here, recognizing 

with them the correctness of pupils’ answers previously labeled as incorrect, reflecting 

with them upon their own different reactions and evaluations, we have often been 

observing interesting (prospective) 

 
 
 
 

 

74 



teachers’ changes in beliefs and knowledge developments on mathematical critical 

issues. But further research is needed for analyze and document this other part of 

our work as teacher educators. 
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In this presentation, an experience about creating new problems carried out by 

teachers in their classrooms is analysed. The teachers use a strategy specifically 

designed to change a given problem posed in a concrete class episode. Form such 

experience problem creating is found a way of contributing to the development of 

didactic and mathematics competencies of teachers 
 

Keywords: problem creating, professional development, teacher competencies, 

teacher training. 
 

INTRODUCTION 
 

Problem posing takes increasing attention in recent years. It was recommended that the 

teachers offering opportunities to know about formulating problems from a giving 

situation. The best way to do this is to adopt an inquiry-based learning approach. 

Obviously, teachers should have developed their problem creating skill to be able to 

work in this way with their students. Many authors underline the importance of the 

relationship between problem solving, problem posing and problem creating by 

including problem creating in teacher training programs (Singer, Ellerton and Cai, 

2015). An open problem is how to articulate theoretical notions of Ontosemiotic 

perspective of constructing mathematical objects and processes with problem posing 

in teacher training courses in order to produce good mathematical and didactical 

problems promoting professional development. 
 

The future teacher needs to be able to modify some proposed problems in order to get 

a richer mathematical activity, being aware of their mathematical benefits. It should be 

part of growing the capacity of analysing didactically the mathematics activity (Rubio, 

2012). We expect that having in mind such tools for designing and didactical 

challenging problems motivates teachers’ interest in creating problems and in 

developing their capacity for crafting problems in ways that serve teaching and 

learning. Thus, the aim of the paper is to explore the use of a strategy for engaging pre-

service and early career teachers to enrich mathematics problems after didactical and 

epistemic reflection by means of problem transformation. In particular, to find which 

mathematical and didactical benefits emerge when using instructional strategies in 

teacher training courses as a case study design. Thus, two questions are involved: (a) 

Which are the characteristics of a strategy that uses reflection as the core of promoting 

that better proposed problems appear, and (b) which mathematical and didactical 

benefits emerge when using a didactical analysis reflection. 
 

THEORETICAL FRAMEWORK 
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Problem posing has been usually interpreted as the generation of a new problem or 

reformulation of a given problem; as the formulation of a sequence of mathematical 

problems from a given situation; or as a resultant activity when a problem is inviting 

the generation of other problems. Authors as Silver referred to problem posing as 

involving the creation of a new problem from a situation or experience, or the 

reformulation of given problems (Stoyanova and Ellerton, 1996). Instead of that we 

consider creating mathematics problems being a process which let us obtain a new 

problem from a given one (problem’s variation); or from a situation (problem’s 

elaboration). The situation can be like it is presented in the reality, or configured as a 

part of the problem’s elaboration (Singer & Voika, 2013). 
 

Some researchers try to integrate problem posing ideas and didactical analysis for 

teacher training purposes, analysing the benefits of qualified joint reflection and 

aspects associated with its development, using problems with fractions by using 

semantic analysis as a reflective analysis (Ticha and Hošpesová, 2013). We assume 

creating problems as related to complex processes considering knowledge base, task 

organisation, heuristics and schemes, group dynamics, and individual considerations 

(Koichu & Kontorovich, 2013). It is also important valuing aspects of the proposed 

problems in order to see a mathematical improvement (Sengül & Katranci, 2014) even 

because future teachers had difficulties for characterising conceptual aspects. 
 

It is clear the power of transforming mathematical tasks according variations by 

promoting teachers being sensitive and recognising how to use in the classroom 

(Milinkovic, 2015). Mathematical content knowledge is necessary, but our hypothesis 

is that transformations in problem posing can improve content knowledge by means of 

didactical analysis, and also contributes to increase didactical competencies of 

teachers. We identify more deep approach when using suitability criteria proposed by 

OSA, considering the analysis of epistemic issues; cognitive; normative; interactional; 

emotional and ecological issues to influence task design (Gimenez, Font &Vanegas, 

2013). 
 

In this paper, problem’s variation instruction (Malaspina, Font & Mallart, 2015) is a 

content analysis based strategy to integrate above proposals for improving competence 

of didactical analysis for future teachers or in service teachers. It consists of first 

exposing teachers to a class episode. When analysing the possible mathematical 

difficulties solving the problems included during the episode, we also notice the 

didactical requirements to improve the solving process. A pre-problem is a new 

proposal statement that try to satisfy such didactical needs. In order to develop this 

perspective of problem creating, we consider four key problem elements (Malaspina, 

2013): Information, Requirement, Context and Mathematical Environment. As a 

second redesign, we introduced a more detailed epistemic analysis, using the tools of 

suitability criteria, in order to recognise the power of knowing the configuration of 

objects and processes following OSA. A post-problem is a new proposal to improve 

the problem by finding easier problems responsive to 
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difficulties students had, and harder problems to challenge students to generalize key 

ideas beyond simply answering the initial problem. This global instructional strategy 

is called ERPRP because, it starts by facing a class episode (E), first reflection (R), 

producing a problem (P), introducing tools from didactical analysis (R), and producing 

a better problem (P). In such a framework, we would like to show that such strategy 

helps and stimulate the ability to create mathematics problems, through modifying a 

given problem, considering mathematical and didactic aspects. Therefore, problem 

creating by using transformations of previous problems is a contributing way to the 

professional development for future teachers. 

 

METHODOLOGY 

 

We have chosen a qualitative ethnography study with the proposal of a starting 

strategy, and exemplification as cases study from 2013 to 2015 with three groups of 25 

prospective teachers participating in problem solving courses in Peru, Ecuador and 

Spain. The first step consisted of choosing a topic and designing some easy and 

motivating problems as starting points to create new problems by changing some math 

concepts or ideas assuming ERPRP strategy already described. All the proposed pre 

and post-problems are analysed by means of content analysis to see which are the 

mathematical and didactical new ideas learnt behind the proposals. We use next section 

to present some paradigmatic examples to reveal the power of the phases of the strategy 

used as a qualitative analysis, and some of the mathematical and didactical benefits 

drawn. 
 

DISCUSSION 

 

At the beginning, the problem creating experiences had been performed with pre-

service teachers as a part of the mathematics courses with a strategy ERPP, in which 

initial reflection, pay attention to analyse mathematical difficulties, doing two steps of 

modification problem posing. The positive experiences of the individual work and of 

the group work were the basis to design the strategy above explained. 

 

We spent two hours only on developing a starting problem creating workshop. We 

made a short exposition about problem creating, including some examples of problems 

created in previous workshops. We presented a previously elaborated problem to the 

students presenting a concrete class episode of a teacher T. In this episode, the trainer 

describe some of pupil reactions when solving the problem. Each future teacher created 

its Pre problems individually. Group discussion plays an important role of this first 

strategy. We redesigned such initial strategy in order to include another reflection 

moment using suitability tools to improve challenging pos-problems. In a second 

experience, a theoretical based reflection is a new phase. Pos-problems are the final 

step to be analysed. Let us see some research results of mathematical and didactical 

benefits by means of some examples. 
 

The role of the initial Episode. 
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The main issue of proposing an episode instead a problem, is to see problem statement 

in a real professional class-context. In fact, the position of a teacher is not only being a 

problem solver, but a problem inquirer. We see it in the following example of proposal.  

 

The first week of July a shop called MARKET sold all the products without any discount; 

the second week, applied discount of 20% on all the items; and the third week, added 

discount of 15% . It was announced as the GREAT DISCOUNT OF 20%+15% ON ALL 

THE PRODUCTS. You have to study whether the third week of July the shop called 

ALFA sold products with 35 its % discount on prices of the first week is true or not. After 

a few minutes: Most of the students say yes, it is true. Juan and Carla say no because the 

discount of the third week was less than 35%. Maria says that the discount of the third 

week was 68%. 
 

The role of individual reflecting. Future teachers usually explain that they have 

similar difficulties to the students in the episode. Just some of them can solve the 

problem discussing about the multiplicative structure of a discount.  

 

The role of Pre-Problem creating and group discussion. The main value of pre-

problem is to contribute to a better comprehension of the situation presented in the 

episode. It gives opportunities for starting a didactical analysis. Let us see some pre 

problems posed by teachers to help in the process of creating new problems after 

discussing the problem above cited. The research group analyse all the productions, to 

observe the hypothesis of mathematical and didactical purpose in each proposal. It 

gives opportunities for identifying the background of future teachers. The problems 

creation starts individually at the beginning and discussed afterwards in groups. All the 

groups of future teachers solve the problems created, and the explanation's resolution 

is part of a socialization process with all the participants. Following the examples, we 

notice that in some cases, the author’s idea when the teacher posed the problem was 

considering a price very easy to calculate its percentage in order to help pupils focus 

their attention on the total discount 

 

Rosa pays a sum of 100 “new soles” for a shirt, with discount of 20% because of ending 

bargain sales and with an additional discount of 10% thanks to having the shop’s card. 

What percentage did Mary take off on buying the shirt? (FT1) 

 

In other cases, the author was interested in showing the students another point of view 

of the total discount. It is not only a simple sum of percentages. In order to achieve this 

objective, the author had chosen this problem because it posed a total discount (100%) 

very little intuitive. 
 

In a clearance sale, a shop applies discount of 50% on all its textiles during a week, and 

the following week applies an additional discount of 50%. What is the total percentage 

discount applied during the second week? (FT2) 
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In some cases, a group of future teachers develop a common problem trying to help 

pupils to distinguish between the money paid and the discount. This seemed to be the 

confusion of the student called Maria in the situation. Apparently, she had done well 

her calculations but she did not distinguish between the money paid (68% of the initial 

price) and the total discount (100 - 68 = 32%). 
 

Rosa pays a sum of 100 “new soles” for a shirt, with discount of 20% because of ending 

bargain sales and with an additional discount of 10% thanks to having the shop’s card. 

a) How much does the blouse cost to Maria if she buys it during the second week?  

b)What is the percentage representing the second week’s price with the blouse’s price 

without discount?  

c) What is the blouse's total percentage discount during the second week? 
 

Observing the examples proposed, there is a need of focusing, on solving the problem 

giving a justified answer, but to understand the mathematical content or property 

distinguished or “specific” in such a proposed initial task. Only when the groups of 

future teachers think more than the mathematics topic involved, we can see didactical 

growing. In general, future teachers are worried about what they do not know, and they 

could learn from others. The pre-problem also help to recognise management aspects 

by doing a context analysis. Future teachers know about facing children’s difficulties. 
 

The role of Post-Problem creating. 
 

At the beginning of creating post-problems, many future teachers thought that it is 

important to conserve the structure by finding similar problems to the given problem, 

with other prices and in some cases, considering three successive discounts; basically, 

with quantitative modifications in the data. The future teachers imagined that the main 

aspect to modify is the computation problem and the particular process of solving the 

problem. One of the future teachers tell us “it is a problem of discounts”. However, 

they carried out more enriched problems via transformations when they formulated 

post- problems, even without a second reflection. 
 

In some groups of future teachers, it appear the need that children should reinforce the 

comprehension of the fact that the total discount is not a simple sum. 

 

Pedro and Juan bought a shirt each one. Pedro bought it with a discount of 20% plus 

another additional discount of 20%. Juan bought it with a discount of 30% plus another 

additional discount of 10%. Who did obtain the greater discount? (Gr 1) 

 

Another group thought it was interesting to pose situations about cumulative 

percentage, considering charges and not only discounts. Its solution requires a better 

understanding of the percentage concept. 
 

There is a shop where if you want to pay after enjoying the product 30 days with a 

card, the price increases 10% more. And if you want to pay after 31 days but before 35 
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days, there is a surcharge of 5%. If Juan bought in this shop on August 20th and paid 

on September 23rd, what did he pay for percentage of surcharge? (Gr 2) 

 

Bearing in mind the importance of the socialization aspect, in all the cases we have 

kept an extra mathematical context but we need also to create problems in an intra 

mathematical context. Generalization allows us working in this context. Generalisation 

appear as being a new statement with higher mathematical value. 

 

If the shop called BETA knocks off end of the season of p%, plus an additional of q%, 

what is the percentage of the total discount in relation to the price without any discount? 

(Gr 3) 

 

In this case, or similar ones, the problem lets illustrate in an easy way the discount of 

r% applied to the sale price of a product (x) through a composition of linear 

functions:  
 

It is clear the role of this phase is to see what is behind a problem in terms of promoting 

mathematics learning. If there is a discussion about “particularisation/ generalisation” 

or contextualisation/ de-contextualisation, we can see the teachers growing their 

didactical analysis competence. And consequently, promoting more rich problems. 
 

The power of discussion when analysing the content 
 

Let us notice the influence of the mathematical content example and the classroom 

discussion showing the value of such reflection to improve mathematical content 

knowledge, by using successive problem transformations. Working with second degree 

it was presented the following short episode. 
 

If we multiply the age of Charles 3 years ago, times the age that Charles will have after 

5 years, we obtain 48. Which is actually the age of Charles? To solve the problem 

some students wrote (x + 9)(x– 7)= 0 to conclude that the actual age of Charles is 7 

years old, because the other solution is negative. 
 

One group wrote the factorisation as f(x) = x²+ 2x – 15 = (x + 5)(x– 3). They feel the 

main issue is to identify the second-degree equation to solve the problem, and then plan 

the following post-problem, introducing contextualised situation. 
 

Which can be the dimensions of a rectangular room if the area must be maximum of 

15 square meters being the length two meters more than the other size? (post Gr 5). 

Then, they draw the following design 
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And then they wrote the following inequality x(x+2) ≤ 15, and they conclude that the 

result are the points of the interval ]0 ; 3] In such case, the teacher ask the participants 

to make explicit the relation between the solutions and the given function f. After some 

minutes without any proposal, we propose to use another register, not an algebraic 

equation, but a graphic register. 
 

Therefore a variation of the problem was suggested. 
 

Which can be the dimensions of a rectangular room if the area must be maximum 

of 15 square meters being the length two meters more than the other size? 

Ilustrate the solution using the graphic of a quadratic function. We ask the 

teachers to create a new problem using the graphic of linear functions above 

cited. 
 

The need of epistemic analysis. The adapted new scheme ERPRP. 
 

During the first experiences, having the post-problem the trainer was almost satisfied. 

In fact, the mathematical object more difficult to analyse was the mathematical 

argument in front of expressions and terms. Only six future teachers distinguish the 

arguments used during the solving process. A half of the future teachers talk about 

propositions and procedures. 
 

When we introduced an epistemic analysis during the redesign, the future teachers 

noticed more mathematical aspects than before. For instance, many of the future 

teachers talk about generalisation, and give explanations about the need for analysing 

maximum or minimum when the problem needs to use a second-degree equation. It is 

the case of the problem of second-degree, in which a sequence of new post-problems 

appear, to introduce the role of connecting representations when introducing 

mathematical objects. Let us see an example of starting problem (Malaspina, 2013). 
 

Present the graphic of a function f given by the function f(x) = x²+ 2x – 15 

using the graphs of two affine functions. 
 

The future teachers used both graphs of g(x) = x+5 and h(x) =x– 3 as you can see, using 

geogebra. A first reaction was to obtain points of the product by multiplying the 

corresponding ordinates of the points of the graphics of g and h. Nevertheless, it was 

suggested to do a more wide and global analysis, and more qualitative, using key 

points. 
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Figure 1. Observations about the function approach 
 

The trainer asked to find some points of g and h in which we have points of the function 

f. They discover the graph must include the points (-5; 0), (3; 0) . Therefore g(-5) = 0 

and they conclude that multiplying by every number the result must be zero. With 

similar argument, they found that f(-5) = 0 y f(3) = 0. It was also proposed to find the 

sign of points for f according the signs of g and h. They conclude that for  

≠ −5 and something similar for ≠ 3. They tell us “when x < -5, the graphs of g and h 

are below the x axe. In consequence, the product is positive and the graph of f, when 

x<5, will be up the x-axe. Similar analysis give to the conclusion that when -5 <x<3 

the graph will be below the y=0, and for x > 3, the graph of the function f will be above 

y=0 
 

Using ideas about the continuity of f, they discover that the graph is a curve passing 

through (-5; 0) and (3 ; 0); decreasing till certain point of the interval ]-5 ; 3[ ; 

increasing the points after. When they used geogebra to observe their intuitions, 

they found that the result is according the intuition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. The parabola as a product of two right lines. 
 

After that, the future teachers identify that new statements can be proposed. 

Didactically speaking, the revised experiences offer also evidences in which the future 

teachers identify and notice tools for understanding students’ practices and difficulties. 

According final master comments of pre-service teachers in Spain, we found many 

examples in which they learn from students, using the strategies related to problem 

creating activities. They told us about “how interesting was to see that now I understand 

why 14 years-old students have difficulties to understand that a parabola is the product 

of two right-lines”. The percentage’s theme and equations theme are very favourable 

to create problems in an extra mathematical context and it suggests a great diversity of 

imagined situations in the created problems. This reveals the authors’ advances in the 

mathematical object management, in the reality observation and in elaborating tasks to 

go deeper into the subject to solve the problem created. 
 

The cases presented are paradigmatic examples showing the emergence of 

empowerment of future teachers, using different kind of transformations: quantitative 

(changing numbers), qualitative (the problem deals with discounts and increases),  
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relational (the information is shown to make easier the meditation over possible wrong 

answers) and in some cases, it is a piece of information added or the requirement is 

extended. Problem creating as a redesigned process related to one concrete theme 

contributes to deal it deeply. It provides opportunities to relate mathematical ideas and 

representations to get an insight to involve students into intra-mathematical 

connections. In our examples, creating problems within a reflective process gave 

opportunities for relating algebraic situations to geometrical graphical interpretations 

unknown for the teachers. Such interventions give opportunities of reflecting about 

intra and extra mathematical connections. But at the same time, future teachers talk 

about interactions, the role of contextualisation, to overcome the magisterial class, and 

the role of mathematical debates. 
 

FINAL REMARKS 
 

Creating problems give opportunities and benefits to challenge future teachers to claim 

for powerful understanding of connecting representations, assuming the role of 

problem posing as a positive way for critical math understanding. The use of techniques 

of relating concepts, by changing the problems, in order to see the identification of a 

need for helping students to improve their own understanding. 
 

As a part of the challenges posed by this research on creating math problems in 

mathematics education contexts, we see evidences in which creating math problems on 

a given topic activates new learning processes that favour intra mathematics 

connections with other fields of knowledge and reality. The intervention of the 

researcher contributed more to focus upon the theoretical perspectives of problem 

creating “There’ sees not one path and everybody has their personal path that they can 

discover and that’s what makes it fun. That’s the adventurous part of mathematics, the 

creative part of mathematics and we miss that in the way mathematics is taught.” 

(Manjul Bhargava; Fields medal 2014) 
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While recent studies focus on PD-courses (Professional Development-courses) for 
teachers, only little is known about PD-courses for facilitators. One main challenge 

for facilitators is the balance between different types of knowledge in PD-courses for 

teacher. Some facilitators tend to focus exclusively on practical knowledge and good 

examples, which cumber the process of scaling up PD. PD-courses are one core 

element to educate facilitators, but they are limited in temporal resources, so that not 

all aspects can be in focus on depth. This paper focuses on the strength and limits of 
the cooperation between facilitators and how this cooperation can complete PD-

courses for them. 
 

Keywords: facilitators, scaling up, multipliers, forms of knowledge, 

cooperation. THEORETICAL AND EMPIRICAL BACKGROUND 

Starting points for PD-courses for facilitators and scaling up PD 
 

In Germany Professional Development (PD) – courses are lead by facilitators. These 

facilitators are more or less experienced teachers that are interested in PD. In Germany 
no binding standards for the education of facilitators exist and quite often they have 

none education for their work as facilitators. For this reason PD-courses for facilitators 

are very important in Germany. The idea of such courses is to prepare the facilitators 

for their own PD-courses for teachers. 
 

Recent studies focus on the design and effect of PD-courses for teachers (e.g. 

Timperley et al., 2007). The formulation of Design-Principles for effective PD is one 

result of this research (Barzel & Selter, 2015). However, only little is known about PD 
for facilitators. As a first starting point results from cognate scientific disciplines and 

research fields are used, also preliminary findings about effective PD for teachers, but 

empirically grounded findings about the adaption for facilitators are missing. Another 

starting point are research findings on adult education. Typical for adults is, (a) that 

they already learned a lot during their life and have that in mind in new learning 

situations, (b) that they focus on the practical use of new knowledge and  

(c) that they have status specific behavioural expectation (Geissler, 2001). Empirical 

findings on the adaption of the principles of adult education for facilitators are also 
missing. Only some studies focus explicitly on facilitators (e.g. Borko et al., 2015). 
 

Although recent studies do not focus on facilitators’ PD, its relevance is undoubted. If 

innovations shall be implemented into school practice, PD-courses for facilitators are 
one out of three possibilities to reach a high number of teachers and to scale up PD. 

This way of scaling up is called Cascade Model. Learning in Professional Learning 
Communities (PLCs) and E-Learning PLCs are the possibilities to scale up (Maaß & 
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Artigue, 2013). In the research project the focus is on scaling up in the Cascade Modell, 

because it offers most likely the chance to implement innovations from research into 
practice at schools. 
 

Coburn (2003) defines the following four quality criteria to evaluate the process of 

scaling up, which can help to identify more or less successful adaptions from the PD-
course for facilitators to the PD-courses for teachers. For Coburn (2003) this process 

is successful if the facilitated innovations are understood and realized (a) in depth and  

(b) sustainable. Also (c) as much people as possible should be reached (spread) and  
(d) the target group has to make the innovation its own (shift in reform ownership). 
The more the four interdependent criteria are fulfilled, the more successful the process 

of scaling up is. This relevance does not change the fact that even if “the issue of ‘scale’ 
is a key challenge for school reform, yet it remains undertheorized in the literature“ 

(Coburn, 2003, p. 3; Rösken-Winter et al., 2015). 
 

The relevance of different roles for facilitators 
 

The situation in Germany is that facilitators are typically more or less experienced 

teachers and work part-time as facilitators. Because institutionalised education for 
facilitators does not exist (yet), facilitators are quite often marginally skilled. They 

work in two roles at once, which can lead to role conflicts. Especially situations in 

which the expectations as teachers and as facilitators are mutually exclusive are 

problematic. But even if the two roles are not problematic for the facilitators, the 

evaluation of PD-courses for facilitators should always take into account that the 

participants have these two roles. Table 1 exemplifies this aspect in adaption of 
Lipowsky and Rzejak’s (2012) model for the effects of teachers PD for facilitator 

(similar to Guskey, 2000). 
 

Facilitator in the role as…   
 

…facilitators:  …teacher: 
 

   
 

F1: the response of the facilitator  T1: the response of the teacher 
 

F2: the learning process 
 

T2: the learning process 
 

F3: the planning of PD-courses T3: the planning of lessons 

 

 
 

F4: the facilitation of PD-courses  T4: the facilitation of lessons 
 

F5: the learning of teachers  T5: the learning of students 
  

 

Table 1: Adaption of Lipowsky and Rzejak’s model for teacher PD for facilitators 
 

Types of knowledge for PD 
 

The differentiation of types of knowledge can be a starting point to determine the aims 

and contents of PD-courses for facilitators. Several authors already defined relevant 

types of knowledge for PD for teachers. Shulman (1986) claimed that a “conceptual 

analysis of knowledge for teachers would necessarily be based on a framework for 

classifying both the domains and categories of teacher knowledge […] 
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and the forms for representing that knowledge” (ibid., p.10). For him, the often-cited 

domains and categories are subject matter content knowledge, pedagogical content 

knowledge and curricular knowledge, and the forms of knowledge are propositional 

knowledge, case knowledge and strategic knowledge. The focus of this paper is on 

Shulman’s PCK, which will be further differentiated. Fenstermacher (1994) 

distinguishes knowledge facts in another way than Shulman does. He focuses on the 

differences between knowledge as a result of teaching experiences and knowledge as 

a result of research on teaching. While drawing on Fenstermacher’s approach, 

Cochran-Smith and Lytle (1999) differentiate the owner of knowledge further. For 

Cochran-Smith and Lytle knowledge can be constructed in three ways: knowledge-in-

practice (teachers experiences: e.g. practical knowledge), knowledge-for-practice 

(knowledge from science: e.g. categories for practices) and knowledge-of-practice 

(knowledge from reflections). All of these types of knowledge are important for the 

process of scaling up: e.g. without knowledge-in-practice innovations would not reach 

practice in schools (table 1), because the use-oriented teacher would not accept the 

whole PD (Geissler, 2001); e.g. without knowledge-for-practice teachers could not 

implement ideas on their own (shift in reform ownership) and reach sustainability; and 

e.g. without knowledge-of-practice the innovations are not understood in depth. For 

facilitators it is important to keep in mind, that all three types of knowledge have 

specific interdependent contents for the role as a facilitator and the role as a teacher.  
 

But facilitators, especially those with little experiences as facilitators, tend to focus on 

knowledge-in-practice in their PD-courses for teachers (Wassong i.p.; Zwetzschler et 

al., 2016). Thereby they fulfil the well-known expectations of teachers in PD-courses 

to learn practically useful aspects (e.g. Geissler, 2001). This focus of the facilitators 
even tends to fit their reflection and practice in their role as teachers – the more they 

reflect their lessons in categories of knowledge-for-practice, the more they facilitate 

those categories (Zwetzschler et al., i.p.). 
 

Relevance of perceived self- and group-efficiency for facilitators 
 

The connection between job-performance and the degree of experiences as facilitators 

hints to a further aspect: the self-efficiency, the individual beliefs to successfully 

overcome challenges by oneself (e.g. Bandura, 1997). Khursid et al. (2012) point out 

that a lower degree of job performance and perceived self-efficiency is typical for 

novice teachers in comparison to experienced teachers. This implemented development 

is accomplished by the development of group-efficiency, the beliefs of a group to 

successfully overcome challenges as a whole (e.g. Bandura, 1997). Schmitz and 

Schwarzer (2002) point out, that the longer people are part of a team, their perceived 

group-efficiency decreases in comparison to the increasing perceived self-efficiency. 

However, it is not yet known in how far these connections and implemented 

developments can be adopted for the performance and development of (novice) 

facilitators. 
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The aim of this paper is to better understand challenges of novice teachers and which 
connection to the construct of self- and group-efficiency exists. 
 

RESEARCH QUESTIONS 
 

One possibility to overcome the described challenges lies in immersing facilitators in 

both roles (as a teacher and as a facilitator) in depth, but this would last a (unrealistic) 

long time. Typical PD-courses for facilitators endure only some days with distance 
phases in between and cannot realize both aspects in depth. Therefore, the facilitators 

have to find ways to compensate this gap in their education. As all facilitators worked 

together with colleagues and appreciated this cooperation, the construct of perceived 

group-efficiency seems to be relevant to understand their job performance - so the 

following research questions are pursued: 
 

Q1 In how far does facilitators’ self-efficiency of knowledge-in-practice, knowledge-
for-practice and knowledge-of-practice influence their cooperation and their perceived 
group-efficiency? 
 

Q2 In how far can the cooperation with colleagues foster the intended learning 

processes of the PD-course towards knowledge-in-practice, knowledge-for-practice 
and knowledge-of-practice for facilitators? 
 

METHODOLOGY OF THE CASE STUDY 
 

Data gathering 
 

To answer these research questions sicxteen semi-structured interviews (of 45-120 

minutes each) were conducted. All interviewees took part in a PD-course for 

facilitators and facilitated PD-courses for teachers afterwards. All forms of knowledge 

(in-, for- and of-practice) were part of the PD-course for facilitators. The interview 

questions dealt with the general design of their PD-course for teachers, their PCK of 

the content, their experiences in the PD-course for facilitators and their experiences 

with the topic as teachers. To get further insights, we also simulated parts of a planning 

process of a PD-course for teachers. Eleven of these interviews were part of a project 

on facilitators in cooperation with Kim-Alexandra Rösike, Bärbel Barzel, Susanne 

Prediger and the author, the others were conducted by the author. 
 

Data analysis 
 

All interviews were audio recorded. A qualitative content analysis (Mayring, 2015) 

was conducted by paraphrasing aspects according to the research questions. Selected 

parts were transcribed and analysed in detail by Vergnaud’s (1996) theory of 

conceptual fields. This theory offers “a fruitful and comprehensive framework for 

studying complex cognitive competences and activities and their development” (ibid., 
p. 219). Theorems-in-action as “proposition[s] that [...] [are] held to be true by the 

individual subject for a certain range of situation” (ibid., p. 225) and concepts-in-action 

as “categories [...] that enable the subject to cut the world into distinct […] aspects and 

pick up the most adequate selection of information” (ibid.) were the focus 
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of the interpretative analysis. So the theory of conceptual fields enabled a deeper 
understanding of the facilitator’s thoughts. 
 

EMPIRICAL INSIGHTS FROM TWO CASES 
 

To exemplify the results, prototypical empirical insights of two representative 
facilitators are presented. The first facilitator is Greg. He is an experienced teacher with 

only little experiences as a facilitator. The second one is Julia, who is experienced as 
teacher and facilitator. 
 

Greg: Cooperating to compensate gaps in knowledge-for-practice 
 

Greg focuses in his PD-courses for teachers primarily on knowledge-in-practice. 
Thereby he fulfils teachers’ expectations. So sustainable scaling up in depth and with 

a shift in reform ownership probably will not happen due to his exclusive focus 
(Zwetzschler et al., 2016). 
 

In the following sequence Greg explains his needs as a facilitator: 
 

Greg: 

 
 

That is certainly uh as I said also the part of pedagogical content knowledge 

based on uh let me say of the theory, wished not only examples, whether even 

more, what is the extent, what’s the PCK idea, the advantage of theory uh 

beginning, let me say in the first main part, that you know there – even more 

in depth […] That you just get more experienced in that aspect. 
 

Greg wants to learn more about PCK, playing for him a role as a background theory. 

PCK as a theory explains for him the extent and the idea behind examples. It is a type 

of knowledge that categorises his action. So his need can be condensed as a need for 

knowledge-for-practice: he wants to be more experienced in knowledge-for-practice. 
Other paragraphs show, that he has no needs for knowledge-in-practice. His perceived 

low self-efficiency with respect to knowledge-for-practice and high self-efficiency 

with respect to knowledge-in-practice matches the analysed problem of his PD-

courses: the main focus is on knowledge-in-practice. But knowledge-for-practice is 

also part of his PD-courses for teachers, although his prior knowledge and the PD-

course for facilitators are insufficient for him. 
 

In the following sequence Greg explains how he prepares his PD-course for teachers: 
 

Greg: 

 
 

And that is the way how we did it […]. We chose a topic, that matched our 

work [at school], that was our topic after the next, so that you could prepare 
 

Interviewer: 
 

hmhm 
 

Greg: 
 

and uh that’s indeed the way how it is here either. I said: So now you can 

individualise and differentiate 
 

Interviewer: 
 

yes 
 

Greg: 
 

So you take aspect uh out of your textbook, and than I also talked to Ben, I 

said: Ben, you already did lots of PD-courses for teacher 
 

Interviewer:  hmhm 
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Greg: 
 

Yeah, I said: Do you have something against, uh, if you send me one of your 

versions, that I can design my own by it, what the content is about. And yeah, 

then Ben sent me that and then I did with the staff, no matter if it is about 

individualising and differentiating or productive practicing, took that and 

worked with it. 
 

Interviewer: 
 

hmhm 
 

Greg: 
 

as basis, as scaffold 
 

In the first three paragraphs Greg describes his preparation for PD in his lessons at 

school. He tries to get practical experiences in his lessons, which he can use afterwards 

in his PD-courses for teachers. His experiences prepare himself for knowledge-in-

practice in PD-courses for teachers. Thereby he perceived high self-efficiency with 

respect to knowledge-in-practice. In the last three paragraphs Greg adds a second well-

established aspect of his preparation for PD-courses for teacher. He asks his 

experienced colleague Ben for his materials. These materials are the basis for Greg and 

help him to identify and organise the content. So the ideas of Ben help Greg to 

compensate his gaps in knowledge-for-practice. The combination of his practical 

experiences and the theoretical ideas and structure of Ben guide Greg in creating his 

PD-course for teachers. This helps him to overcome individual problems with 

knowledge-for-practice. So his perceived group-efficiency is in general higher than his 

perceived self-efficiency. 
 

Julia: Cooperating not needed – her own ideas are good enough (or better) 
 

Julia balances in her PD-courses for teachers the different forms of knowledge and 
mediates competently between teachers’ experiences and aims of the courses 
(Zwetzschler et al., 2016). 
 

In the following sequence Julia speaks about her needs as a facilitator, also in relation 
to cooperating with colleagues: 
 

Julia: 

 
 

Well, if there would be anything that I would like to learn, than I would 

claim it. 
 

Interviewer: 
 

hmhm 
 

Julia: 
 

But I realised in a PD-course for teachers, that I, that we did in a team – a 

new facilitator of the team came along 
 

Interviewer: hmhm 
 

Julia: 

 
 

She is also experienced in PD-courses for teachers [ 
 

[…] 
 

Julia: 

 
 

How great the extent was, what she prepared, right? 
 

Interviewer: 
 

hmhm 
 

Julia: 
 

It began with little notes on each table, where they, well – things like that, 

that aren’t important for me in PD-courses for teacher 
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Interviewer:  hmhm 
 

Julia: Things I don’t need, but they are good for colleagues. I think, that in the 

cooperation with others I often realise aspects missing aspects in my work  

[…] Hmhm. I believe, that if, if I could consciously name something, that I  
need  

 

Interviewer:  hmhm 
 

Julia: Then, I would consciously get that and uhm – break me in 
 

In the paragraphs Julia reports on her needs as a facilitator. Directly at the beginning 

and again at the end she claims that she would try to overcome needs if she had some. 

This shows her beliefs of having no (important) needs at the moment. Her perceived 

self-efficiency as a facilitator seems to be very high. In the middle she talks about 

experiences of cooperation. In those situations, she realizes differences between her 

work and the work of others. She claims, that those moments can be starting points for 

her to identify further needs as a facilitator. But in the end she dissociates herself from 

the other facilitator, by judging the differences as irrelevant for her. In contrast to the 

benefit of the cooperation for Greg, it stays suspect if Julia judges the cooperation as 

beneficial. For her the perceived collective-efficiency seems to be lower than her 

perceived self-efficiency. 
 

RESULTS AND DISCUSSION 
 

The knowledge of facilitators and the perceived self-efficiency seems to match the 

benefit of collegial cooperation and perceived collective-efficiency for the different 

forms of knowledge: Greg perceived high self-efficiency with respect to knowledge-
in-practice, whether his perceived self-efficiency with respect to knowledge-for-

practice was relatively low. Although his perceived self-efficiency with respect to one 

type of knowledge is high and one is low, he focuses on cooperation and his perceived 

general group-efficiency is high. Instead, Julia’s perceived self-efficiency is high with 

respect to knowledge-in- and knowledge-for-practice and her perceived group-

efficiency is low. She doesn’t focus on cooperation. Table 2 shows these matches.  
 

 knowledge-in- knowledge-for- focus on 

 practice practice cooperation 
    
    

Greg Self-efficiency(high) Self-efficiency (low)  

 ∨ ∧ ✔ 

 General group-efficiency (high)  

Julia Self-efficiency(high) Self-efficiency(high)  

 ∨ ∨ ✗   

group-efficiency (low)  group-efficiency (low) 
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Table 2: Matches: self- and collective-efficiency for forms knowledge and cooperation 
 

These results lead to the following theses: As long as the perceived group-efficiency 
with respect to one form of knowledge is higher than the perceived self-efficiency, the 
facilitators prefer cooperation. 
 

It seems as if the facilitators compensate gaps in forms of knowledge by cooperation, 

which supports the adaption of the already explained findings about self- and group-

efficiency for the group of facilitators: Novice facilitators seem to have a lower degree 
of perceived self-efficiency in comparison to experienced facilitators. And the more 

experienced facilitators are, the lower the perceived group-efficiency is. 
 

This qualitative study shows first matches between forms of knowledge, specific 
competences and self-efficiency with collective-efficiency and cooperation. Further 

research is needed to broaden these qualitative results and confirm them quantitatively. 
 

Another aspect for further research is the quality of cooperation. In the case of Greg 
the collaboration enabled him to prepare and facilitate PD-courses for teachers, but his 

courses focus excessive on knowledge-in-practice, impeding scaling up in depth 

(Coburn, 2003). This illustrates that the cooperation could not enhance the PD-course. 

Greg needs further learning situations. Aspects of a PLC like the mutual visitation and 

shared visions could support his learning process (Hord, 1997, for visitations: Khursid 
et al., 2012). As a consequence of these results focussing on the Cascade Modell for 

scaling up should be reconsidered: if especially facilitators with gaps in forms of 

knowledge tend to cooperate with colleagues – how can we take this systematically 

aspect into account and improve the quality of the cooperation? 
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Abstract. This mainly methodological paper presents a specific approach of design 

research, called ‘Design Research for teachers with a content-specific focus on 

professionalization processes’. Its three main characteristics are: (1) ‘for many’ rather 

than ‘with some’ teachers, (2) content-specificity, and (3) focus on teachers’ processes. 

The approach and some typical outcomes are exemplified by the case of a project which 

fosters secondary teachers to notice students’ mathematical potentials. The case is 

discussed with respect to general issues. 
 

Keywords. Design Research for Teachers’ Professional Development, Qualitative 

Research on Professionalization Processes, Noticing, Mathematical Potentials. 
 

 

1. ADOPTING DESIGN RESEARCH FOR TEACHERS 
 

1.1 Design research as established research methodology with big variety 
 

Design Research is a widely established research methodology for enhancing and in-

vestigating students’ learning. It is especially strong when two aims are to be com-

bined: (1) designing learning arrangements for classrooms and (2) investigating the 

initiated learning processes and contributing to local instruction theories (Bakker & 

van Eerde, 2015). Although design research approaches share common characteristics 

(e.g., interventionist, theory generative, iterative, ecologically valid, and practice-

oriented, cf. Cobb et al., 2003), a big variety of approaches exists (cf. the 52 case stud-

ies documented in Plomp & Nieveen, 2013). These approaches differ in their reasons 

for doing design research, their types of results, their intended roles of the results for 

educational innovation, their scales, and their background theories (cf. Prediger, 

Gravemeijer, & Confrey, 2015a). Our Dortmund research group follows a topic-

specific approach which allows to account for different mathematical topics in detail 

(Prediger & Zwetzschler, 2013) with a focus on learning processes (ibid.; Prediger et 

al., 2015a). This approach is now adapted to designing and researching environments 

for teachers’ professional development. 
 

1.2 Adopting design research for many teachers, not only with some 
 

Zawojewski et al. (2008) suggested extending the research methodology of Design Re-

search from students to teachers’ professional development (PD) “in order to under-stand 

both, how teachers develop in their practice and how to design environments and situations 

to encourage the development of that practice” (Zawojewski et al., 2008, p. 220). 

Meanwhile, many teacher educators have described impressing individual 

professionalization effects of design research with teachers, for the exclusive minority 
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of teachers privileged to be part of design research teams (Smit & van Eerde, 2011; 

Bannan-Ritland, 2008) . Although this is without doubt the most intensive PD setting, 

it is not realizable for scaling up, since many teachers have no access to intensive 

collaboration with researchers. However, scaling up for reaching many teachers 

throughout whole Germany is the critical long-term goal for the first and third authors’ 

work in the DZLM, the German National Center for Mathematics Teacher Education 

(Rösken-Winter, Hoyles & Blömeke, 2015). 
 

Thus, this article suggests complementing the approach of design research with some 

teachers by design research for many teachers, taking into account that professional 

development for scaling up requires well-founded, robust designs for classrooms and 

PD courses (Burkhardt, 2006; Swan, 2007). Whereas the individual PD work of 

researchers with a selected group of teachers can be based on spontaneous, intuitive 

decisions in deep discussions, a robust design for PD conducted by other facilitators 

also needs to be grounded on a solid theoretical base, to anticipate possible challenges 

of the content to be learnt and typical professionalization processes. This calls for the 

next two characteristics, content-specificity and process-focus. 
 

1.3 Content-specificity and focus on teachers’ professionalization processes 
 

So far, the growing body of research on conditions and effects of PD is mainly focused on 

pedagogical principles for PD programs (e.g., Timberley et al., 2007). But for ro-bust 

designs for scaling up, also a good theoretical base for the content of the PD course itself 

is relevant, which cannot be taken for granted (Prediger, Quasthoff, Vogler, & Heller, 

2015b). Specifying what teachers should learn in which perspective about a certain content 

(e.g. a mathematical topic or noticing students’ difficulties) usually re-fers to the current 

state of research on classroom practices or teachers’ professional knowledge for this 

content. This reference can be substantiated by also taking into ac-count typical teachers’ 

perspectives, which can be reconstructed when qualitatively investigating content-specific 

professionalization processes. 
 

In their research survey on PD research, Goldsmith et al. (2014) emphasize the need to 

focus on teachers’ professionalization processes rather than only on quantitatively 

measurable effects. Even if they have not found much research on processes yet, they 

collect indications that teacher learning “is often incremental, nonlinear, and iterative, 

proceeding through repeated cycles of inquiry” (ibid, p. 20). As the research gap is 

even bigger for content-specific research results, it is a major aim of the approach pre-

sented here to provide fine-grained insights into teachers’ processes of professionaliza-

tion on different specific PD contents. For this aim, the most appropriate approach is 

the adaptation of topic-specific design research with a focus on learning processes 

(elaborated for classrooms in Prediger & Zwetzschler, 2013; Prediger et al. 2015a). 

Adapted to the level of teachers, we call it Design Research for teachers with a focus 

on content-specific professionalization processes. 
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1.4 Four intertwined working areas for PD Design Research 
 

Figure 1 shows the four working areas that are iteratively connected in the design and 

research process, adapted from Prediger and Zwetzschler (2013) for PD design re-

search. The four working areas comprise (a) specifying and structuring PD goals and 

contents in hypothetical intended professionalization trajectories, (b) developing the 

specific PD design, (c) conducting and analyzing design experiments in PD settings, 

and (4) developing contributions to local theories on professionalization processes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1: Working areas and results of Design Research for teachers 

with a content-specific focus on professionalization processes 

The areas are intertwined in the sense that each cycle builds upon results of previous cycles 

across the areas. Corresponding to the two general aims of Design Research, design results 

and research results have equal importance: The design results comprise the PD course 

settings as well as their backgrounds, a specified and structured PD con-tent and refined 

design principles. The local theories are developed to underpin the concrete products and 

to be generalized by accumulation over several projects. Contributions to local theories on 

content-specific professionalization processes can be expected with respect to typical 

individual pathways and obstacles, means for support in the PD setting as well as their 

effects and contextual conditions of success. 
 

 

2. THE CASE OF DOMATH, A PD DESIGN RESEARCH PROJECT 

ON NOTICING STUDENTS’ POTENTIALS 
 

For illustrating the approach, we briefly give some insights into the dual design re-

search project DoMath (working on student and teacher level, here focused to the 

teacher level). The project addresses secondary school mathematics teachers who in-

tend to develop their competences for noticing and fostering students’ mathematical 

potential. Due to space limitations, we focus mainly on noticing rather than fostering.  
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2.1 Goals, structure, and background of the DoMath PD program 
 
Goals and structure. The DoMath program for classrooms adopts a wide, dynamic and 

participatory conceptualization of mathematical potentials (Schnell & Prediger, 2016, 

following Leikin, 2009), addressing specifically those (often underprivileged) students not 

yet identified as talented. The classroom instructional design therefore builds upon whole 

class enrichment settings with rich, self-differentiating open-ended problems (ibid.). 

Teachers become sensitized to notice students’ potentials in the rich situations and to 

adaptively foster the noticed potentials by facilitating supportive interaction. 
 
PD programs in DoMath span over several months in action and reflection settings of 

material-based video clubs (Sherin & van Es, 2009). In the PD sessions, teachers reflect 

on classroom video-clips and student products stemming from their teaching experi-ments 

with the jointly prepared whole class enrichment settings (Rösike & Schnell, in press). 

The preparation includes their own mathematical inquiries as well as anticipat - ing 

students’ ideas. The typical structure of the PD program is visualized in Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2: Structure of the PD program with sessions and intermediate classroom experiments 

 
Background. The general PD content noticing has been characterized in several re-
search studies: They emphasize the need for teachers to overcome deficit-oriented 
modes on students and the necessary shift from product- to process-oriented perspec-
tives (Empson & Jacobs, 2008). By the construct of professional vision, Sherin and van 
Es (2009) conceptualize noticing by three subconstructs, (I) selective attention, (II) 
knowledge-based reasoning underlying the actions and (III) interpreting specific events 
in terms of broader pedagogical principles. 
 
 

In the specific case of noticing students’ mathematical 

potentials with a dynamic and participatory conceptua-

lization of potential, all three subconstructs are impor-tant. 

For uncovering hidden potentials, the process per-spective 

in a non-deficit-oriented mode is hypothesized to be an 

important precursor for extending the selective attention 

and widening the repertoire of possible actions (cf. Fig. 3 

for the intended professionalization trajectory which 

corresponds to a hypothetical learning trajectory  
in other design research approaches, cf. Prediger et al., 2015a). 
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Fig. 3: Intended profession-

nalization trajectory 



2.2 Project design in three iterative cycles with mini cycles 
 

Overall project design. The DoMath PD program is developed and investigated in an 

ongoing PD design research project in the described approach (cf. Section 1) from 2014 

to 2018. Three iterative cycles of design experiment series are conducted in 2014/15 (with 

5 teachers in 6 PD sessions over 12 months), 2015/16 (with 20 teachers in 6 PD sessions 

over 10 months) and 2016/17 (planned with 20 teachers in 2-3 longer PD ses-sions over 6 

months). Between the PD sessions of one design experiment cycle, mini cycles of 

investigating processes allow immediate refinement of the program. During the mini-

cycles of the first two cycles, the relatively vague intended trajectory matured into a more 

detailed specification of a model for noticing students’ potentials (Schnell  

& Prediger, 2016). Later, this refinement of the underlying content-specific theory will 

allow pursuing the long-term aim to develop a PD course for scaling up with facilitators 

within the DZLM. 
 

Methods for data gathering. Most classroom teaching experiments and all PD sessions 

are videotaped, as well as some individual video sessions between the third author and 

1-3 teachers each. The individual video sessions complement the data from group 

discussions during PD sessions as they allow deeper insights into the individual 

professional visions. 
 

Methods for data analysis. Based on the sensitizing subconstructs of professional vi-

sion (I – III) and theoretically derived facets for identifying potentials (in Fig. 3), the 

interpretative methods for analyzing transcripts from the video data aimed at 

developing a category system (1) for specifying demands and challenges in teachers’ 

noticing and (2) for reconstructing individual pathways in professionalizing the 

noticing. The excerpts presented here stem from the ongoing analysis of professionali-

zation contents and pathways of design experiment cycle 2 and are based on 33 hours 

of video material (13 h PD sessions, 16 h of their classroom interactions, 4 h individual 

discussions of video). 
 

2.3 Exemplary insights into teacher’s diagnostic perspectives 
 

Effect of the design element Video. As described by others (e.g. Sherin & van Es; 2009; 

Empson & Jacobs, 2008), analyzing videos in the PD sessions turned out to be a design 

element which successfully initiates the shift from product perspectives (focusing only 

on the outcome of student work) to process perspectives (focusing on the richness of 

processes even if the outcomes stay incomplete, cf. Fig. 3). The shift also seems to be 

stable in the teachers’ classrooms. 
 

Effect of the design element Focus Question. As the teachers of the first mini cycles 

kept deficit-oriented modes for a long time, we revised the program starting by analyz-

ing videos with a focus question “What kind of potentials can you discover in the pro-

cesses of the students?”. The effect of the focus question was substantial in the second 

cycle: from the first PD session on, the second teacher group adopted a process perspec-

tive in mainly non-deficit modes. 
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Accounting for obstacles and teachers’ perspectives. However, the process perspective 

did not automatically lead to focusing hidden potentials and searching for strategies to 

foster them. Instead of thinking about strategies to foster uncovered seeds of situational 

potential, the teachers showed and discussed mainly strategies to help students to solve 

the open-ended problems. In consequence, the noticing mainly focused on students’ 

processes of coping with the task (or why they could not cope well). This can be 

illustrated by the following excerpts of data: 
 

After watching a video clip of two female students working on an open task about 

several derivatives (grade 12), Sonja, one of the video-watching teachers in the third 

PD session, says 
 

Sonja Where they have problems is with verbalizing what they found out – especially 

mathematically correct verbalizing. So, I think they did understand the principle, 

but [… not the relevant pattern behind it]. 

And well, you have to justify or formulate it in a more differentiated way. 
 

(Cycle 2, PD Session 3, Clip ’Derivatives’, transcript line 78, min. 16:48) 
 

Within her analysis of the video-clip, Sonja points out what the girls would have needed 

to accomplish the problem. She emphasizes what they reached and the discursive 

obstacles they need to overcome. Sonja’ perspectives is an instance of what we 

researchers later decided to call the process-coping perspective (see below): Although 

already overcoming purely deficit-oriented modes and focusing on pro-cesses, Sonja 

does not yet focus on potentials. As our teachers often adopt this perspective, we 

needed to include it into the model and consider it as rational choice, since it is teachers’ 

responsibility to support the students in coping with the task (or their acquisition of 

competences or knowledge). Hence, it is also a direct successor of the product 

perspective. 
 

The process-coping-perspective often coexists with the potential indicator perspective 

which we have reconstructed when the teacher implicitly poses her- or himself ques-

tions like “Which situational indicators for students’ potentials can we identify?”. For 

example, the teacher Stephanie analyzed a video clip of four students (grade 8) working 

on a problem-solving task 
 

Steph That is really a good way of abstraction. They generalize very well at this point. Also, 

how they stay at it. They know now, they have the odd numbers and now they think 

about how to adjust the stairs [of numbers]. […] Thus, they communicate well with 

one another and then generalize really well. There is a lot of potential. 
 

(Cycle 2, Individual discussion of video clip ‘Stair problem’, transcript line 45, min. 18:42) 
 

Stephanie also reconstructs steps in the coping perspective, but beyond that, she identi-

fies students’ way of abstraction as an indicator for their mathematical potential. At the 

same time, the way she and some colleagues talk about the students signals that she 

conceives potential here as students’ stable disposition rather than a dynamically 

emerging and disappearing moment in the situation which requires teacher’s efforts to 

be stabilized. 
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It was a longer discussion in the research team to reconstruct the backgrounds for these 

observed obstacles. After having re-analyzed also other transcripts, we realized the need 

to differentiate the process perspective which is still too vague in the hypothesized 

learning trajectory (Fig. 3). The result of several reconstructions and discussions was a 

refined perspective model (Fig. 4) which allows to take into account the teachers’ 

perspective and to structuring of the PD content which was not adequately grasped by the 

earlier learning trajectory in Fig. 3 (cf. Schnell & Prediger, 2016). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4: Refined structure of PD content: Perspective model for noticing and fostering potentials 
 

 

The last perspective, at which the PD programs aims, is now called the potential-

enhancing perspective, asking for fragile situational potentials which would be worth 

to be strengthened in order to stabilize them. This perspective would allow fostering 

potentials, but in the beginning, teachers rarely adopt this perspective. A condensed 

fictional prototype of this focus of selective attention would be: 
 

Teach That is really a good way of abstraction, they generalize very well at this point. I tell 

them how this as a brilliant approach. Hoping, they get used to doing it more often. 
 

Some teachers, especially Henry, can adopt the potential-enhancing perspective, and 

even explain what he should NOT do in order to foster the situational potential: 
 

PD leader […] Would you have liked to give them an impulse, if you would have been there? 
 

Henry Yes, I do find it great. So I noticed for myself that it works quite well even if I don’t 

give any prompt. I notice that I, as teacher, would have quickly felt the need to say 

‘oh, look here, what happens here? The three here.’ And now I think you sometimes 

give them too little time so that they can unfold their ideas in peace. That it needs a 

lot of time […] Because I find they gave the right impulses themselves. 
 

(Cycle 2, Individual discussion 2 of video clip ‘Stair problem’, transcript line 79-80, min. 14:55) 
 

In total, the refined model specifically includes the following observation: what 

teachers selectively notice is highly connected to what they intend to foster: As long as 

the main goal is supporting students’ actual processes of working on a given task, it is 

rational to stay in a process-coping perspective (cf. Fig. 4). The potential-indicator 

perspective looks at indicators for students’ existing potentials displayed in a certain 

situation. While it is important in our teaching approach, it cannot help fostering 
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students when potentials are perceived as pre-existing and more stable dispositions. In 

contrast, sensitive strategies for fostering (still fragile) situational potentials in order to 

stabilize them in the long run require a potential-enhancing perspective of noticing. It is 

this perspective which teachers adopt the least often in the beginning of the course and 

successively learn to adopt during the discussion of fostering strategies. Rather than linear, 

teachers’ navigation during the professionalization process is forward and backward, since 

they need to coordinate different perspectives at the same time. 
 

2.4 Exemplary design results and research results 
 

By the case of the DoMath project, we can exemplify typical design and research re-

sults of typical PD design research projects as listed in Fig. 1. 
 

Research results. Although the existing literature provided consolidated knowledge of the 

general structure of teachers’ noticing and general pedagogical principles for enhancing 

them (Sherin & van Es, 2009; Blomberg, Renkl, Sherin, Borko & Seidel, 2013), little was 

known about the specific content, noticing students’ hidden mathematical potentials based 

on our dynamic and participatory conceptualization of potential. Thus, the empirical 

research on teachers’ processes was necessary to itera-tively refine a local theory on this 

PD content and individual pathways to approaching it. First research results are condensed 

in the perspective model for noticing potentials (cf. Fig. 4). It provides a content-

dependent language for describing typical professio-nalization pathways and obstacles. Of 

course, the reconstructed insights into effects of specific design elements like focus 

questions are not yet generalizable, their transferability to other contents should be 

investigated in further research. 
 

Design results. The research results on effects of specific design elements have itera-tively 

influenced the design of PD sessions within the mini cycles and between the big cycles. 

However, we have only achieved first steps for the long term goal of designing a PD 

program with robust materials that can be used for scaling up, i.e. for facilitators who 

have not joined our programs themselves. For this purpose, the theoretical founda-tion is 

crucial, and in this sense, the specification and structure of the PD content based on the 

perspective model is also an important design result which will guide a manual for 

facilitators. With respect to pedagogical design principles, the project has mainly 

confirmed existing work (e.g. Blomberg et al., 2013) and found content-specific ways for 

their realization, a design result which is far from trivial. 
 

 

3. DISCUSSION 
 

Although design research with teachers on the student level is an excellent setting for 

professionalizing some teachers, this paper pleads for extending the approach for reach-

ing many teachers. In the presented approach, design experiments take place in PD 

sessions, not in classrooms alone. PD design research adds to usual PD program 

development a much more intense, video-based analysis of teachers’ professionaliza-

tion pathways during and between the PD sessions, by own teaching experiments and  
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their video-based reflection in small groups. The reconstruction of teachers’ individual 

professionalization pathways allows gaining profound insights into the structure of the 

PD content: in our case, the process perspective had to be split for understanding 

teachers’ pathways (cf. perspective model in Fig. 4). 
 

Like every analysis of individual learning pathways, such an analysis has always the 

risk to be deficit-focused, devaluing the perspective of the learning teachers. Thus, 

systematically taking into account the teachers’ perspectives and its inner logic invites 

to search for a synthesis between teachers’ and intended perspectives and helps to 

overcome the risk of deficit-orientation (Prediger et al. 2015b). In our case, we had to 

accept the process-coping perspective as a natural and important perspective which 

should coexist with the potential-enhancing perspective. 
 

The methodological control of the interpretative data analysis procedures is paramount for 

achieving profound empirical results. This means respecting the quality criteria of 

transparency, intersubjectivity and openness for phenomena outside the theoretical input. 

However, quality criteria in design research go beyond these classical methodological 

criteria, as they also comprise relevance and practicability of the design, generalizability 

of the results by accumulating over several projects and ecological validity of the complete 

setting (Cobb et al. 2003). For the concrete project, the generalizability of the research 

results is not yet achieved since the process is only at the beginning. However, its 

preliminary results are encouraging to pursue this aim. 
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The skill of noticing has been identified as an essential component that expert teachers 

must acquire. Therefore, research about how teacher educators can design learning 
environments to support the development of this skill has emerged. In our research, we 

focus on how pre-service teachers learn to notice students’ fractional thinking. In this 

paper, we describe a learning environment designed to promote the development of 

preservice teachers’ noticing, taking into account a student’ Learning Trajectory of 

fractional schemes. 
 
Keywords: noticing, fractional schemes, learning trajectories, pre-service primary 
teachers’ learning. 
 
THEORETICAL BACKGROUND 
 
The NCTM (2000) has claimed the need to base teaching on students’ thinking. In 

order to achieve this goal, teachers need a greater flexibility in recognising students’ 

mathematical thinking and students’ learning progressions. In this sense, the skill of 
noticing has been identified as a critical component of mathematics teacher expertise 

(Sherin, Jacobs, & Philipp, 2011) emerging research issues about how teacher 

educators can design learning environments to support the development of this skill 

(Wilson, Mojica, & Confrey, 2013). 
 
The skill of noticing 
 
Mason (1998; 2002) stated that “noticing is a movement or shift of attention” (Mason, 

2011, p. 45). Mason distinguished between accounting of a phenomena and accounting 
for it. Accounting of a phenomena implies a neutral description “as objectively as 

possible minimizing emotive terms, evaluation, judgements, and explanation” (p.40) 

while accounting for implies to “offer interpretation, explanation, value-judgement, 

justification, or criticism” (p. 41) of this phenomena. 
 
Mason (2011) identified different ways in which people can attend (p.47): 
 

Holding wholes implies attending to something without discerning details. 
 

Discerning details is picking out bits, discriminating this from that, decomposing or 

subdividing and so distinguish and, hence, creating things. 
 

Recognizing relationships is becoming aware of sameness and difference or other 

relationships among the discerned details in the situation. 
 

Perceiving properties is becoming aware of particular relationships as instances of 

properties that could hold in other situations. 
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Reasoning in the basis of agreed properties is going beyond the assembling of things you 

think you know, intuit, or induce must be true in order to use previously justified properties 

as the basis for convincing yourself and others, leading to reasoning from definitions and 

axioms. 
 

“In mathematics, the shift from recognizing relationships to perceiving properties is 
often subtle but immediate for experts and yet an obstacle for students” (Mason, 2011, 

p.47). This perspective emphasises the importance of identifying the relevant aspects 

of the teaching-learning situations (discerning details) and interpreting them 

(recognising relationships) to support instructional decisions (reasoning in the basis of 

agreed properties). 
 

Previous research has shown some characteristics of pre-service teachers’ development 
of this skill using video clips (Coles, 2013; van Es, & Sherin, 2002), or using classroom 

artifacts (Fernández, Llinares, & Valls, 2012; Sánchez-Matamoros, Fernández, & 

Llinares, 2015). For example, the use of video clips enables teachers to rebuild 

classroom interactions in chronological order (accounts of) for later interpreting them 

providing evidence (accounts for) without judgement (Coles, 2013), and supports 

changes in pre-service teachers’ level of reflection. Using classroom artifacts also helps 
pre-service teachers to recognise and use the mathematical elements for identifying 

students’ mathematical thinking (Fernández et al., 2012; Sánchez-Matamoros et al., 

2015). 
 

Our study is embedded in this line of research and focuses on the development of pre-

service teachers’ noticing of students’ mathematical thinking. Research has shown that 

when pre-service teachers attend to students learning progressions in a mathematical 

domain, they are better able to make decisions about next instructional steps (Son, 2013; 

Wilson et al., 2013). In this context, students’ learning trajectories (Battista, 2012) can 

assist pre-service teachers in identifying learning goals for their students, in anticipating 

and interpreting students’ mathematical thinking and in responding with appropriate 

instruction (Sztajn, Confrey, Wilson, & Edgington, 2012). 
 

Particularly, the focus of our research is how pre-service teachers learn to notice 

students’ fractional thinking. With this objective, we have designed a learning 

environment to promote the development of pre-service teachers’ noticing, taking into 

account a students’ Learning Trajectory of fractional schemes. In this paper, we 

describe the learning environment designed. 
 

A Learning Trajectory of fractional schemes 
 

Corcoran, Mosher, and Rogat (2009, in Wilson et al., 2013) postulated that learning 

trajectories and the instructional processes are linked and deserve attention since 
learning trajectories: 
 

… provide teachers with a conceptual structure that will inform and support their ability to 

respond appropriately to evidence of their students’ differing stages of progress by adapting 
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their instruction to what each student needs in order to stay on track and make progress 

toward the ultimate learning goals (p.19). 
 

Previous research has shown that pre-service teachers’ knowledge (Clements, Sarama, 

Spitler, Lange, & Wolfe, 2011; Mojica, 2010) of students’ learning trajectories allows 

them to have into account students’ mathematical thinking when taking instructional 

decisions. A Learning Trajectory consists of three components: a learning goal, 

learning activities, and a hypothetical learning process (Battista, 2011). A Learning 

Trajectory includes descriptions of learning activities that are designed to support 
students in the transition through intermediate stages to a more sophisticated level of 

reasoning. 
 

The Learning Trajectory of fractional schemes, in our study, has been characterised taking 

into account empirical studies of how student’s reasoning about fractions develops over 

time (Battista, 2012; Steffe, 2004; Steffe, & Olive, 2009). While schemes is a construct 

that is used with the aim to model students’ cognitive structures, operations are seen as 

“mental actions that have been abstracted from experience to become available for use in 

various situations” (p. 46) and are considered as the key components of schemes 

(McCloskey, & Norton, 2009). The operations considered in our Learning Trajectory of 

fractional schemes are: unitizing, partitioning, disembedding, and iterating. We 

characterise the Learning Trajectory considering these operations, the configuration of the 

schemes that children develop in the field of rational number reasoning proposed by Steffe 

(2004) and the development of students’ reasoning about fraction through levels of 

sophistication proposed by Battista (2012). 
 

The learning goal of the fractional schemes Learning Trajectory is derived from the 

Spanish Primary Education’s curriculum: giving meaning to the idea of fraction and its 

different representations and, understanding the meaning of fractions operations. This 

learning goal highlights two key aspects to achieve: a) the transition from the intuitive 

meaning of splitting into congruent parts to the idea of fraction as part-whole taking 

into account different representations, and b) the construction of the meaning of 
operations with fractions. 
 

In relation to students’ learning process, we consider six different levels of students’ 

fractional reasoning based on the following mathematical elements. In relation to the 

transition from the intuitive meaning of splitting into congruent parts to the idea of 

fraction as part-whole: (i) the parts are congruent. The parts could be different in form 
but congruent in relation to the whole, (ii) a part could be divided into other parts, (iii) 

consider a part as an iterative unit, (iv) the inverse relationship between the number of 

parts and the size of each part: a greater number of divisions of the whole makes each 

part smaller (keeping the same whole). 
 

Related to the construction of the meaning of operations with fractions: (i) the parts 
must be congruent to join / separate, (ii) repeat a fraction to construct a fraction, “n 

times a/b”, (iii) fraction as an operator “a/b of c/d”, (iii) division as a measure “how  
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many a/b are in B” or “how many a/b are in c/d”, (iv) the remainder of a fraction 
division. 
 

The six levels of students’ fractional reasoning are: 
 

At level 1, students have difficulties in recognising that the parts in a fraction 
must be congruent. 

 

At level 2, students recognise that the parts could be different in form but 

congruent in relation to the whole. This allows them to identify and represent 

fractions in a continuous context but they have difficulties with discrete 

contexts. They also begin to use some unit fractions as an iterative unit (i) to 
represent proper fractions (although they have difficulties with improper 

fractions) and (ii) to solve some fraction addition problems with the same 

denominator (although students can have difficulties in considering the relation 

between the part and the whole to justify the meaning of the fraction addition). 
 

At level 3, students identify and represent fractions in discrete contexts 

recognising that the groups must be equal. They also recognise that a part 

could be divided into other parts. When comparing fractions they recognise the 

inverse relationship between the number of parts and the size of the part. They 

can use a part (not necessarily the unit fraction) as an iterative unit to represent 

proper (f<1) and improper (f>1) fractions. They can also reconstruct the whole 

using any fraction as iterative units (continuous and discrete contexts). In 

addition, they use intuitive graphical representations to add/ subtract fractions 

with different denominators. 
 

At level 4, students can solve simple arithmetic problems with the help of a 

guide or support. They can obtain equivalent fractions and represent operations 

graphically. When adding or subtracting fractions with different denominators 

they understand that the parts must be congruent to join/separate although they 
need a guide that allows them to choose correctly the unit. They identify the 

fraction as an operator “a/b of c/d” in the multiplication, and they develop two 

types of reasoning; (i) division as a measure and (ii) division as a partition, in 

the division. 
 

At level 5, students can operate and solve arithmetic problems symbolically, 
identifying patterns. They can graphically justify what they do but in simple 

situations. At this level, they are capable of interpreting the remainder on a 
division of fractions. 

 

At level 6, students understand how algorithms for fraction operations work 
and can use pictures to explain the operations. They do not need a guide to 

represent fraction operations. 
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THE DESIGN OF THE LEARNING ENVIRONMENT 
 

The learning environment consists of five sessions of 2 hours each. In the first two 

sessions, we introduce the mathematical elements, and pre-service teachers solve and 
analyse primary school activities such as representing and identifying proper and 

improper fractions in a continuous or discrete context. The aim is that pre-service 

teachers identify the mathematical elements in the fraction tasks.  
 

The aim of the other three sessions is that pre-service teachers learn to interpret 

students’ mathematical thinking based on the Learning Trajectory and to propose 

instructional actions in relation to students’ mathematical thinking. We provide pre-

service teachers with primary school students’ answers with different levels of 

fractional reasoning to three different fraction tasks (identifying fractions, comparing 
fractions, and adding fractions). Pre-service teachers have to interpret students’ 

fractional reasoning using the information of the Learning Trajectory of fractional 

schemes. 
 

We have designed the three tasks following the same structure: a primary school 
activity, three primary school students’ answers with different level of fractional 
reasoning and the next four questions (Figure 1).  
 

C1- Describe the task taking into account the learning objective: what are the 

mathematical elements that a student needs to solve it? 
 

C2- Describe how each pair of students has solved the task identifying how they have 

used the mathematical elements involved and the difficulties they had. 
 

C3- What are the characteristics of students’ mathematical thinking (Learning Trajectory) 

that can be inferred from their answers? Explain your answer. 
 

C4- How could you respond to these students? Propose a learning objective and a new 

activity to help students progress in their understanding of fractions.  
 

Figure 1. Questions that pre-service teachers have to answer related to each task 
 

These questions focus pre-service teachers’ attention on relevant aspects of primary 

school students’ answers (discerning details) identifying the relevant mathematical 

elements; on interpreting these answers (recognising relationships between the 

mathematical elements and the students’ mathematical thinking) and on supporting 
instructional decisions (taking into account the students’ mathematical thinking). 

Following, we describe one of the three tasks of the learning environment. The task 

that corresponds with identifying fractions (task 1). 
 

Task 1- Identifying fractions 
 

The task consists of an identifying fractions activity (Figure 2), the answers of three 
pairs of primary school students to the activity and the four questions of Figure 1: 
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1. Choose the figures below that show ¾. Explain your answers.  
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Activity of identifying fractions (adapted from Battista, 2012) 
 

While students are solving the activity Júlia (the teacher) observes how the different groups are 

solving the activity. Júlia realises that students are using mathematical elements of fractional 

schemes allowing her to identify students who have difficulties. 
 

Xavi and Victor’s answers 
 

Júlia: 

 
 

Please, Xavi and Víctor, what is your answer? 
 

Víctor: 
 
Mmmm, well we think Figures A, B, C and D represent three-quarters. 
 

Júlia: 
 
Xavi, do you agree with Víctor? 
 

Xavi: 
 
Yes, A, B, C and D are divided in 4 parts, and 3 are shaded. 
 

Júlia: 
 
Is everyone okay? 
 

Joan and Tere’s answers 
 

Joan: 

 
 

No 
 

Júlia: 
 
What do you think? 
 

Tere: 
 
We believe that Figures B and D are three quarters because they are divided into 

four equal parts and three are shaded. Figures A and C have 3 parts of 4 shaded, 

but the parts are not congruent... 
 

Júlia: 
 
And Figure E? What do you think about Figure E? 
 

Joan: 
 
Figure E is not three quarters because it is divided into 24 equal parts and there 

are 18 shaded. 
 

Tere: 
 
Sure, it is not three-quarters. 
 

Júlia: 
 
And the F? 
 

Both 
 
It is not a fraction. In figure F, there are only 6 shaded squares. 
 

Felix and Alvaro’s answers 
 

Júlia: 

 
 

Do you agree with the answer of Joan and Tere? Is there anyone who has a 

different answer? Félix and Álvaro, what do you think? 
 

Félix: 
 
Well ... yes. We agree with Joan and Tere answers related to figures A, B, C, and 

D but we think differently about figure E... 
 

Júlia: 
 
What do you think? Could you explain your answer? 
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Álvaro: 
 
Well ... mmm sure. If you look each line of Figure E, each line has 6 squares, and 

as there are 3 lines shaded of the 4 total lines then it is three quarters. In addition, 

... Figure F also represents three quarters because if you group the squares in 

groups of 2, you get 4 groups of 2, and there are three groups shaded. 
 
 

 
 
 
 
 

 

Álvaro and Félix answer to Figure F 
 

In the next section, we discuss the answers we expect from pre-service teachers to each 
question. 
 

Answers that we expect from pre-service teachers to task 1- Identifying fractions 
 

C1- Describe the task taking into account the learning objective: what are the 

mathematical elements that a student needs to solve it? In this task, pre-service 

teachers should identify the following mathematical elements: 
 

This is a task of identifying proper fractions (f <1) that includes various representations of 

the whole (continuous contexts: a circle and a rectangle, and a discrete context: little 

squares). The parts, in figures A and C, are not congruent but are congruent in figures B 

and D. These figures are included to determine the students’ understanding related to the 

mathematical element: the parts have to be congruent. On the other hand, the inclusion of 

figures E and F, provides the possibility that students mobilise the idea that a part could be 

divided into other parts (the idea of equivalence of fractions). 
 

C2- Describe how each pair of students has solved the task identifying how they have 

used the mathematical elements involved and the difficulties they had. Pre-service 
teachers should identify that: 
 

Xavi and Víctor identified as ¾ the first 4 figures (A, B, C, D). Therefore, they considered 

B and D as representations of 3/4. This suggests that they counted the parts in which the 

whole is divided and then counted the shaded parts. They did not take into account that the 

parts in which a whole is divided must be congruent (when they considered figures A and 

C). Furthermore, they did not identify E and F as 3/4, indicating that they had difficulties 

in considering that a part could be divided into other parts (equivalence). The answers of 

Xavi and Victor show that they considered fractions as ¾ as counting the number of parts 

in which the whole is divided and then counting the shaded parts, regardless of the 

congruence of the parts. Furthermore, they did not understand that a part could be divided 

into other parts. These characteristics indicate that Xavi and Víctor are at level 1 of the 

Learning Trajectory. 
 

Joan and Tere used properly the idea that the parts should be congruent (considering that 

figures A and C are not ¾). Their answer in relation to figure E (Figure E is not three 

quarters because it is divided into 24 equal parts and there are 18 shaded) and figure F 

indicates that they did not consider the mathematical element that a part could be divided 
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into other parts. The answers of Joan and Tere show that they recognised that the parts in 

which the whole is divided must be congruent in continuous contexts, but still did not 

recognise that a part can be divided into other parts (idea of equivalence) indicating that 

they are at level 2 of the Learning Trajectory. 
 

Finally, Álvaro and Félix used the idea that the parts should be congruent (they did not 

consider A and C as ¾) and their answer in relation to figures E and F indicates that they 

considered that a part could be divided into other parts. 
 

C3- What are the characteristics of students’ mathematical thinking (Learning 

Trajectory) that can be inferred from their answers? Explain your answer. Taking into 
account the mathematical elements identified in each pair of students’ answers 
 

Students Víctor & Joan & Félix & 

Mathematical elements Xavi Tere Álvaro 
    

The parts should be congruent NO YES YES 
    

A part could be divided into other parts NO NO YES 
     

 
 

Pre-service teacher could identify the next characteristics of the Learning Trajectory 
for Álvaro and Félix: 
 

The answers of Álvaro and Félix show that not only they were able to recognise that the 

whole should be divided into congruent parts but also they acknowledged that a part could 

be divided into other parts. This last characteristic allows them to recognise equivalent 

fractions in both continuous and discrete contexts, indicating that these students are at level 

3 of the Learning Trajectory. 
 

C4- How could you respond to these students? Propose a learning objective and a 

new activity to help students progress in their understanding of fractions. Pre-service 

teachers have to identify the characteristics of the transition in the Learning Trajectory 
to propose the new activity and the learning objective. For instance, they could propose 

the next learning objective for Xavi and Victor: 
 

Xavi and Victor are at level 1 of the Learning Trajectory so they should start to recognise 

that the parts could be different in form but congruent, and begin to use unit fraction as an 

iterative unit. 
 

FINAL REMARKS 
 

We designed this learning environment to develop pre-service teachers’ noticing of 

students’ mathematical thinking in the domain of fractional schemes. We used a Learning 

Trajectory of fractional schemes as a theoretical reference. Our purpose is to provide pre-

service teachers with different students’ answers to let them to frame practical situations 

through the cognitive processes of attending and interpreting the students’ mathematical 

thinking. We hypothesise that this kind of knowledge will allow pre-service teachers to 

move from evaluative comments, based on the correctness or incorrectness of the students’ 

answer, to more interpretive comments based on 
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evidence taking into account the characteristics of the important mathematical 

elements evidenced in the students answers. Furthermore, it allows them to provide 
instructional activities coherent with how students are thinking. 
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Designing a web-based professional development toolkit for 

supporting the use of dynamic technology in lower secondary 

mathematics 
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Cornerstone Maths was designed to support wide-scale student learning of key 

mathematical concepts using dynamic digital technologies. Moving the project to scale 

(over 150 schools) has necessitated a rethinking of the design of the professional 

development component to provide more appropriate support for ‘within school’ 

implementation and for scaling among all the teachers of mathematics in a school. We 

report the outcomes of the first phases of design research through which we have used 

our empirical research to inform the design of a web-based ‘Cornerstone Maths 

Professional Development Toolkit’ created to achieve the afore-mentioned goals, 

describe some preliminary findings in terms of its use by different teachers and set out 

our plans for the future. 
 

Keywords: lower secondary mathematics, dynamic mathematical technology, 

professional development, landmark activities, mathematical pedagogic practices 

 

INTRODUCTION 
 

The context of a longitudinal project in England, Cornerstone Maths, which aims to 

support wide-scale student access to dynamic mathematical technologies to enhance 

mathematical understanding of ‘hard-to-teach’ topics in lower secondary mathematics, 

has necessitated a highly connected approach to the three important themes of the 

conference: mathematics teaching; resources; and professional development. The 

evolution of these three elements has been central to the design research methodology 

that led to the definition of the curriculum activity system that comprised: dynamic 

web-based software; student workbook and teacher guide; and teacher professional 

development (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Vahey, Knudsen, 

Rafanan, & Lara-Meloy, 2013). The outcomes of this earlier work have been widely 

reported (Clark-Wilson, Hoyles, Noss, Vahey, & Roschelle, 2015; Hoyles, Noss, 

Vahey, & Roschelle, 2013). Although there is evidence of successful scaling of the 

Cornerstone Maths teaching approaches in particular school settings, as our focus has 

shifted to try to understand and theorise on the ‘products and processes of scaling’ 

(Clark-Wilson, Hoyles, & Noss, 2015), our research lens is now trained firmly on the 

nature of the specific mathematical knowledge for teaching that underpins classroom 

implementations of Cornerstone Maths in ways that retain fidelity to the original design 

principles. Furthermore, our extensive classroom observations are enabling an 

articulation of the nature of teachers’ mathematical knowledge for teaching (MKT) and 

associated mathematical pedagogic practices (MPP) of teachers as they develop both 

confidence and competences in their classroom uses of the technology with their 

students. 
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THEORETICAL FOUNDATIONS 
 

In keeping with the three themes of the conference, this section summarises the 

theoretical foundations of the current research and its focus on a need to better 

understand the important components of teachers’ MKT and associated MPP when 

designing professional development to support teachers to work with dynamic 

mathematical technologies in classrooms. 
 

Mathematics teaching with technology 
 

The design principles of the Cornerstone Maths curricular activity system are deeply 

rooted in a number of seminal research projects, through which the efficacy of the 

teaching approaches with technology were explored and established. The three 

curriculum units address the following topics: 
 

 Unit 1 Linear functions. Drawing on the seminal research of Jim Kaput (Kaput, 

1987; Tatar et al., 2008), the unit addresses the following key mathematical 

ideas: coordinating algebraic, graphical, and tabular representations of linear 

functions; y = mx + c as a model of constant velocity motion; the meaning of m 

and c in the motion context; and velocity as speed with direction.


 Unit 2 Geometric similarity. The use of sliders to explore multiple 

instantiations of geometric figures within dynamic environments (Hollebrands, 

Laborde, & Sträßer, 2008) is central to the design of the unit, which addresses: 

identifying variants and invariants in shapes that are mathematically similar, 

including identification of the scale factor of enlargements and the particular 

conditions for congruency; and recognising the important one-to-one geometric 

correspondence of sides and vertices in mathematically similar polygons.


 Unit 3 Algebraic patterns and expressions. The ESRC/EPRSC-funded MiGen 

project1 developed the microworld, ‘eXpresser’ and researched its impact on 

students’ understanding of algebraic variable and generalisation within the 

context of geometric patterns (Mavrikis, Noss, Hoyles, & Geraniou, 2013). This 

software and tasks informed the design of the Cornerstone Maths unit, which 

addresses: recognising the geometric structure of algebraic patterns (seeing the 

general in the particular); naming and linking variables; and modelling algebraic 

equivalence through the different ways of seeing a pattern.

 

Each unit of work includes between 2-4 weeks of curriculum work, which schools 

implement as ‘replacement units’ within their localised ‘scheme of learning’. 
 

Conceptualising mathematics teachers’ mathematical knowledge and practices 

with technology – the landmark activity 
 

In our work, we use Thomas and Palmer’s ‘Pedagogical Technical Knowledge’ 

(PTK), as a frame that incorporates ‘the principles, conventions and techniques 
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required to teach mathematics through the technology’ (Thomas & Palmer, 2014, p. 

75). PTK combines teacher factors such as instrumental genesis (Artigue, 2002; Guin  

& Trouche, 1999; Verillon & Rabardel, 1995), mathematical knowledge for teaching 

(MKT, Ball, Hill, & Bass, 2005) and teachers’ orientations and goals (Schoenfeld, 

2008) in a model as shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: A model for the framework of PTK (Thomas & Palmer, 2014, p. 76) 
 

Important to us was that PTK acknowledges teachers’ personal orientations and the 

epistemic value of the tool, two elements that are absent in alternative frameworks. For 

example, in TPACK (Koehler & Mishra, 2009), teachers’ technological knowledge is 

conceptualised as separate from the learning of the subject, drawing from the ‘Fluency 

of Information Technology’ as its theoretical base. Clearly teachers do need skills other 

than those around mathematical learning (for example classroom management with 

technology and some basic appreciation of the laptop, tablet or accessing the web) but 

this is not our main concern. 
 

However, as we began to apply Thomas and Palmer’s PTK in our work, we became 

interested in how it might be used to make sense of, and characterise teachers’ 

mathematical pedagogic practices (MPP) with technology in classrooms. For this we 

looked to the work of Selling, Garcia and Ball (2016) who, in research to develop a 

framework for the design of items to assess teachers’ MKT, have defined the 

‘mathematical work of teaching framework’ (MWT) as a set of ‘actions with and on 

objects’ that relate to: ‘mathematical representations; structure and explanations 

(including justifications and reasoning); and explanations (includes justifications & 

reasoning)’ (ibid, p. 87). 
 

We adapted this framework to take account of the use of digital tools and to devise the 

following set of pedagogic practices that we could use to both analyse classroom 

observation data and to inform the design principles for the Cornerstone Maths 

Professional Development (PD) Toolkit (See Table 1). 
 

 

 
 

 

118 



 
 
 

 

E
x

p
la

n
at

io
n

s 
(i

n
cl

u
d

es
 

ju
st

if
ic

a
ti

o
n

s 
&

 

re
as

o
n

in
g

) 

M
at

h
em

a
ti

ca
l 

st
ru

c
tu

re
 

   

R
ep

re
se

n
ta

ti
o
n
s 

   

 
 

 Mathematical Pedagogic Practices with Technology  

Comparing explanations that involve hypothesised or real 

actions as expressed with the digital tools to determine which is 

more/most valid, generalisable, or complete explanation. 
 

Critiquing explanations that involve hypothesised or real 

actions as expressed with the digital tools to improve them with 

respect to completeness, validity, or generalisability. 
 

Determining, analysing, or posing problems as expressed with 

the digital tools with the same (or different) mathematical structure. 
 

Analysing structure in students’ technological work by 

determining which strategies or ideas are most closely connected 

with respect to mathematical structure. 
 

Matching investigations with structure as expressed by the digital 

tools. 
 

Connecting or matching representations as expressed with the 

digital tools. 
 

Analyzing representations by identifying correct or misleading 

representations in a text, talk, written and technological work. 
 

Selecting, creating, or evaluating different representations as 

expressed by the digital tools. 
 

Verbalising the meaning of representations as expressed by 

digital tools and how they are connected to key ideas. 

 

Table 1: Mathematical Pedagogic Practices for teaching mathematics with dynamic 

technology. 
 

Scaling teachers’ access to professional development 
 

Our earlier work used research findings from the scaling of Cornerstone Maths in 

hundreds of English mathematics classrooms to articulate the ‘processes and products 

of scaling’ (See Table 2). By products, we mean the quantifiable measures that indicate 

the ‘spread’ of the Cornerstone Maths innovation across and within schools. The 

‘processes’, or the means through which this spread is achieved, are both contextually 

and culturally located, with each process interpreted differently depending on the 

prevailing mathematical culture in classrooms and associated institutional factors.  
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Theme  Products  Processes 
 

 

 

  

 

  
 

Geographical reach a) Number of a) Development of web-based 
 

   schools   curriculum activity system. 
 

   involved  b) Development of teacher community. 
 

  b) Number of local  c) Development and maintenance of 
 

   hubs involved   regional hub-based offer of 
 

      professional support. 
 

     d) Development of school clusters, 
 

      supported by project team leading to 
 

      development of local hubs with local 
 

      Cornerstone Maths project lead. 
 

School buy-in  c) Improved  e) School-devised methods to evaluate 
 

   student   students’ outcomes 
 

   attainment    
 

  d) Number of  f) Development of school-based PD. 
 

   whole  g) Support to embed Cornerstone Maths 
 

   departments   within local of schemes of work. 
 

   involved    
  

 
 
 
 
 

 

Penetration in 

mathematics 

department 

 

e) Wider use of the 

materials 
 

 

f) Number of 

participating 

teachers in each 

school 

 

h) Teacher use of the materials beyond 

their original project commitment. 

(e.g. with older classes or revision 

classes).  
i) Development of a lead practitioner 

(who may be the subject leader). 

j) Development of peer-support for 

participating teachers. 
 

Table 2: The products and processes of scaling Cornerstone Maths in hundreds of 

classrooms in England 
 

Previous phases of Cornerstone Maths research involved PD that was face-to-face and 

online (asynchronous/synchronous) – focusing on Processes (a), (b) and (c) to achieve 

impacts related to Products (a) and (c) (Clark-Wilson & Hoyles, 2015; Clark-Wilson, 

Hoyles, & Noss, 2015). 
 

However, we had research data from one school that evidenced that it had 

accomplished Processes (f), (g) and (h) to achieve impacts in relation to Products (d) 

and (e). Consequently, our attention turned to the design of a PD Toolkit that could 

directly support schools with some experience of Cornerstone Maths to develop their 

own collaborative, school-based PD to enrol other mathematics colleagues for within-

school scaling. Furthermore, the design of the PD Toolkit was informed by prior 

research into teacher professional development in England that highlighted more 

effective practices thus: 
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One successful approach involves collaborative communities of practice of teachers 

working to enquire into their professional practice. Such communities are often kick-started 

and sustained by outside expertise, provided by maybe a ‘trainer’ or a university educator. 

The most successful professional development pays attention to the development of the 

subject (mathematics or science), itself and particularly student learning. (de Geest, Back, 

Hirst, & Joubert, 2009, p. 38)  

In our case the ‘outside’ expertise was not to come from an outsider to the department, 
but would be provided by a member of the department, a ‘Cornerstone Maths 
champion’, who had already participated in Cornerstone Maths PD and, most 
importantly, taught and evaluated Cornerstone Maths ‘landmark activities’ with 

positive outcomes2. Thus the toolkit has ‘authenticity’ in that it supports their co-

planning and provides links to their everyday practice, with opportunities to reflect on 
students’ work and classroom activities (See the ZDM Special Issue on 'Evidence-
based CPD: Scaling up sustainable interventions', Roesken-Winter, Hoyles, & 
Blömeke, 2015). 
 

Critical to the design of the Cornerstone Maths Toolkit is the assumption that 

Cornerstone Maths teachers will be self-motivated to select from its resources to use 

with colleagues in their own departments. Thus the development of the toolkit is the 

object of iterative and collaborative design research to address the research question, 

what (digital) professional development content, activities and structures can best 

support school-based PD concerning Cornerstone Maths? 

 

METHODOLOGY 
 

The Cornerstone Maths PD Toolkit is a set of diverse web-based resources for 

secondary mathematics departments to support school-based PD leading to embedding 

Cornerstone Maths units within the school’s localised schemes of work. Our focus for 

this paper is the design research undertaken to produce the toolkit: the design principles 

and first description of the toolkit. We focus on the Cornerstone Maths Unit 3 on 

algebraic patterns and expressions. 
 

Our design research methodology involves the following phases: 
 

 Systematic analysis of questionnaire data from all Cornerstone Maths teachers 

that asked them to outline their current (and anticipated future) PD needs (n= 

127).


 A review of other PD toolkits and their design (e.g. mascil3, FaSMEd4, 

EdUmatics5).
 Interviews with self-nominating Cornerstone Maths champions (n=9) during 

which they critiqued and enhanced early PD toolkit designs.


 A case study of one school that had successfully implemented all three 

Cornerstone Maths units in its localised schemes of work.
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 Observations of teachers involved in collaborative PD using Cornerstone 

Maths Toolkit resources.
 

FINDINGS 
 

The analysis of teacher questionnaires indicated some common ‘PD needs’, which 

included: 
 

 Mathematical tasks that supported teachers to reflect on appropriate 

mathematical content and progression for each of the curriculum topics 

(developing both mathematical and pedagogical aspects of MKT).


 Short video clips and guidance materials that introduce and support teachers’ 

instrumental geneses, which includes consideration of how teachers can, in turn 

support and develop students’ instrumental geneses.


 Exemplar students’ digital and paper/pencil productions embedded within 

professional tasks for teachers.
 

To date we have completed the first three phases and have designed a draft toolkit that 

includes a set of resources from classroom practice and student responses derived from 

landmark activities that provoked ‘transformational’ discussion among teachers and 

students, alongside more general background to Cornerstone Maths and evidence of its 

effectiveness. A design challenge is to provide opportunities for participating teachers 

to develop the composite elements of PTK in engaging and meaningful ways. Whilst 

we chose not to make these elements explicit within the PD toolkit design, we have 

mapped the elements that are specific to each of the Cornerstone Maths topics, software 

and teaching materials. For example, the definition and linking of algebraic variables 

is fundamental knowledge to support teachers’ technology instrumental geneses within 

Cornerstone Maths Unit 3. 
 

 

From the work to date, we conjecture that that opportunities for (and perceptions of) 

collaborative, departmental-based PD vary from school to school due to a range of 

factors derived from different sources; the overall structure of the school, the 

experience of the subject leaders to name but two. We intend to probe these factors 

further in case studies in a schools selected according to their different profiles in order 

to tease out which resources teachers select from the Cornerstone Maths PD Toolkit to 

use in their departmental PD and why, and, ultimately the success or not of any in 

school scaling. We anticipate reporting some tentative findings at the ERME 

conference in October 2016. 
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NOTES 

 
1. The MiGen project was funded by the ESRC/EPSRC Teaching and Learning Research Programme (Technology 

Enhanced Learning; Award No: RES-139-25-0381). 
 
2. We use our own construct of ‘landmark activities’, which as those which indicate a rethinking of the mathematics or 

an extension of previously held ideas – the ‘aha’ moments that show surprise – and provide evidence of students’ 

developing appreciation of the underlying concept (This construct is described in more detail in Clark-Wilson, Hoyles, & 

Noss, 2015). 
 
3. The mascil toolkit “designed to support the delivery or facilitation of professional development for teachers of 

mathematics and science” http://mascil.mathshell.org.uk/ 
 
4. The FASMEd toolkit to support teachers teachers in the use of formative assessment with low achieving students. 

https://toolkitfasmed.wordpress.com/ 
 
5. EdUmatics online PD resource for secondary mathematics to learn to use and integrate technology within their 

classrooms. http://www.edumatics.mathematik.uni-wuerzburg.de/en/ 
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Abstract: In recent years, a digitally extended context for teachers’ professional 

learning has arisen. Digital gadgets (smart phones, etc.) alongside the development of 

social media and social network sites change how people interact and work together, 

and, hence, teachers initiate and orchestrate their own professional development on 

the Internet. In this paper we report on an on-going three-year study and show some 

of the prospects of conducting research on mathematics teachers’ informal 

professional development on social media and social network sites, and, furthermore, 

discuss the need for theoretical and methodological development. 
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INTRODUCTION 
 

In communities where digital gadgets (e.g., smart phones, applets, laptops, etc.) are in 

common use, people change how they work, interact and communicate. The arena for 

professional development has accordingly transformed and branched out into the 

Internet. In the literature we now find studies examining social media and social 

network sites as a means for teachers’ professional learning and knowledge-sharing 

(e.g., Al-Oqily, Alkhatib, Al-Khasawneh, & Alian, 2013; Bissessar, 2014; Borba & 

Llinares, 2012; Hew & Hara, 2007; Liljekvist, 2014; Manca & Ranieri, 2014; Pepin, 

Gueudet & Trouche, 2013; Rutherford, 2010; van Bommel & Liljekvist, 2015). The 

findings show that teachers use different forums on the Internet, such as, Twitter, Web 

sites, personal blogs, and Facebook, as resources to share and develop pedagogical 

subject-matter knowledge, to ask for and give pedagogical advice, etcetera. Thus, the 

arena for professional development of teachers has changed. Teachers not only engage 

in traditional forms of professional development activities, such as, taking courses, 

reading books, and participating in the local school colloquium. They also engage in 

new forms of professional development made possible by the evolution of the Internet. 

Online courses, web-seminars and other formal professional development are widely 

spread nationally as well as internationally. 
 

Another trend is also evident: Teachers initiate and orchestrate their own professional 

development on the Internet. This phenomenon promotes reflection upon social 
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media and social network sites as a means for teachers to regain ownership of their 

professional development (cf., Issa & Kommers, 2013; Ranieri, Manca & Fini, 2012; 

van Bommel & Liljekvist, 2015). Further, Issa and Kommers (2013) discuss the shift 

in educational practice of professional development: from a transfer role into a 

developmental role. They raise the question of how teachers will reposition themselves 

into learning communities for mutual learning – a question closely linked to the Call 

for this ERME Topic conference: What are the characteristics of professional 

development contexts that have a positive impact on teachers’ professional learning? 

With this paper we want to encourage the ERME Topic Conference ETC3 to discuss 

the digitally extended context of teachers’ professional learning. We argue for the need 

to know more of what kind of impact social media and social network sites have on, 

for instance, mathematics teachers’ knowledge-sharing, and their meaning-making in 

relation to improvement of instruction and assessment. Drawing on an on-going three-

year study, we show some of the prospects of conducting research on mathematics 

teachers’ informal professional development on social media and social network sites, 

and, furthermore, discuss the need for theoretical and methodological development. 
 

BACKGROUND 
 

Teachers share their professional life with other teachers, that is, their colleagues. But, 

the forums on social media and social network sites suddenly give another meaning to 

who a colleague is and when a conversation with such a colleague can take place: “the 

current evolution of social media and social network sites transforms the day-to-day 

practice, the lived experience, and with whom we share similar experience” (Liljekvist, 

van Bommel & Olin-Scheller, accepted) 
 

Discussing school-related issues together with colleagues is, of course, not a new 

phenomenon, neither is the reading of subject-related magazines or books, nor taking 

courses for professional development. However, social media and social network sites 

give new opportunities for (mathematics) teachers, that is: new sources to draw upon 

(Ruthven, in press). Courses previously given on a certain day, in a certain place and 

time, can now be taken online, at your own pace and place. Further, reading to acquire 

new knowledge can now imply reading books, but also, for instance, reading other 

teachers’ blogs. 
 

Professional development can take place in different ways, forums and arenas. In order 

to understand these different forms of professional development, including both digital 

and non-digital alternatives, we argue that it is of importance to take the issue of 

ownership into consideration. In the case of so-called monologic professional 

development (book, lecture, etc.) the author, or lecturer has the ownership of the 

content and form of the professional development whereas in more dialogical forms of 

professional development (courses, collegial dialogues) the participating teachers gain 

ownership of content and form (Issa & Kommers, 2013). 
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Besides the issue of ownership, we need to consider the source itself. Teachers use 

different sources to customize their professional development, that is, books, (online) 

courses, blogs. Ruthven talks about re-sourcing and explains that re-sourcing teaching 

not only should be thought of in terms of ‘using conventional resources in new ways’ 

(Ruthven, in press), but also could include drawing on new sources. New resources can 

incorporate ownership by the author (for instance webinars), but can also mean that 

teachers gain ownership by creating their own homepage or blog, by giving input in 

sites for teaching resources (e.g. lektion.se) or by using social network sites like Twitter 

or Facebook. 
 

As mentioned previously, professional development on social media and social 

network sites has been studied. However, our point is that we know hardly anything 

about professional development initiated by teachers themselves, about the informal 

discussions between teachers. Drawing attention to this lack, the call for the ERME 

Topic Conference ETC3 states: “We need to better understand the underlying 

characteristics of mathematics teacher education and the professional development 

contexts that have a positive impact on teachers’ professional learning, even with 

respect to sustainability”. As the previous invisible collegial dialogues now become 

visible (van Bommel & Liljekvist, 2015; van Bommel, Liljekvist & Olin-Scheller, 

2015), the study presented here aims to focus on the non-researched online informal 

professional development. 
 

THE ON-GOING STUDY 
 

At CERME9, three suggestions for possible foci for our study were discussed. Mapping 

the arena of professional development of teachers on Facebook, inquiry into the 

collective knowledge, and issues regarding extended workplace learning (van Bommel 

& Liljekvist, 2015). All foci where considered to be of interest. As a start of our study 

we have argued for that these type of Facebook groups can be looked upon as an arena 

for professional development (Liljekvist, van Bommel, Olin-Scheller, accepted). 

Teachers use new technology, changing the arena for professional development. 

However, in this paper we will consider ‘mapping the arena’, as it is the focus of our 

three-year research project at this initial point. Mapping the arena was decided upon, 

as it would give clear insights into the informal professional development within the 

groups on social media and social network sites: 1) When do teachers discuss with 

others? and, 2) What do teachers discuss and reflect upon within such groups? We want 

to emphasize that all groups are initiated by the teachers, not by us as researchers. The 

overall question suggested at CERME was: In what way can our study inform our 

research community regarding the (informal) professional development of 

mathematics teachers? 
 

Setting 
 

Our study is conducted within the social network site Facebook. Studying teachers’ 

communication in [Swedish] Facebook groups is of interest for different reasons. 

Firstly, teachers create and join groups initiated by themselves. They thereby create 
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an informal form of professional development where they themselves have initiated 

and formed the content of the professional development (Bissessar, 2014; Liljekvist, 

2014; van Bommel & Liljekvist, 2015) A second reason to focus on the informal 

professional development on Facebook is the number of participants. Groups can exist 

with 45 participants up to 30 000 participants. The size of the groups is growing, as 

well as the number of groups. In Sweden, with around 130 000 teachers in total, such 

Facebook groups constitute a substantial part of the teacher population and studying 

this phenomenon is therefore of interest, as the large number of active teachers 

indicates an enduring professional development on the social network site. 
 

Conducting a study on social network sites requires special attention to ethical issues. 

It is a matter of maintaining public trust in researchers as well as the possibility to 

conduct research in online environments in the future. The study has been approved in 

the local ethics committee of Karlstad University. 
 

When the studied groups on social network sites are large, it is more likely that the 

members look upon the communication as public, and, hence the topic discussed may 

not be delicate, as, for example, physical and psychological health and socio-

economical personal issues (Ellison & boyd, 2013; Knobel, 2009; Little, 2002; 

Roberts, 2015). The members of the Facebook groups in the study have chosen a 

specific domain in which to engage and the theme in the group is not on delicate issues 

(cf., Roberts, 2015). In this study, therefore, ethical considerations must also be given 

to how the intervention (i.e., exploring the group activity) per se disturbs the 

communication pattern, the trust and the evolving norms, the participation pattern, and 

so on, in the group studied (Ellison & boyd, 2013; Knobel, 2009; van Bommel & 

Liljekvist, 2015). 
 

Taking the ethical issues into consideration, we have adopted both qualitative and 

quantitative methods in this study and this is explained and set out in the next section.  
 

When do teachers discuss? 
 

In order to detect when teachers discuss with others on the social network site, a 
quantitative method was applied. All status-updates were registered during one year 
(2015). The time of day when teachers posted their status was noted, with a distinction 
made between working and non-working hours. Holidays, weekends etc. were included 

as far as possible.1 Furthermore, boundaries for working hours and non-working hours 

had to be set. We decided that working hours were between 08.00 and 17.00. 
 

Arguments for which groups to choose were guided by two principles: The Facebook 

groups had to be in mathematics or Swedish, representing the two largest subjects at 

school. Furthermore, the groups should be large, with more then 2 000 members. All 

status-updates during one year (2015) were registered for all selected groups. In this 

paper the focus will be on the Facebook groups in mathematics.  
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In order to answer the question when teachers discuss, three different timeframes are 

of importance: (i) global frame – on a yearly basis, (ii) local frame – on a weekly basis, 

and, (iii) micro frame – on a daily basis, related to working hours in working days. For 

the micro frame we have to keep in mind that it is not merely the time of day that is of 

interest. That is, a status posted at 10:17 am on a Saturday is treated differently in this 

analysis then a status posted on a Thursday at 10:17 am. Below we present some facts 

about the groups that are under analysis: in total nine groups, with each between 2000 

and 11000 members. Accordingly, the number of statuses vary between the groups: 

between 82 and 3048 statuses. 
 

(i) Globally the posts are spread over the year with some peaks, clearly 

corresponding to the school calendar. There is a peak in the weeks before the 

summer holidays. A similar peak is visible in the two weeks before the 

Christmas holidays. Likewise, the activity is low during the Easter, summer 

and Christmas holidays. Before school starts, at the end of the holidays, the 

activity in the groups goes up again and remains relatively stable.  
(ii) Locally, we see that Mondays–Thursdays score the highest number of posts 

(around 70%, just over 17% per day). Fridays and Sundays score a bit lower 

(12% per day) and the lowest activity appears on Saturdays (around 7% of 

the posts).  
(iii) On a micro level the data show what time of day teachers post their statuses. 

Around 35% of the posts are made during working hours, and just over 65% 

of the posts are made outside working hours. The groups have an activity of 

around 20% during weekends and holidays. 
 

The above gives us an insight in the activity patterns of the teachers in these Facebook 

groups. These activity patterns raise new questions, given the large amount of activity 

outside working hours – to what degree do teachers feel free to use Facebook as part 

of their work? How legitimate is Facebook considered to be as a tool for professional 

development? It also raised questions concerning the content: are there specific topics 

that are discussed at certain instances during a year? In the next section, we cite some 

of the content discussed in the studied Facebook groups. 
 

What do teachers discuss and reflect upon? 
 

As the ERME call states, numerous frameworks have been developed “aiming at 

achieving a better understanding characterizing and/or evaluating the content of 

teachers’ knowledge”. In this study we have chosen Shulman’s PCK-framework 

(Shulman, 1987) in order to categorize the content of the posted statuses regarding the 

second research question – what do teachers discuss and reflect upon? Hence, it is a 

way of characterizing the content in the posted statuses and comments, not a way to 

measure teachers’ actual knowledge. PCK was seen as a framework that made it 

possible to categorize posts in all groups – irrespective of the school subject in focus. 

So far, we have looked at mathematics and the subject Swedish language, but in case 

the study will be scaled up, it will be possible to use PCK also in other subjects.  
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Shulman (1987) described different categories of teacher knowledge, of which three 
categories have been most influential: Pedagogical Knowledge, Content Knowledge 
and Pedagogical Content Knowledge (cf. Ball, Thames & Phelps, 2008). For each of 

the categories of Shulman’s framework, some examples2 taken from our data are given 

to show in what way the framework is used to categorize the content of the statuses. 
The statuses are analysed by the researchers and a comparison of the analysis is made 
to ensure intersubjectivity. During the coming months, a stratified sample will be taken 
from the groups and a categorization using all (under)categories of Shulman’s 

framework will be made.3 
 

Each specific Facebook group aims at a specific domain to engage in, and each of its 

members has actively chosen to become a member of that specific group. The groups 

of interest in this study are the groups with subject specific interests, and issues related 

to the subject (pedagogical content knowledge, and content knowledge) are therefore 

to be expected. The category pedagogical knowledge, however, addresses issues that 

are not related to any subject, but merely to teaching in general. Even though the groups 

in our study are subject-specific groups, pedagogical issues do come up. Status 1 below 

concerns teachers’ preparation for upcoming national tests. What do teachers do to 

prepare for this non-routine teaching practice? 
 

Status (1): To all of you who will conduct the national tests. How do you prepare? Do 

you read the teacher’s guide? What else? 
 

The following status concerns the arrangement of the teaching of pupils with special 

needs. Just as in status 1, the experiences of others are asked for. A detailed description 

of the situation is given: ‘we would like to get away from…’, ‘we would like to 

accomplish…’ and a request concerning alternative teaching arrangements is posed. 
 

Status (2): We have had a discussion at school on how to organise the special needs 

support. We would like to avoid the phenomenon that some pupils get stuck 

once they start there. We would like to accomplish a more dynamic way of 

working where pupils get help for a limited period and then can go back to 

the regular classroom teaching. Does anyone know good models for 

organising such support? 
 

Both status 1 and 2 are related to the how of teaching – and are classified as pedagogical 

knowledge. Some of the posted statuses do not address the how, but only address the 

what. Status 3 shows a post where a member wants to have help with a specific 

mathematical term and it purely concerns content knowledge. 
 

Status (3): I am familiar with a concept but don’t know the Swedish name for it: ‘interior 

angle’. How can I translate it into Swedish? I have looked on google, 

searched on the internet, tried google translate but cannot find anything 

suitable. Wikipedia is not useful either for a translation here. 
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Regarding the third category, pedagogical content knowledge, members post statuses 

asking for advice, for instance. The member in status 4 is asking for advice concerning 

technical tools appropriate for his/her pupils. A description of specific demands, as 

well as a description of the needs of the pupils are given. The teacher’s qualified 

description indicates awareness of pedagogical content knowledge. 
 

Status (4): I am looking for a calculator where all input appears and stays on the screen. 

Will use it with pupils with difficulties in mathematics. Can someone 

recommend a good model? 
 

In the following status, the member also asks for advice, this time concerning the 

teaching of a mathematical topic (division). This status clearly belongs to the category 

pedagogical content knowledge as it concerns the teaching of a specific content. 
 

Status (5): How do you introduce division in year 2? 
 

It is interesting to note that the question in status 5 might seem to be a general question, 

but a closer look at the status reveals that the teacher is not asking for help regarding 

division in general, but only wants to know about the introduction of the topic. The 

teacher also specifies the age group (year 2). The comments on this post show a thread 

addressing different aspects. Comments 1 and 2 both relate to the mathematical content 

(multiplication and division), comment 1 through an example, and comment 2 through 

a more general description. Further, comment 2 gives advice on the how: laboratory 

work. Finally, comment 3 relates to pupils’ difficulties when learning the topic: pupils 

can, but are not able to write it. All three responses are classified within the category 

pedagogical content knowledge. 
 

Comment (1): Think first double and half; multiplied by 2 and divided by 2. 
 

Comment (2): Show the relationship between multiplication and division. Laboratory work 

with blocks or other objects 
 

Comment (3): Word problems, connect to math language. Pupils know, but are not able to 

write it, then demonstrate how multiplication and division are related. Most 

often challenging and a fun way of learning. Good luck! 
 

Besides asking for help, members also share experiences and status 6 shows such a 

shared experience. The member starts with a clarification of the mathematical topic in 

focus and at what level it is treated (pedagogical content knowledge). Further, this 

member shows what was done in class and illustrates the results with a picture. 
 

Status (6): Today I worked with definition, axiom, theorem and prove with my pupils 

who take course 1b at upper secondary school. To prove Pythagoras theorem 

with a ‘puzzle’ was an immense success and created understanding. 

(Followed by four illustrative pictures) 
 

Statuses 1-6 above have been used to give an insight into the data and exemplify our 

categorization into the three categories described by Shulman. As stated before, the 
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results regarding the question on what teachers discuss and reflect upon are preliminary 

and will be adjusted in later versions of this paper. Furthermore, this part of the study 

will continue during 2016 and parts of 2017. In the next section, we raise some points 

for discussion, some processed, and some preliminary, and further study will show if 

these points are of relevance or not. 
 

CONCLUSION 
 

Social media and social network sites change the arena of professional development of 

teachers. This implies a changing role of teachers in learning communities (Issa & 

Kommers, 2013). Our study gives insights into the underlying characteristics of digital 

and informal professional development . The when and what of teachers’ input in social 

media and social network sites have been exemplified in this paper in relation to 

Shulmans’ framework (1987). We deceided to distiunguish between working hours and 

non-working hours and the activity patterns do raise a question: when do teachers have 

time to plan and reflect? The activity patterns within the groups indicate that teachers’ 

professional development partly takes place outside working hours. Why? To what 

extend are teachers free to use this new arena? To what extend are social media 

included as part of a working day? We are aware of the fact that not all posts are to be 

looked upon as professional development, moreover posts differ in form, content and 

depth. As we have indicated, our study is on-going and we aim at deeper further 

insights later on, in terms of insights into the quality of the teachers’ status and 

comments in the Facebook groups. Such quality for instance can be measured by 

looking at the coherence within a post (statuses and comments together). But maybe of 

greater importance are insights into the impact of Facebook groups and other 

professional development on social media and social network sites. Furthermore, it will 

be possible to look at the impact of formal professional development initiated by the 

state, through looking at the threads and topics addressed in the Facebook groups. 
 

The quality of teachers’ professional development has been the subject of other studies. 

The digitally extended context for teachers’ formal and informal professional 

development, however, has not been taken into consideration and we want to invite the 

ERME Topic Conference ETC3 to discuss this extended context for teachers’ 

professional learning through this paper. When digital gadgets are in common use, 

there is no longer a distinct border between teachers’ interaction with their colleagues 

in their local school and their interaction with colleagues in social media and social 

network sites. 
 

 

NOTES 

 

1. School holidays sometimes vary between different regions and are therefore not always possible to account for. 
 
2. In line with the conference theme, the examples given in this paper are taken from the Facebook groups related to the 

subject mathematics. 
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3. New results will follow during spring, meaning that an updated version of the results will be given in newer versions 

of the paper and during the conference 
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Our attention is focused on the mathematical knowledge of students enrolling for 

Primary Teaching Degrees in Catalan universities. We present the preliminary steps 

of a study
1
 which aims at developing a mathematics test that should be included in the 

official entrance examination for applicants to the teaching degree starting September 

2017. After briefly introducing the concept of Basic Mathematical Knowledge (BMK) 

and determining the content to be assessed in the entrance examination, we present a 

pilot test conducted on 291 students in order to evaluate their BMK. Our results not 

only evidence the candidates’ BMK inadequacy, but confirm the need to consider 

mastering BMK as a requisite for admission to the Primary Teaching Degree. 
 

Keywords: entrance examination, initial teacher education, basic mathematical 

knowledge. 
 

INTRODUCTION 
 

To this date, University entrance exams in Spain are identical for all degrees, without 

specific tests for each type of study. However, the new legislative change which 

regulates education in Spain (LOMCE – Ley Orgánica para la Mejora de la Calidad de 

la Educación, i.e. Organic Law for the Improvement of Quality in Education), passed 

in November of 2013, established a validation of ‘baccalaureate’ and allowed 

university campuses to design their own tests for University entrance. Therefore, it is 

essential to find a more precise way of establishing what these tests aim to measure for 

the entrance to each degree offered. 
 

In the case of the degrees in Education, these tests have not yet been defined. However, 

in Catalonia, both social media and academics are recently paying an increased 

attention to the need to improve pre -service teacher training. However, those in charge 

of political decisions need to be convinced that a test on mathematical content 

knowledge is a necessary part of an entrance examination for accessing a primary 

teaching degree. Therefore, the first results of our research allows us to stress out that 

it is necessary to develop a test. 
 

Therefore, in this study, we suggest considering the evaluation of candidates’ basic 

mathematical knowledge (BMK) on entrance to University to start their training in 

Primary School Teaching. Thus it is not only essential to determine the form and 
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content of the BMK, but also to prove that candidates’ BMK sufficiency cannot be 

taken for granted. 
 

The TIMMS study (Third International Mathematics and Science Study) evidences 

differences and deficiencies in the mathematic knowledge of students of several 

countries. Spain ranked below the average of participating countries of the European 

Union and the OECD. This fact brings to light the need to revise the teaching of 

mathematics in the Spanish educational system and suggests that it is paramount to 

provide a good initial education to future primary school teachers in order to improve 

this situation. 
 

With results obtained by TIMMS as starting point, TEDS-M (Teacher Education Study 

in Mathematics) was created, an international comparative study about the knowledge 

acquired by future mathematics teachers in primary education and compulsory 

secondary education after their initial training. The aim of TEDS-M was to analyse the 

differences between initial training programmes and their impact on the education of 

future teachers. Despite the low number of participating countries in this study and the 

differences between the training programs of each of them, it brings evidence that 

better results were obtained in those countries where education in mathematics is more 

specialised. In this respect, Lacasta and Rodríguez (2013) have documented nominal 

relations between the level of mathematical knowledge of educators and their level of 

knowledge for mathematics teaching, mathematical content being the main requisite 

for a good understanding of how to teach mathematics. 
 

The interest in discovering knowledge for the teaching of mathematics has promoted 

the evaluation of its content and, particularly, the evaluation of future teachers’ 

knowledge (Norton, 2012; Senk et al., 2012, Walshaw, 2012). However, there is little 

research describing the mathematical knowledge of students at the start of their training 

to become teachers, therefore the evaluation of such knowledge is a challenge for their 

educators (Linsell & Anakin, 2012). 
 

Our objective in this communication is to introduce the concept of BMK and present 

the results of a research that motivate the need to study it. We present a first theoretical 

approach to this concept and shortly present how the content required for assessment 

in entrance examinations was fixed. Our proposal is supported by the expert knowledge 

of researchers who are also experienced educators of primary school teaching students. 

Subsequently, we present some partial results from a pilot test designed to evaluate 

such knowledge that was administered to 291 first year students of the Primary 

Education Degree at the Universitat Autònoma of Barcelona. Our empirical results 

allow us to justify the importance of establishing a BMK to be mastered as a requisite 

to enter teacher training. 
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BASIC MATHEMATICAL KNOWLEDGE 
 

Shulman (1986; 1987) stressed the importance of content knowledge, defining the 

latter as the amount and organisation of knowledge of the subject, pointing out that 

content knowledge requires going further than being familiar with facts and concepts 

of the subject, it also requires the understanding of its structures. According to 

Fennema and Franke (1992), Knowledge of Mathematics includes teacher knowledge 

of the concepts, procedures, and problem-solving processes, the concepts underlying 

the procedures, the interrelatedness of these concepts, and how these concepts and 

procedures are used in various types of problem-solving. These authors coincide with 

Shulman when stating that teachers shouldn’t only know mathematical procedures but 

should also understand the concepts underlying these procedures. 
 

Later on, Ball, Thames & Phelps (2008) used the model suggested by Shulman and 

elaborated the MKT model (Mathematical Knowledge for Teaching), that was created 

to describe the knowledge of in-service teachers. One of the main axes of this model is 

Shulman’s Content Knowledge, which they called Subject Matter Knowledge. The 

MKT model proposes the division of Subject Matter Knowledge in three subdomains: 

Common Content Knowledge, Specialized Content Knowledge and Horizon Content 

Knowledge. Common Content Knowledge is the knowledge that every adult that has 

received mathematical training should have and is used in a wide range of contexts 

(Ball, Hill & Bass, 2005). Specialized Content Knowledge includes an understanding 

and mathematical reasoning inherent to the teacher. Horizon Content Knowledge is 

mathematical knowledge that students will be learning in the future. Again focussing 

on in-service teachers, Rowland (2008), based on observation in the classroom, 

proposes the Knowledge Quartet to describe mathematics teachers’ knowledge as 

having four dimensions: foundation, transformation, connection and contingency. In 

particular, the foundation dimension includes, among others, the propositional 

knowledge on which teachers support their practice. 
 

In the last decade, several researchers have contributed with nuances or new proposals 

to the established ideas and have helped to consolidate and expand existing concepts. 

However, all the concepts introduced in the previous paragraphs refer to teachers’ 

knowledge needed for the actual practice of teaching while we are not even dealing 

with novice teachers, but with teacher-students. It cannot be expected of students who 

start their degree to have received a previous education that provided them with a deep 

understanding of the mathematics concepts studied or an outlook oriented towards 

conferring their learning to others. 
 

Therefore, in Castro, Mengual, Prat, Albarracín and Gorgorió (2014) we introduced 

BMK as the disciplinary mathematical knowledge that students need in order to benefit 

from their courses in mathematics and mathematics teaching during their education to 

become teachers. It is important to note that we are referring to students that have not 

even started their training as teachers, and we suggest that BMK should 
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be a requirement for their pre-service training. BMK would be the initial disciplinary 

knowledge on which to build throughout teacher students’ training, to attain the 

mathematical and pedagogical knowledge required to start their professional practice. 

As educators of teachers, we take BMK as the mathematical knowledge starting point 

for our courses, which should be based on a thorough knowledge of elementary 

mathematics, being the foundation that would support the building of a structurally 

robust training. 
 

BMK should be the basis on which to build Shulman’s Content Knowledge (1986, 

1987) and of Fennema and Franke’s Knowledge of Mathematics, but we cannot expect 

Shulman’s idea to be equal to BMK in its entirety. In Ball et al.’s MKT model, BMK 

is part of common knowledge and the starting point for development of the knowledge 

of the horizon, since the education the students have received before reaching 

University level should have allowed them to deal with more advanced knowledge than 

what they are going to teach in Primary School. Similarly, we believe that we may 

require our students to know the basis and terminology of the mathematics they have 

been taught during their previous schooling. Therefore, we consider BMK to be part of 

the foundation component of Rowland’s Knowledge Quartet. 
 

Similarly to the outlook presented in this study, Linsell & Anakin (2013) claim that the 

models developed to describe the professional knowledge of the teacher have 

limitations when it comes to the knowledge analysis of beginning undergraduate 

students. Linsell & Anakin (2012) propose the concept of Foundation Content 

Knowledge to refer to the knowledge of mathematical content that future educators 

possess when starting their training programme. This type of knowledge includes as 

inseparable conditions, both conceptual knowledge and methodological knowledge. 

The characteristics of Foundation Content Knowledge are related to the ability to 

model, modify, reason and confirm, the implementation of multiple representations, 

making generalizations, working with real numbers and understanding basic facts, 

amongst other aspects. 
 

Our notion of fundamental mathematical knowledge differs little from the Foundation 

Content Knowledge of Linsell & Anakin (2012), since they refer to the knowledge of 

future educators at the beginning of their training. However, our research distinguishes 

itself from that of these authors already at a preliminary stage, given that we wish to 

determine the knowledge required at the start of undergraduate teacher training, which 

we have termed BMK. We aim to ascertain the content of the latter by consensus 

between experts in order to evaluate the BMK. Linsell & Anakin evaluate the 

knowledge students actually have in order to end up describing it as insufficient, 

possibly as a comparison to the desired amount of non-explicitly stated knowledge. 
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METHODOLOGY 
 

After developing a preliminary theoretical approach to Basic Mathematical 

Knowledge, we set out to establish the mathematical content domains to which it refers. 

We focus on the mathematical content prescribed by the curriculum of the Spanish 

compulsory education –Numbers and Arithmetic, Space and Shape, Relations and 

Change, Measure, and Statistics and Randomness– since we do not expect an 

encyclopedic knowledge from our students, but wish to verify whether they possess a 

solid basic knowledge. 
 

In parallel, while developing the criteria to fix the exam content, we set out to elaborate 

a pilot diagnostic test that should be the first step towards a tool to assess students’ 

BMK. For this purpose we revised different pre-existing tests aimed at the evaluation 

of mathematical knowledge of teachers in different moments of their training or 

professional development. Some of the aforementioned tests include TIMMS, TEDS-

M, items from the Texas Mathematics Educator tests, as well as the activities employed 

by Linsell & Anakin (2012) in their study. 
 

These test items are designed with an open-question format to avoid suggesting 

possible answers to the students, as may be the case when using a multiple-choice 

question format. The questions aim to evaluate mathematical knowledge at three 

different levels: reproductive, applicative and relational. Finally, we selected twenty 

five activities that comprised a balanced test with respect to content blocks and levels 

of mathematical knowledge. Some of these exercises will be shown later on, together 

with the results obtained. 
 

The aforementioned test was handed to 291 students of the first year of the Primary 

Education degree at the Autonomous University of Barcelona (UAB) who had not yet 

taken any lessons in mathematics or mathematics teaching. The minimum University-

entrance examination grade to enter these studies at the UAB is the highest required 

amongst the 8 degrees in Primary Education of the different Universities in Catalonia. 

On the other hand, the minimum entrance grade is located at the 81st percentile (77 of 

421) in relation to all degrees offered at Catalan Universities. Therefore, we can state 

that not only have our students successfully passed their educational stages previous to 

University admission, but have also obtained higher University-entrance qualifications 

than students entering many other graduate courses. 

 

 

SOME RESULTS 
 

As follows, we present the analysis of some of the data from the answers of the 291 

students to three of the questions included in the aforementioned test. 
 

The main interest of our study is focussed on determining the type of background 

content desired for students recently admitted to the Degree in Primary Education 
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and diagnosing mistakes made in their learning process. For this reason, we wish to 

make a quantitative analysis of the type of mathematical content these tests reveal.  
 

Measuring a segment with a ruler 
 

In one of the questions of the test, the students were given the following image and 

were asked to establish the length of the segment. 
 
 
 
 
 
 
 

 

The following table summarizes the students’ answers to this question:   

Answer Frequency Percentage  Answer Frequency Percentage 
 

   

 

   
 

NC 5 1.7% 4.8 cm 7 2.4% 
 

       
 

4.3 11 3.8%  5 cm 11 3.8% 
 

       
 

4.3 cm 11 3.8%  5.3 cm 11 3.8% 
 

       
 

4.5 cm 6 2.1%  5.5 cm 4 1.4% 
 

       
 

4.6 cm 9 3.1%  5.75 cm 14 4.8% 
 

       
 

4.7 4 1.4%  6 cm 4 1.4% 
 

       
 

4.75 35 12.0%  Other 53 18.2% 
 

       
 

4.75 cm 106 36.4%  Total 291 100.0% 
  

Table 1. Answers to question “Measuring a segment with a ruler” 
 

The data on the table show that the correct answer, 4.75 cm, is also the most frequent 

one, 35.7% of the students. We also see that 11.2 % of the students give the number 

resulting from the measurement, 4.75, but they do so without units. For what refers 

only to the use of units, 75.1% of them use the appropriate ones, 2.8% of the students 

do not use any, and 0.4% use the wrong units such as cm
3
. It is important to note that 

we have identified 44 different answers for this question, suggesting that the use of 

open questions does not condition the students’ response. However, the most 

discouraging answers are those where the result given –twice 9.5cm, 19cm, 25.5 and 

47– is bigger than the length of the ruler on itself –8cm. 
 

Perimeters and surface areas 
 

One of the test questions asks the students to calculate the surface area and perimeter 

of a square with 7 cm sides and of a circle with a radius of 6 cm. Table 2 shows the 

different categories into which we have organized the answers, the number of answers 

that fall into each of them and the percentage for each category considered.  
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  Square   Circle  
 

       
 

Answer  Area Perimeter  Area Perimeter 
 

     
 

No answer 39 (13.4%) 63 (21.6%) 147 (50.5%) 182 (62.5%) 
 

         
 

Correct 115 (39.5%) 174 (59.8%) 38 (13.1%) 42 (14.4%) 
 

         
 

Correct         
 

calculations - 102 (35.1%) 27 (9.3%) 32 (11.0%) 16 (5.5%) 
 

wrong units         
 

         
 

Interchange         
 

area and 15 (5.2%) 5 (1.7%) 7 (2.4%) 2 (0.7%) 
 

perimeter         
 

         
 

Wrong for 
20 (6.9%) 22 (7.6%) 67 (23.0%) 49 (16.8%) 

 

other reasons 
 

        
   

Table 2. Answers to question “Perimeters and surface areas”   

The results in table 2 show high indices of “unanswered” questions, and a clear 

ignorance of the calculation process for the surface and perimeter of a circle. In 

particular, it is worth noting that 30 of the students, 10.3% of the total, do not employ 

the number ‘pi’ for neither the calculation of the circle’s surface area nor for that of its 

perimeter. 
 

Added to the misunderstandings between the concepts of surface area and perimeter, 

there are errors in terms of the units used when giving the answers, especially for 

surface areas. The results obtained when considering only the units in the answers 

(without considering the calculated figure provided) are shown in table 3. 
 

Square Circle   

Answer Area Perimeter  Area Perimeter 
       

N/A 39 (13.4%) 63 (21.6%) 147 (50.5%) 182 (62.5%) 
      

Correct Units 130 (44.7%) 192 (66.0%) 64 (22.0%) 74 (25.4%) 
        

Incorrect Units 70 (24.1%) 1 (0.3%) 25 (8.6%) 2 (0.7%) 
       

Without units 52 (17.9%) 35 (12.0%) 55 (18.9%) 33 (11.3%) 
 

Table 3. Use of units in the answers to question “Perimeter and surface areas” 

Contextualised problem with verbal formulation 
 

The formulation of another question of the test is the following: “When going on a 

school’s outing it is required for children to be accompanied by adults. Each adult can 

be responsible, at the most, for a group of 16 children. In an outing with 54 children, 

how many adults are needed to accompany them?” 
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Table 4 summarizes the answers of the students to this question and shows their relative 

and absolute frequencies. 
 

Answer Frequency Percentage Answer Frequency Percentage 
      

No answer 17 5.8% 4 154 52.9% 
      

   4 with   

3 41 14.1% errors 20 6.9% 
      

3.375 24 8.2% 5 6 2.1% 
      

3.4 12 4.1% Other 10 3.4% 
      

3.5 7 2.4% Total 291 100.0%   

Table 4. Answers to question “School’s outing” 
 

We can see that 52.9% of the students answer this question correctly, calculating the 

ratio in excess, in order to take into account the context of the formulation. However, 

some of the students give an answer of 4, based on erroneous calculations or invalid 

arguments (6.9% of the total students). On the other hand, we also find a trend that 

groups questions 3.375, 3.4 and 3.5, in which the students consider the result of the 

division to directly be the answer to the question, thus overlooking the interpretation 

of the situation exposed in the formulation of the problem. These answers represent 

14.8% of the total. There is another group of students (14.1%) who give the answer of 

3 adults who should accompany the group of children. These students do not consider 

the possibility of finding the ratio of the division in excess and act without 

understanding the context of the problem, using a ratio which does not cover the 

number of children. 
 

CONCLUSIONS 
 

Our students at the start of their Degree in Primary Education at the UAB have 

successfully passed their studies previous to University but with an incomplete BMK, 

according to the results obtained in our empirical study. Specifically, we have 

documented a lack of competence related to BMK, in aspects that have to do with units 

of measurement, or the contextualisation of mathematical knowledge. 
 

There may be an implicit agreement among teachers of mathematics and mathematics 

education in Catalonia about what constitutes the BMK required of our students, but 

this has never been explicitly stated. Therefore, when it comes to the knowledge used 

as starting point for training in Degrees in Primary Education, it is paramount to clearly 

set out what is expected of our students. From a teacher-training point of view, results 

such as those exposed herein evidence the need to commit to the improvement of our 

students’ understanding of elementary mathematics, in order to successfully face 

subjects related to its teaching. 
 
 
 
 
 
 
 

 

144 



The results obtained show that many of our students have not developed an adequate 

construction of mathematical knowledge during their previous education, and are 

therefore not able to reproduce those processes they learned by heart and without 

searching for their meaning within a practical context. Many of the students who enter 

University may have possibly forgotten the elementary mathematics they once studied. 

Therefore, we would agree with Fennema and Franke (1992) and Linsell and Anakin 

(2013) on the fact that the knowledge students carry with them at the start of their 

training may possibly be characterised by memorising and standardised problem-

solving and is far from the one we, as teachers’ educators, would expect them to have.  
 

The proof of the lack of elementary mathematical knowledge of students at the start of 

their teacher training justifies the notion of Basic Mathematical Knowledge and 

suggests the need to keep working not only towards its characterisation, establishing 

its form and content in order to evaluate it, but also towards developing and validating 

a tool to assess the BMK of candidates entering a Primary Teaching Degree. As a 

conclusion, if we had to give a short answer to the question posed in the title of the 

paper – Should the assessment of candidates’ mathematical knowledge a requirement 

for on admission to primary education degrees? –our answer would be yes, despite the 

practical and political implications of taking a decision of such importance.  

 

NOTES 
 
1. Estudi per a l’avaluació diagnòstica de les competències matemàtiques dels estudiants del grau en Educació Primària 

(Study for the diagnostic evaluation of mathematical competences of students of Primary Education Degrees). (AGAUR 

Catalonia, ref. 2014 ARMIF-00041) 
 
2. Caracterización del conocimiento disciplinar en matemáticas para el grado de educación primaria: matemáticas para 

maestros (Characterisation of the disciplinary knowledge in mathematics for the Degree in Primary Education:  

mathematics for teachers) (DGU, Spain, ref. EDU2013-4683-R). 
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Measuring and understanding teachers’ mathematical knowledge for teaching is 

accepted as an important element for effective mathematics teaching and learning, but 

mathematics teacher education do not naturally attend to and make sense of these. We 

describe, in part, a validation study in which 212 pre-service teachers participated in 

a previously adapted mathematical knowledge for teaching test with an aim of 

establishing validating and reliability of the adapted measures and items. We discuss 

the test and items’ performance using classical test theory. The results show low 

overall internal consistence and identify eight very problematic items out of forty-six. 

We also give possible reasons for the low internal consistency. The study offers hope 

for defining standardized tools for assessing mathematical knowledge for teaching in 

Malawi. 
 

Keywords: Mathematical knowledge for teaching, pre-service teacher. 
 

INTRODUCTION 
 

According to the Organization for Economic Cooperation and Development (OECD) 

education systems should equip all humans in a modern society with knowledge, skills 

and tools to stay competitive and engaged (OECD, 2016). In terms of Mathematics 

learning, education systems need to equip all learners with at least knowledge and skills 

about number concepts and operations. This is one of fundamental topics that is a 

prerequisite to understanding mathematics in later stages of schooling or appreciating 

mathematics in the society. To teach mathematics effectively, primary school teachers 

do not only need to understand the fundamental mathematical concepts, but they are 

also expected to have a mastery of the art and science of teaching mathematics (Reid, 

2011). 
 

The need for mathematics teachers to have a robust mathematical knowledge is 

undeniable. However, researchers (e.g. Chitera, 2011; Jurdak, 2009) observe that most 

mathematics teachers are not well prepared to teach mathematics in terms of their 

subject knowledge. Ball, Thames and Phelps (2008) built on Shulma’s work and 

developed two constructs of subject knowledge namely: content knowledge (CK) and 

pedagogical content knowledge (PCK). For them, CK comprises teachers’ 

comprehension of the subject matter to be taught and PCK is teachers’ comprehension 

of how to make subject matter learnt by students. In our case, therefore we consider 

CK as entailing the mathematics content to be taught as prescribed by the curriculum, 

while PCK as the knowledge that the teacher needs in order to organise and present the 

mathematics content into forms that can be easily understood by learners, and explain 

the connections between them. 
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While there seems to be an obvious distinction between CK and PCK, Hill, Ball and 

Schilling (2008) contend that the distinction is rather not obvious at the lower level of 

mathematics teaching and hence they developed the term mathematical knowledge for 

teaching (MKT). Different schools of thought have emerged about CK, PCK and MKT 

since the work of Shulma, and Ball and colleagues. However, researchers generally 

agree that knowledge for teaching is precursor to learning and that this knowledge is 

affected by, among other factors, teacher development programmes (e.g. Blömeke, 

Suhl, & Kaiser, 2011). Furthermore, Kleickmann et al. (2013, p. 93) report that the 

extent to which different teacher education programmes influence knowledge for 

teaching or the extent to which the knowledge for teaching changes among different 

populations of teachers remain unclear. In Malawi context, for example, there is an 

evident need for standardized tools for assessing teachers’ understanding of important 

mathematical concepts, ideas and skills, and the level to which teachers are 

mathematically prepared for the work of teaching. Research in this direction could 

assist in informing the educational system to provide relevant professional 

development for mathematics teachers and teacher-education programs through 

improved curriculum in terms of content and corresponding pedagogy. 
 

Primary teacher Education in Malawi 
 

The current primary school teacher education programme in Malawi referred to as 

Initial Primary Teacher Education (IPTE) is a two-year pre-service education 

programme delivered in two phases of one academic year in length each. Phase one is 

a full-time residential programme characterised by student teachers attending ten 

taught modules and about a half module of microteaching and teaching practice 

experience. The second phase is a one academic year of school-based teaching practice 

(TP) supervised by school mentors and teacher educators. At the end of the TP, student 

teachers return to college to sit for national exams set by the Malawi National 

Examination Board (MANEB). The teacher education curriculum in Malawi addresses 

both content and pedagogy hence has some aspects of CK and PCK (MIE, 2010). Like 

in most teacher education programmes, the student teachers’ CK mostly develops 

during the first phase of the IPTE programme. During this phase, student teachers are 

also formally introduced to mathematics related PCK by their lecturers. Furthermore, 

the students have more opportunities of developing both CK and PCK through micro-

teaching and school experience in demonstration primary schools based within the 

colleges. However, Kunje, Lewin and Stuart (2003) report that the curriculum is 

ineffectively delivered with material mainly packaged “as facts to be learned and 

assessment regimes reinforcing this recall-based orientation to curriculum” (p. 112). 

They also observe that the school-based phase “is peripheral rather than central to the 

curriculum”. Consequently, the development of knowledge for teaching is greatly 

compromised among student teachers. 
 

Mathematical literacy is important for developing countries like Malawi (Tsafe, 2013) 
if she is to alleviate poverty among her people and to strategically position 
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herself for development. Unfortunately, results from regional studies by the Southern 

and Eastern Africa Consortium for Monitoring Educational Quality (SACMEQ) show 

that Malawian learners continue to perform significantly below the regional average in 

mathematics including on items related to number concepts and operations (SACMEQ, 

2011). Influenced, in part, by such comparative studies and the need to have a relevant 

curricula at all levels of schooling, Malawi has revised and released new curricula 

recently. Specifically, in September 2015 the Ministry of Education introduced a 

science based secondary school curricula which puts emphasis on science and 

mathematics. Despite these changes and new curricula direction, it is unclear how well 

the IPTE programme prepares teachers to teach mathematics given the persistent poor 

performance in primary school mathematics. 
 

To what extent do primary school teachers understand mathematics in general and 

number concepts and operations in particular, and how well do the teachers exhibit 

mathematical literacy seem important questions to advance in the Malawi context. 

However, there could be a number of barriers to conducting research to answer these 

critical questions. One obvious barrier has been and remains the unavailability of 

appropriate tools with which to assess teachers’ knowledge for teaching in Malawi. 
 

Although, there are a number of diagnostic tools available to assess knowledge of 

mathematics, most of these were developed for specific audiences or are content 

focussed and do not assess ability to teach mathematics. The Learning Mathematics for 

Teaching (LMT) measures developed in the US focus on the work of the mathematics 

teacher (Hill, Ball, & Schilling, 2008). Specifically, the LMT-NCOP items measure 

conceptual understanding of number concepts and operations, and how a teacher can 

react to specific situations related to NCOP in a classroom. This renders the LMT-

NCOP a potential and meaningful tool for assessing knowledge for teaching numbers 

concepts and operations of both practicing and pre-service teachers in Malawi. Even 

though the LMT-NCOP measures have been adapted for use in Africa, Ghana, it is 

important that we understand how individual NCOP items behave in our context. 

Therefore, the main purpose of this study was to investigate how the adapted items 

would function in Malawi. 
 

METHOD 
 

The LMT measures for assessing teachers’ mathematical knowledge for teaching 

number concepts and operations were developed as part of the Learning Mathematics 

for Teaching (LMT) project at the University of Michigan. The measures assess 

multiple aspects of teacher knowledge including subject matter knowledge and 

pedagogical content knowledge (Hill, Ball, & Schilling, 2008). Number concepts and 

operations as part of the school mathematics curriculum have remained a central part 

of the LMT measures. We selected LMT items from existing forms for adaptation by 

aligning the items to the IPTE mathematics curriculum and adapting them to the 

Malawi context (Kasoka, Kazima, & Jakobsen, 2016). 
 
 
 
 
 

 

149 



Kane’s (2013) framework for validating tests was employed. Kane remarks that when 

tests are adopted or adapted, they are used on populations that are generally different 

from the intended in terms of culture, academic experiences, linguistic abilities, social 

and economic experiences among others. We were therefore mindful of the need of the 

adapted measures to be fair and meaningful in the Malawi context while at the same 

time to provide scores with same meaning as intended in the source context (Kane, 

2013). Kane postulates a six component validation argument for exporting tests as 

follows: (i) domain definition, (ii) evaluation, (iii) generalization,  
 

(iv) explanation, (v) extrapolation and (vi) utilization. A rigorous attempt was made to 

address these components during the adaptation process (see Kasoka, Kazima, & 

Jakobsen, 2016) as summarised in Table 1. An instrument consisting of forty-six 

adapted items was administered to pre-service teachers from one teacher education 

college. 
 

Data Collection 
 

The participants of the study were 212 first year students from one primary teacher 

education college of whom 61 were females and 151 were males. Primary school 

teachers in Malawi do not specialize to teach specific subjects. Consequently, all first 

year students at the college participated in the study. All the participants had completed 

secondary school and held a school certificate of education. The college was 

purposively selected because we had initially worked with the lecturers at the college 

during professional development activities. Approval to conduct the study was 

obtained from the college management and all the participants were briefed about the 

study and its objectives. We administered the adapted form in one sitting with the help 

of mathematics lecturers from the college. 
 

Data Analysis 
 

To evaluate the functionality of the adapted measures, we used classical test theory 

(CTT) and item response theory (IRT). In this paper we focus on CTT results and 

descriptive statistics. For all the forty-six items, Cronbach’s alpha reliability coefficient 

and descriptive statistics were computed. Furthermore, for each item on the form, we 

sought four item characteristic indices namely: item difficulty index, upper-lower (U-

L) groups discrimination index, point-biserial discrimination index and change in 

Cronbach’s alpha coefficient with the item removed. 
 

The first index we sought was item difficulty index. The item difficulty index measures 

the proportion of participants that responded to the item correctly. The greater the 

number of participants that chose the correct response or key, the less difficult the item 

was. While Mehrens and Lehmann (1991) suggest different acceptable difficulty levels 

of items based on the number of response options, Allen and Yen (1979) argue that 

acceptable item difficulty ranges from 0.26 to 0.75 regardless of the number of 

response options. Since the items have different numbers of response options, we opted 

to use Allen and Yen range. 
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Activity Description     
 

      
 

1. Adopt or adapt Examined the source instruments and measures 
 

  in terms of structure and content in line with 
 

  Malawi context     
 

      
 

2. Selecting measures/items Aligned  the  content,  tasks  and  skills  in  the 
 

  measures/items  with  the  IPTE  mathematics 
 

  curriculum and syllabus.     
 

      
 

3. Linguistic translation While Malawi uses English as a language of 
 

  instruction  at  all  levels  of  education,  we 
 

  modified  some  US  language  terms  to  terms 
 

  commonly used in Malawi.     
 

      
 

4. Cultural contextualization Made  changes  relating  to  general  cultural 
 

  context  by  replacing  US  names  of  people, 
 

  places and objects with familiar names. 
 

      
 

5. School contextualization Modified the content of the measures to reflect 
 

  IPTE curriculum, syllabus, and textbooks e.g. 
 

  US Malawi 
 

   

9 

 

180 

 
 

     
 

       
 

   5  20  
 

       
 

   2  4  
 

       
 

   2  2  
 

       
 

       
  

 

Table 1: Summary of the adaptation process 
 

The second index we used is the U-L discrimination index. According to Kelley (1939), 

and Hopkins (1998), the U-L coefficient shows the difference between the percent of 

test takers whose raw scores are above some set limit (i.e. in the upper group) and 

responded correctly to an item, and the percent of those whose raw scores are below 

some set limit (i.e. lower group) and responded correctly to an item. For them, the 

limits are set at the 73
rd

 and 27
th

 percentile points for upper and lower limits 

respectively. To determine the U-L discrimination index, we therefore divided the 

participants into upper 27%, middle 46% and lower 27% groups. Although, some 

researchers (e.g. Taiwo, 1995) have reported U-L discrimination with 25% cut-off 

point, Kelley argues that the U-L discrimination index stabilises when the 27% cut-off 

point is used. To calculate the U-L indices, we divided the difference between the 
number of participants in the upper and lower groups who responded correctly on an 

item by 57 (i.e. 27% of 212) and used Ebel (1965) to interpret the indices: > 0.4 – 
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Satisfactory discrimination, > 0.3 – Fair discrimination, > 0.2 – Need some revision 
and < 0.2 – Item must be removed or totally revised. 
 

The last two characteristics we considered are correlation based. In this regards, we 

first assessed the item discrimination using point-biserial correlation. The correlation 

coefficients were obtained to understand the relationships between the score on an item 

and the total score from all items. As pointed earlier, the internal consistency reliability 

of the items collectively was determined by the Cronbach’s alpha. We therefore sought 

changes in the value of the Cronbach’s alpha if an item was deleted from the form to 

decide whether or not the deletion would increase the internal consistency. IBM SPSS 

Statistics was used for these analyses. 
 

RESULTS AND DISCUSSION 
 

If the adapted measures are to be used for inference about teachers’ knowledge, then it 

is important that they must be both reliable and valid. Our focus in this paper is 

reliability as a step to determining the validity of the measures. Internal consistency 

reliability was evaluated by Cronbach’s alpha. Analysis of all items produced 

Cronbach’s alpha of 0.581(N=111). The value is below the generally acceptable level 

of 0.7 (Pallant, 2007). This suggests that the internal consistency of the items 

collectively is poor and the items appear not to be measuring the knowledge for 

teaching number concepts and operations. When we examined the changes in alpha 

(see Table 2) after deleting an item, seventeen items produced positive changes. The 

maximum change recorded was 0.028 from item 21c. Therefore, the deletion of any 

items does not significantly improve the internal consistency. While we understand the 

implication of the low value of Cronbach’s alpha, Pedhazur and Schmelkin (1991) 

argue that reliability values ought to be evaluated by taking into consideration the 

specific circumstances of a study before condemning the measures due to lack of 

reliability. For instance, they argue that if test takers are not knowledgeable, they tend 

to respond rather randomly hence affecting the reliability of the measures. All the 

participants involved in our study were pre-service teachers in their first year of teacher 

education. Consequently, most of them did not have any teaching experience to draw 

on as they responded to the items. This is evident as Cronbach’s alpha was calculated 

based on N = 111 out of 212 participants. This shows that almost half 
 

(101) of the participants did not respond to at least one item. While the analysis fails 

to show good reliability of the items based on the alpha value, we are of the view that 

this is mostly attributable to the participants’ characteristics than the items. 
 

The difficulty level of each item was compared to the range proposed by Allen and 

Yen (1975). Out of the forty-six items in the form, seventeen were below 0.26 and only 

one was above 0.75. Item 17 was the easiest with a difficulty index of 0.82. This item 

was attempted by all the participants and 82% (174) of the participants provided a 

correct response. The most difficult item was item 24 with a difficulty index of 0.01. 

Only 1% (2) of the participants responded correctly to this item. With an 
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average difficulty of 0.31, the items were generally hard for the participating pre-

service teachers. Given that the adaptation related the items to the IPTE curriculum, 

student text books, and instructors’ guides (see Kasoka, Kazima, & Jakobsen, 2016), 

the overall low difficulty level would be as a result of the characteristics of the 

participants rather than a mismatch between the items’ content and curriculum. 
 

Item discrimination analysis involved establishing the U-L discrimination index and 

point-biserial correlation coefficient for each item. U-L indices for twenty-two items 

were outside Ebel’s (1965) recommendation minimum of 0.2. Only one item (item 1) 

had a negative U-L discrimination index (-0.12) which shows that more low 

performing pre-service teachers (in lower group) responded to the item correctly than 

their high performing counterparts (in upper group). The least discriminating items 

were items 6, 7, 8d, 10, 12a, 24 and 25. The difficulty indices for these items were all 

below 0.26 (see Table 2). This shows that very difficult items discriminated poorly and 

hence problematic. Moreover, removal of most of them negatively affected the alpha 

value. Item 5c was the most discriminating with a U-L index of 0.68. 
 

All the items were analysed to examine the tendency of the participants responding 

correctly to an item and scoring highly overall. This was done through the point-biserial 

correlation. The results showed that some items did not correlate well with the total 

score. Twenty items did not show expected correlation with the total score. These had 

point-biserials of less than the desirable 0.3 for ‘good items’ (Pallant, 2007). However, 

Pallant advises researchers to use a minimum threshold value for point-biserial and 

recommends 0.15. Considering Hopkins’ (1998) observations that discrimination 

indices above 0.1 indicate “fair discrimination” and that any positive discrimination 

indices above this value may be accepted because they show that there is a higher 

probability of a high performing examinee select a correct response than a low 

performing examinee. Hopkins is, nevertheless, concerned with negative point-biserial 

indices because they show that low performing examinees are more likely to select a 

correct response than high performing examinees as in items 1, 6 and 11a (see Table 

2). This may suggest that the items have some underlying errors which are preventing 

high performing participants from responding correctly. The three items are therefore 

obviously problematic and must be removed. 
 

None of the statistics we have computed so far show the performance of individual 

response options to understand their contribution to the overall quality of the items. All 

problematic items were therefore, subjected to further analysis to examine the 

performance of the response options in terms of their popularity among the 

participating pre-service teachers. We use item 6 to exemplify this analysis. Item 6 was 

intended to measure teachers’ ability to explain the divisibility rule for 4. This item had 

a difficulty index below the overall mean of 0.3 and its U-L index was 0.00 which 

shows that it could not discriminate between the upper and lower groups. In terms of 

the usefulness of the response options for item 6, response option a) had positive point-

biserial which suggests that high performing participants were more 

 
 
 
 
 

 

153 



likely to select this as a correct response than low performing participants. This 

response option was an ineffective distracter. Eighty-four participants selected this 

option, 25 of whom were among the 27% most knowledgeable and 16 were among the 

27% less knowledgeable. The behaviour depicted by this distractor is expected of a key 

(correct) response. The key for this item was b) and had a negative point-biseral which 

is uncharacteristic of a key response. The other two response options c) and d) appeared 

to be effective distracters given that they both returned negative point-biserials (see 

Table 3). This suggests that the participants who picked these response options were 

mainly among those who exhibited low overall performance. 
 

 Item No. Change in alpha  Difficulty U-L Discrimination  Point-Biserial 
 

                 
 

 1  0.027   0.72   -0.12  -0.049  
 

 5c  -0.048   0.50   0.68  0.521**  
 

 6  0.016   0.11   0.00  -0.036  
 

 7  0.024   0.24   0.05  0.238  
 

 8d  -0.012   0.13   0.07  0.209  
 

 10  -0.001   0.25   0.09  0.204  
 

 11a  0.023   0.38   0.14  -0.043  
 

 12a  0.020   0.16   0.07  0.213  
 

 17  0.003   0.82   0.16  0.324  
 

 21c  0.028   0.25   0.18  0.189  
 

 24  -0.001   0.01   0.04  0.233  
 

 25  -0.002   0.11   0.05  0.244  
 

                
 

 *Significant at the 0.05 level. **Significant at the 0.01 level       
 

Table 2: CTT results for selected items         
 

               
 

  Option Code    N    Proportion  Point-  
 

              

 biserial  

 

     Total 
 Upper 

 Lower 
  

 

           
 

                
 

  a) 0 84   25  16  0.4   0.145  
 

                
 

  b) Key 1 23   7  7  0.11   -0.036  
 

                
 

  C) 0 36   6  13  0.17   -0.055  
 

                
 

  d) 0 60   13  22  0.28   -0.066  
 

                 
 

 

Table 3: Further analysis of item 6 
 

In summary, item 6 requires further examination in terms of how it was phrased and 
its content in relation to Malawi curricula. It might also be important to examine the 
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knowledge background of the participants. The key and response option a) fail to make 
it a quality item. 
 

CONCLUSION 
 

In conclusion, we note that although the study has some limitations mainly to do with 

the homogenous nature of the sample used, helpful evidence was shown that the 

adapted measures are a promising tool for use in Malawi albeit the low internal 

consistency. Furthermore, the current results and performance of the adapted measures 

are a good basis to speculate that the participants lacked knowledge for teaching 

number concepts and operations, and to suggest a methodological change in 

investigating MKT among pre-service teachers in Malawi. The pre-service teachers 

seem to have responded to the items rather randomly than influenced by their 

knowledge. It sounds logical therefore to suggest that there is need for further evidence 

from a less homogenously population using a longitudinal study. The study has found 

that there are low levels MKT for NCOP among pre-service teachers and this has 

possible implications on teacher education programmes. We have also found that not 

all adapted items (e.g. item 6) function well and may need to be improved or removed. 

While there is evidence to support the use of the measures, our analysis showed some 

inconsistencies between item difficulty, discrimination and point-biserials. However, 

we noted that most items that were problematic based on difficulty index, they also fell 

out of range on the other two indices. 
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In this paper, we discuss pre-test’s results of a research project aiming to investigate 

the impact of a professional development course on teachers’ motivation and teachers’ 

pedagogical content knowledge (PCK). For this purpose, we propose a brief review of 

research on teachers’ professional development. We further refer to the main 

characteristic of the professional development course, i.e. to integrate examples of 

students’ solutions of tasks that the teachers were asked to collect in distance phases 

of the course. Afterwards, we discuss the main theoretical constructs for our research, 

i.e. motivation, PCK and a combination of motivation referring to different aspects of 

PCK. Based on an adapted questionnaire motivation in this context is measured in two 

professional development courses. Results of pre-tests (at first meeting) show that 

teachers consider situations to acquire PCK as challenge and are interested to do it 

on a medium level. 
 

 

Professional development, pedagogical content knowledge, motivation, beliefs 

 

 

INTRODUCTION 
 

There is a consensus that university studies and internships are not enough to prepare 
future teachers for all challenges with which they will be confronted in their 

professional career (Mayr & Neuweg, 2009). For this reason, professional development 

(PD) is understood as being a key factor for innovating and reforming mathematics 

teaching in school (Garet, Porter, Desimone, Birman & Yoon, 2001). However, 

research referring to teachers’ professional development implies that PD must have 
several characteristics for being effective (Desimone, 2009). 
 

For example, Kedzior and Fifield (2004) sum up characteristics of high quality teacher 

PD: If a PD course is content-focused, extended, enables active learning (Garet et al., 

2001), supplies follow-up support or reflecting students’ learning results (Franke et al., 

1998) teachers’ learning will be sustainable (see also Timperley, 2007, 2008). 
 

However, Yoon et al. (2007) criticised the absence of studies that focus on different 

aspects of efficient professional development courses in an experimental or quasi-

experimental setting. For this reason, the actual efficiency of aspects of successful PD like 

reflecting student learning results is not clear (Lipowsky 2010, 2011). For example, the 

research program of cognitively guided instruction (CGI) by Franke, Carpenter, Fennema, 

Ansell & Behrend (1998) is an often cited example of an effective 

 
 
 
 
 

 

157 

mailto:thahn@mathematik.uni-kassel.de
mailto:eichler@mathematik.uni-kassel.de


PD program. However, CGI fits several of the characteristics of effective PD. Since 

this is the case for several PD programs that are found to be effective, the impact of a 
specific characteristic of a PD course on teachers’ knowledge, beliefs or motivation is 

not investigated yet. 
 

Therefore, a research project named PROFIL (http://profil.ph-bw.de/wiki/Hauptseite) 

is started in Germany to prove different aspects of professional development programs. 

The main purpose of this project as a part of PROFIL is to investigate the impact of a 

characteristic of a PD course that we call “reflecting on students’ learning results” (cf. 

also Timperley, 2008) that was indicated to be an effective characteristic of PD 

programs. “Reflecting on students’ learning results” could be a characteristic of PD 

courses that include more than one face-to-face-meeting and a distance phase between 

the face-to-face-meetings: Teachers were introduced in a specific issue of mathematics 

teaching in the PD course and develop tasks or lessons referring to this specific issue. 

In distance phases they integrate the developed tasks or lessons in their teaching and 

collect examples of students’ works, e.g. solution of tasks. The solutions are sent to the 

facilitators of the PD course. Some of the students’ works are integrated in the next PD 

course as topic of reflecting students’ learning results referring to a specific 

mathematical subject. 
 

In our study, we focus on the impact of this reflecting on students’ learning results on 

the teachers’ learning in PD courses, and, especially on the teachers’ pedagogical 

content knowledge, beliefs and motivation. In this paper we report about measures on 

motivation according to pedagogical content knowledge and results of the pre-test. For 

this reason, we analyse the construct of motivation itself, i.e. its value in different 

groups or correlations among different aspects of the construct of motivation. 

 

 

THEORETICAL BACKGROUND 
 

An impact of a PD course could firstly refer to teachers’ professional knowledge. 

According to Shulman (1986) pedagogical content knowledge (PCK) is a central part of 

teachers’ professional knowledge. Further, PCK can be divided in “knowledge of content 

and students” (KCS), “knowledge of content and teaching” (KCT) and “knowledge of 

content and curriculum” (Ball, Thames & Phelps, 2008). We are going to consider 

primarily KCS and KCT in this study. These aspects of teachers’ knowledge include on 

the one hand knowledge about students’ mathematical concepts and typical mistakes or 

misconceptions (KCS). On the other hand, it consists of knowledge referring to most 

appropriate representations of mathematical concepts, decisions about teaching style or 

basic ideas for mathematical concepts (KCT). 
 

Besides knowledge, motivation is a crucial part of teachers’ mathematics related affect 

(Hannula, 2012) and, thus, a crucial part of teachers’ professional lives. For this reason, a 

main aim of our study is to investigate teachers’ motivation. Motivation in general is used 

to explain human behaviour. Accordingly, it determines orientations of goals, persistence 

and intensity of actions (Schiefele & Schaffner, 2015). For this reason, 
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motivation is considered as a psychological process which initiates, maintains, directs 

and evaluates actions to achieve a positive valued state (Dresel & Lämmle, 2011; 

Rheinberg & Vollmeyer, 2012). Following Lewin (1946) motivation emerges out of 

the combination of components of a person and environmental attributes. Based on this 

model, Rheinberg, Vollmeyer and, Burns (2001) conclude that every performance, 
especially learning performance, requires motivation. 
 

For the learning performance of teachers’ in professional development courses, we 

refer to the construct of actual motivation considered by Vollmeyer & Rheinberg 

(1998) that consists of four dimensions: probability of success, apprehension of failure, 

challenge and interest. The first three sub-dimensions belong to achievement 

motivation. A central aspect of this motivation type is the comparison with an 

achievement scale. On that account, an individual compares itself with an individual, 

a social, an objective or an external determined norm (Heckhausen, 1974). Atkinson 

(1957) divided achievement motivation into an approaching and an avoiding 

component which is considered as “motivation to approach success” and “motivation 

to avoid failure”. Both components belong to an expectation component. 
 

By contrast, challenge and interest are considered as a value component. Therefore, 
challenge depends on subjective success probability. According to individual 

performance a person estimates task difficulty. Challenging tasks were considered as 
those that have medium difficulty. The learners are able to handle these, but they have 

to make an effort (Rheinberg & Vollmeyer, 2012). 
 

The fourth sub-dimension “interest” is characterized by the person-object-theory of 

interest (Vollmeyer & Rheinberg, 1998). In this context interest is conceptualized as a 

special relationship between a person and an object (i. e.. physical things, tasks, special 

topics of knowledge or activities) that is characterized by positive emotional states and 

high subjective object values (Dresel & Lämmle, 2011; Krapp, 1999). Based on a 

survey involving 287 teachers, Schiefele, Streblow and Retelsdorf (2013) confirmed 

three dimensions of teacher interest. These belong to all three dimensions of teachers’ 

knowledge (content knowledge, pedagogical content knowledge and general 

pedagogical knowledge). Subject interest is considered as interest referring to content 

knowledge taught in the classroom. Besides, it includes knowledge beyond school 

related content knowledge. By pedagogical content interest the authors understand 

interest to prepare lessons well, to acquire new methods for teaching and to read 

specialized literature. Pedagogical interest belongs to every aspect of pedagogy in 

school situations. 
 

Eccles and Wigfield (2002) suggest a positive relationship between expectation 

(probability of success) and value (interest) component. According to these two aspects, 

we focus in this paper on the following two questions referring to motivation: 

 

 

(1) Which effects show reflecting on students’ learning results in professional 
development courses on teachers’ achievement motivation towards KCS and KCT? 
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(2) Which effects show reflecting on students’ learning results in professional 
development courses on teachers’ interest towards KCS and KCT? 
 

 

METHODS 
 

In this study we want to investigate, whether reflecting on students’ learning results 

(see above) is a feature of sustainable and effective professional development. For this 
reason, we follow a quasi-experimental design whereas “reflection on student learning 

results” is the independent variable and motivation the dependent variable. 
 

Referring firstly to the design of the whole research approach, we use a pre-post-test 

design which includes three groups of teachers. The first one takes part in a professional 

development course with reflecting on students’ learning results. The second also takes 

part in a professional development course without reflecting students’ learning results. 

Instead of reflecting on students’ learning results, these teachers examine the issues of a 

theoretically driven task design. For example, in a current course, the first course got an 

input about problem solving. They developed problem solving tasks referring to given 

criteria. In the distance phase of the PD program, the teachers were asked to give the 

problem solving tasks to their students, to collect students’ solutions, and to send these 

solutions to the facilitators. The second group follow the same program. However, they 

were not asked to collect students’ solution, but to improve the tasks on the basis of the 

teachers’ overall impression of the lessons where the tasks were integrated. The third 

group, i. e. the control group, do not get any intervention. 
 

In this paper we only refer to the first two groups. The first group consists of 21 teachers 

and the second group consist of 15 teachers. The teachers of the two groups stem from 

different towns, but stem from the same region in Germany. Thus, the school system, 

the curriculum and partly also the teachers’ education is identical or at least similar. 

The geographical distance made it difficult for teachers to interact. Both groups showed 

a similar distribution of gender and age. For this reason, although we did - for pragmatic 

reasons - not used a randomization, there was no hint for systematic differences 

between both professional development groups in our quasi-experimental study. For 

the region we chose (the German federal state “Sachsen-Anhalt”) there is further the 

specific characteristic notable that most of the teachers in this region have none or little 

experiences with PD. 
 

In the first meeting in the PD course, the first and second group completed a 

questionnaire involving items concerning motivation referring to KCS and KCT and 

concerning KCS and KCT and also beliefs. The second test will take place at the last 

meeting of the professional development course. There is a six-month time span 
between pre- and post-test which is equal to the overall duration of the PD course. In 

this paper, we restrict the focus on the pre-test and further to results referring to the 

teachers’ motivation. 
 

The instrument for measuring motivation is based on a questionnaire from Rheinberg 
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et al. (2001) which measures actual motivation. To measure motivation according to 

KCS and KCT we adapted the questionnaire. Therefore, we developed seven tasks 

which represent specific educational situations (see figure 1). The dimensions KCS 

consists of three situations, KCT consists of two situations and there are two situations 

for general pedagogy. The first version of the adapted measure was tested to reduce the 

number of situations as well as the number of items for every situation (first version 

includes eighteen items for each situation). Based on the results we deleted a situation 

in each pedagogical content dimension. So the completed questionnaire consists of the 

following situations: Investigating students’ mistakes, creating a diagnose test, solving 

students’ social problems, finding appropriate basic ideas and finding appropriate 

representations for mathematical concepts. 
 

To shorten the number of items in each situation, we excluded one sub-dimension of actual 

motivation. As a result, the completed questionnaire consists of items referring to 

apprehension of failure, challenge and interest. The participants have to rate the items on 

a seven point Likert-scale with categories from “I do not agree” to “I fully agree”. There 

are five items for interest, five items for apprehension of failure and four items for 

challenge. The following figure shows an example of a situation of motivation referring 

to KCS (creating a diagnose test) with items of the sub-dimensions. 
 

Diagnose test   
Introducing the topic of derivation, you are forced to make a diagnose test to measure students’ 

performance on functions. Therefore, you create a diagnose test with eight tasks. For example, one 

task is: 
  
Explain what a function is.  

 

 

Please, rate the following statements:        

I   do not     I fully 

agree      agree  

1. I like it if it is a puzzle to create tasks for a 1 ll 2 3 4 5 6 7  

diagnose test. (interest)        

2. For me it is embarrassing to create tasks for 1 ll 2 3 4 5 6 7  

the  diagnose  test  that  are  not  appropriate.        

(apprehension of failure)        

3. For me, creating tasks for a diagnose test is an 1 ll 2 3 4 5 6 7  

appreciated challenge. (challenge)        
 

Figure 1: Example of a situation measuring motivation according to KCS 
 

The adapted questionnaire of Rheinberg et al. (2001) was tested by the authors in pilot 

studies and results showed good reliabilities of the subscales measured by Cronbach’s 

alpha. In particular, the values of Cronbach’s alpha differed between 0,593 and 0,929 in 

pilot studies. These are in common with the values for reliability calculated by Rheinberg 

et al. (ibid.) Therefore, we used the questionnaire in our present study. 
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RESULTS 
 

At this moment, we are able to report results of the pre-test from both professional 

development courses. So we present the results of motivation referring to KCS and 
KCT and also referring to general pedagogy for these teachers. The following table 

reports means and standard deviations for teachers who are in professional 

development course with reflecting on students’ learning results: 
 

  KCS   KCT  general pedagogy 
          

 I F C I F C I F C 
          

 4,03 2,39 4,69 4,67 2,47 4,89 4,45 2,82 4,99 
          

 1,01 0,80 0,98 1,09 1,19 1,00 1,25 1,37 0,99 
          

 

Table 1: Mean and standard derivation for teachers (PD with reflecting on students’ 

learning results) 
 
The table illustrates that the means of apprehension of failure (F) are similar in each category (KCS, KCT and 
general pedagogy). Further analysis of the differences between the means does not show any significant 
discrepancy. We gained similar results for the sub-dimension “challenge” for every category. In contrast, the means 
of interest referring to KCS and KCT differ significantly. Although there is a significant difference, the interests 
concerning KCT and KCS are highly correlated ( = 0,91; < 0,01). For this reason, we made a deeper analysis of 
correlations. The results of these calculations are shown in the following table 2: 
 

   KCS   KCT  general pedagogy 
 

           
 

  I F C I F C I F C 
 

           
 

 I -         
 

K C
S           

 

F -,34 -        
 

         

           
 

 C ,66** -,35 -       
 

           
 

 I ,91** -,22 ,66** -      
 

K C
T           

 

F -,35 ,61** -,48 -,20 -     
 

      

           
 

 C ,86** -,15 ,83** ,86** -,23 -    
 

           
 

G e n e r a l p e d a g o g y 

I ,63** -,19 ,47* ,53* -,35 ,59* -   
 

          
 

C ,38 -,19 ,51* ,25 -,02 ,45 ,79** -,29 -  

 F -,49* ,62** -,41 -,33 ,79** -,23 -,45* -  
 

           
 

           
  

 
Table 2: correlations between all sub-dimensions with are significant * <  , or ** <  , 
 

The results show that the correlation between general pedagogical interest and KCS is 
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0,628 (KCS) and the correlation between general pedagogy and KCT is 0,529. Although the correlations are 
lower, they are also significant ( < 0,01 for KCS respectively < 0,05 for KCT). Referring KCS, the mean of 
interest was significantly lower than the mean of challenge, and significantly higher than the mean of 
apprehension of failure. Analysis of the means in the other sub-dimensions show similar results. One exception 
is the relation between the means of interest and challenge in the sub-dimension KCT. In contrast, interest 
correlates significantly with each dimension of challenge ( < 0,01) according to both dimension of PCK 
motivation. 
 
With regards to achievement related motivation referring to KCS and KCT there are also significant correlation between them. In special, the 
correlation in the subscale challenge between KCS and KCT is 0,833 which is significant at < 0,01. In addition, the correlation in the subscale 
apprehension of failure between KCS and KCT is 0,611 which is also significant at < 0,01. 
 

The results of the other teachers taking part in the professional development course 
without reflecting on students’ learning results are shown in the following table 2: 
 

  KCS   KCT  general pedagogy 
          

 I F C I F C I F C 
          

 3,81 2,57 4,88 4,71 2,51 4,95 4,77 3,42 5,08 
          

 1,27 0,99 1,13 0,50 1,05 1,00 0,90 1,18 1,04 
          

 

Table 2: Mean and standard derivation for teachers (PD without reflecting on students’ 

learning results; R = representation and BI = basic ideas) 
 

Teachers’ ratings from the second professional development course show similar 
means and standard deviations compared to the first group. Nevertheless, the main 

results of the second group are in common with those of the first group.  

 

 

DISCUSSION 
 

The main purpose of this paper is to determine teachers’ motivation referring to KCS and 

KCT at the beginning of the professional development courses. This aim needs an analysis 

of the results referring different aspects of motivation and also correlations of different 

motivational aspects. Our first results show that values of motivation are similar in both 

groups, but there are some differences between them. Overall, the means of challenge and 

apprehension of failure demonstrate a positive perspective of teachers’ achievement 

motivation. Teachers of both groups tend to be motivated for approaching success 

(Atkinson, 1957). Especially, the participants perceive the situations for KCS and KCT as 

challenges. According to interest, the means are on medium level for KCS and at a higher 

level for KCT. This is consistent in both groups. It could be explained by their existing 

knowledge structure and low PD experience. 
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Teachers’ qualification based on seminars at the university and practical seminars. The 

main purpose of these were to prepare teachers for teaching mathematics. Therefore, they 

concentrate on representations, basic ideas, methods to teach, etc. For this reason, teachers 

interest could be high in situations that are referring to these topics. 
 

The results have shown correlations between aspects of achievement motivation and 

interest which are significant in most cases. This is in common with the assumption of 

Eccles and Wigfield (2002), because they suggest a positive relationship between 

interest and probability of success. Our results support this assumption in both groups 

for teachers. Although there is a distinction on a theoretical level, our data involving 

high and significant correlations did not show a distinction. Especially, the correlation 

between interest of KCS and interest of KCT suggests that these sub-dimension of 

pedagogical content interest could be only one dimension. The results of apprehension 

of failure and challenge support this assumption, because there are also high 

correlations which are also significant. These results of the pre-test have to be 

investigated to verify if the assumption is the correct. 
 

 

FUTURE RESEARCH 
 

Based on the data of the pre-test, we want to investigate the differences of teachers’ 

motivation after taking part in the PD program. We assume that motivation of teachers 

who take part in PD with reflecting students’ learning results will increase in the sub-

dimension KCS. Especially, we expect a growth in interest referring to the appropriate 

situations, because in the course teachers investigate students’ learning results. 

Therefore, they are engaged in identifying students’ concepts of mathematical ideas 

and constructs, which is a part of KCS. In contrast, we assume that motivation of 

teachers who do not reflect on student learning results will increase in the sub-

dimension KCT. In their PD course they focus on instructional ideas. So it is possible 

to expect that their pedagogical content knowledge about these ideas increases. In 

consequence, the motivation referring to this sort of knowledge should increase, too. 

Apart from both dimensions of pedagogical content knowledge teachers do not engage 

in general pedagogical situations. Therefore, they do not acquire new knowledge and 

experience according to pedagogy. As a result, their motivation referring to general 

pedagogy should not increase. 
 

We hypothesize, that a change in motivation could in consequence result in a change 

of teachers’ knowledge and beliefs, because the teachers will initiate activities around 

the knowledge of students, if they have higher interest (Rheinberg & Vollmeyer, 2012; 

Schiefele & Schaffner, 2015). This assumption is also in common with the results of 

Rheinberg, Vollmeyer and Burns (2001). 
 

The results indicate that motivation to acquire knowledge of content and students and 

knowledge of content and teaching coincide in one dimension. Therefore, there may 
be only a dimension “motivation referring to pedagogical content knowledge”. These 

assumption is in common with the differentiation of Schiefele et al. (2013). Further 
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investigations are necessary to prove the structure of motivation scale. 
 

The study also includes measures of beliefs about teaching and learning mathematics as 

well as measure of KCS and KCT. So further analysis should provide insights in the 

network between the three categories of teachers’ professional competence. Especially, 

the comparison of the results of pre- and post-test should ensure whether reflecting 

students’ learning results is a feature of effective professional development. The analysis 

will show if the student-centred perspective enhances teachers learning (cf. Franke et al., 

1998). Besides, there will be qualitative interviews with teachers of the course within 

reflecting students’ learning results is a feature. Based on this data we want to provide 

insights in teachers’ feelings and cognition referring to teaching out of a student-centred 

perspective and their motivation to analyse students’ learning results. 
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This paper examines the design of tasks for developing and assessing mathematical 

knowledge for teaching, in particular the role of pedagogical context. It argues that 

pedagogical context plays a vital role in shaping the reasoning involved in generating 

correct responses and in the articulation of mathematical knowledge for teaching more 

generally. It concludes with suggestions for more fully specifying the design of tasks to 

developed and assess mathematical knowledge for teaching. 
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Compelling examples of mathematical knowledge for teaching (MKT) (Ball, 

Lubienski, & Mewborn, 2001; Ma, 1999) and evidence associating it with improved 

mathematics teaching and learning (Baumert et al., 2010; Hill, Rowan, & Ball, 2005; 

Hill, Umland, Litke, & Kapitula, 2012) have sparked interest in making it central in the 

mathematical education of teachers. Despite this interest, programs still focus mostly 

on disciplinary knowledge rather than MKT. What is needed for a more solid shift in 

teacher education and professional development are robust tasks for developing and 

assessing MKT. This observation leads to a basic challenge: although an initial set of 

MKT tasks have supported the development of some measures, large numbers of 

compelling new tasks have not been readily forthcoming. 
 

Several challenges hamper progress. To better understand these challenges, we have 

found it useful to reflect on the design of effective MKT assessment tasks used in large-

scale evaluation projects. According to Hill, Sleep, Lewis, and Ball (2007), a key 

innovation in assessment studies that yielded demonstrable effects was the inclusion of 

pedagogical scenarios that frame mathematical problems situated in practice. From an 

examination of items on the National Teacher Examination (NTE) used in the United 

States in the 1980s, which described pedagogical context yet failed to measure 

consequential knowledge, they point out two ways in which the inclusion of 

pedagogical context can go awry. First, for many items, they found that the pedagogical 

context was merely “window dressing” (p. 119) — because the item would measure 

essentially the same knowledge if the pedagogical context were stripped away. Second, 

at another extreme, they discussed items that lacked a defensible solution because 

ambiguity in the pedagogical context allowed more than one professionally defensible 

answer. 
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To understand the design and functioning of pedagogical context in MKT tasks, we 

conducted talk-aloud interviews with research mathematicians and mathematically 

knowledgeable and experienced teachers.[1] Based on analysis and our continued 

efforts to support people in sriting MKT tasks, this paper extends the observations of 

Hill et al. (2007) to explain how pedagogical context matters in MKT tasks and argue 

that it plays a fundamental role in articulating MKT. We begin by describing our 

interview study and what we learned about how pedagogical context shapes the 

mathematical work of responding to MKT tasks and the MKT assessed. Finally, we 

argue that our analysis, together with our experiences in supporting others in writing 

MKT tasks, suggests that pedagogical context is essential to articulation of MKT, both 

in MKT tasks and more generally in the identification of MKT. 
 

LEARNING FROM PERFORMANCE AND MIS-PERFORMANCE 
 

In previous work validating MKT assessment items, our group found that research 

mathematicians, often from their missteps, revealed much that otherwise might be 

presumed trivial or remain tacit in our understanding of the work involved in 

responding to MKT items. Additionally, highly experienced and knowledgeable 

teachers often expressed aspects of the work that otherwise might have remained 

unrecognized and unnoted. In this study, we interviewed about 60 experts with 26 

items from the Learning Mathematics for Teaching (LMT) (Hill et al., 2005), 

Measuring Effective Teaching (MET) (Phelps Weren, Croft, & Gitomer, 2014), and 

Diagnostic Teacher Assessment in Mathematics and Science (DTAMS) (Saderholm, 

Ronau, Brown, & Collins, 2010) instruments.[3] We analyzed both the text of items 

and interview data. In these analyses, we engaged in a logical analysis and professional 

vetting of the work of teaching (Hoover, Mosvold, Ball, & Lai, 2016).   

For a lesson on comparing fractions, Mr. Howard wants to choose a model that will 

make it easy for his students to compare a wide range of fractions, in problems such as:  

Which is larger, 2/3 or 3/5?  

Which is larger, 1/6 or 3/16?  

Which is larger, 2/7 or 3/10?  

Of the following models, which would best serve his purpose?  

a) Drawings of round pizzas 
b) Drawings of rectangles 
c) Pattern blocks 
d) Money 
e) These models would work equally well to compare a wide range of fractions 

 

Figure 1: An example choosing representations item. 
 

In an initial stage of the project, 46 interviewees read aloud and talked through the 

solution of 11 LMT items. (See Figure 1 for an example item.) The content of the items 

was from upper elementary and middle school topics in areas of whole number 

operation, rational number, and proportional reasoning. Twenty-seven interviewees 

were research mathematicians selected from the participant list of the annual Joint 
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Mathematics Meeting of the Mathematical Association of America and the American 

Mathematical Society. Many were eminent mathematicians from highly ranked 

research mathematics departments. Nineteen interviewees were expert teachers 

identified by nationally recognized leaders of professional development as most likely 

(within the United States) to know MKT. All had at least ten years of teaching 

experience. Many were themselves in leadership positions, but all had taught or been 

actively engaged with students and teachers in schools within the last five years.  
 

After coding the pedagogical context of the items, we recorded how each element of 

the pedagogical context might be used in relation to decision points produced from 

analysis of the interviews (Figure 2). (An “X” indicates that the element of pedagogical 

context plays a role in making the mathematical observation in such a way that deleting 

it would remove the grounds for making the observation. The “X” is bolded for an 

element that is primary for the observation.) 
  

 Mathematical observations contributing to the solution 

1. Patterns blocks and money work well only for 

restricted sets of fractions (halves, thirds, fourths and 

halves, fifths, tenths respectively), while circles and 

rectangles are more flexible.  
2. Drawings introduce construction issues (imprecision, 

more room for error, …), circles even more problematic 

than rectangles (especially with denominators that are 

odd or multiples of odd numbers).  
3. Rectangles are readily aligned for easy comparison (or 

sub-divided vertically for one fraction and horizontally 

for the other, yielding comparable pieces).  
4. Other fractions may present difficulty or require special 

consideration (e.g., large or prime denominators, pairs of 

fractions that are not evaluated by other means, …). 

  

 Purpose  Problems  Models  
 
 

X -- X 
 
 
 

 

X -- X 

 
 

 

X -- X 

 
 
 

X X X 

 

Figure 2: Coding of the use of elements of pedagogical context for decision points 

identified from the narrative of competent performance for the example item. 
 

We then replicated this process with 4-6 interviewees for each item for 10 items from 

the MET and 6 items from the DTAMS instruments. Analyses of interviews formed 

the basis for writing narratives for the role of pedagogical context in shaping the MKT 

assessed by each item. We found that items across all instruments had a teaching 

purpose/task and provided some form of instructional materials, records, and examples 

(such as example problems, student work, manipulatives or instructional 

representations, student explanations, and classroom dialogue) and that these elements 

of pedagogical context played a prominent role in supporting the mathematical 

observations that contributed to answering items correctly. We then analyzed the work 

across items to produce generalized narratives for items with the same task of teaching. 

(See Figure 3 for two examples.) 

 
 
 
 
 
 

 

169 



SHAPING THE MATHEMATICAL KNOWLEDGE MEASURED 
 

We found that, in items designed to measure MKT, pedagogical context is needed in 

reasoning toward correct answers. It is used in making mathematical observations 

which, taken as a whole and vetted professionally, provide evidence for defensible 

answers. Together, the pedagogical context and supported observations provide a 

cogent characterization of the MKT reasoning involved in responding to the item. 
 

More than this, the teaching purpose, a crucial element of the pedagogical context, 

often provides important orientation and sense of direction for the mathematical work 

involved. For instance, the task of choosing a model to compare fractions leads one to 

noticing which fractions are and are not easy to represent with different materials and 

what is involved in using the model for comparison. Instead of being asked simply to 

decide which of two fractions is larger, this MKT item asks for comparing the 

complexity of using different models. To persist with this task and to have a sense of 

how to judge the complexity of using a model, what it means to compare, and how to 

know when sufficient distinctions have been made, one needs to know the purpose — 

in this case, choosing a model that makes it easy for students to compare a range of 

different kinds of fractions. The example comparison problems provided in the item 

give a sense of the range of comparisons to consider. The set of models constrains the 

scope of the work and frames the set of issues to be considered. 
 

Looking across items with similar tasks of teaching provides further generalization. 

Below is the generalized description for the task of choosing representations and for a 

second task of choosing examples (Figure 3). Notice that for choosing representations 

the first step involves sizing up a range of issues that might be pertinent, which then 

serves as a guide for knowing what to pay attention to when experimenting with the 

use of different representations. 
  

Choosing representations 
 

1. Recognizing the features and relationships prominent in the design of the objects being 

considered. 

2. Considering how to use each representation for the purposes.  
3. Considering and running through sensible test cases. 

 

1. Tracking on the instructional purpose for the exercise (e.g., introduce a procedure, 

assess student understanding, provoke error, highlight a special case, encourage 

multiple approaches, etc.). 

2. Considering the features of or what happens with particular numbers or examples by 

working through the given problems, playing with different ways that students might 

solve them, and determining what is different mathematically about the examples and 

how these differences might impact students’ thinking, their approaches to solving the 

problems, or the mathematical issues that might arise.  
3. Identifying what feature of the example addresses that instructional purpose and 

whether aspects of the examples obscure or get in the way of the instructional purpose. 
 

Figure 3: Narrative of MKT reasoning involved for two example tasks of teaching 
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Our analysis across items led to three observations about the role of pedagogical 

context in shaping knowledge measured by MKT items, which we will use to support 

our argument for the role of pedagogical context in articulating MKT as a domain. Our 

first observation is that pedagogical context shifts tasks from being disciplinary 

mathematics tasks to being pedagogical mathematics tasks. Figure 4 summarizes key 

characteristics of disciplinary mathematics tasks as compared to pedagogical 

mathematical tasks. In the example task, the pedagogical context shifted the nature of 

the task from that of comparing fractions, which is the students’ mathematical task in 

the context, to a pedagogical mathematics task of comparing models, where comparing 

fractions is a subordinate task carried out in the service of comparing models. 

Comparing models is not a pedagogical task just because it may have a pedagogical 

aim; it is a pedagogical task because the chosen model should work on a set of 

comparisons such as those given and should be easy to use. The implicated pedagogical 

mathematical work is figuring out how to use the given mathematical representations 

to carry out the example mathematical comparisons and deciding which numbers might 

pose thornier mathematical challenges. In the same way that two numbers shape the 

work of comparing fractions, the pedagogical context of a collection of fractions to be 

compared shapes the pedagogical mathematics task of choosing representations. A 

different set of fractions to be compared might have changed the work of which 

representation to choose.  
 

Disciplinary mathematics tasks 
 Pedagogical mathematics tasks 

 

 (or mathematical tasks of teaching)  

  
 

Compare fractions 
 Choose representations 

 

 Analyze errors  

Compute 
 

 

 
Appraise nonstandard work  

Solve a problem 
 

 

 
Solve in different ways  

Justify a solution 
 

 

 Follow others’ thinking  

Identify structure 
 

 

 Size up incomplete reasoning  

  
 

 

Figure 4: Contrasting disciplinary tasks and pedagogical mathematics tasks 
 

Second, pedagogical context situates pedagogical mathematics tasks in contexts that 

require doing mathematics while holding onto and coordinating with pedagogical 

purpose. For instance, a person engaged with the pedagogical mathematics task of 

choose representations might specialize the purpose to choose a model that will be 

easy for students to use. Or, appraise nonstandard work might specialize to which 

potential interpretation of thinking best fits with nonstandard student work. The 

pedagogical purpose provides the basis for doing the work of the item; this basis is not 

mathematically determined. Exactly which fractions need to be compared? Which 

approaches to comparison might students find easy or hard? 
 

Instead of changing the problem from a mathematics problem requiring mathematical 

knowledge to a pedagogical problem requiring pedagogical knowledge, the 

pedagogical purpose shifts the nature of the cognitive demand associated with the 

mathematical problem. It introduces potentially competing agendas and a need to 
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track on purpose while engaging in mathematical work. In our analysis, this was 

particularly evident in the contrast between mathematician and teacher interviews, 

where mathematicians often lost track of pedagogical purpose in ways that led them 

astray, while teachers facilely tracked on and used pedagogical purpose to navigate 

decisions. Mathematicians would worry about not having determinant information 

when experienced teachers would have a sense of what is sufficient for answering 

underlying mathematical questions for the purpose at hand, even if it is not complete 

information. In addition, mathematicians often struggled to hold on to the question 

being asked, drifting off to other questions, often back into doing the mathematics 

problem given to students or exploring mathematical ideas seen as related to those 

problems but not related to the MKT question being asked. Our point here is that 

frequent missteps, despite displaying sophisticated disciplinary mathematical 

knowledge, made more apparent the distinctive character of the mathematical work 

required when carrying out that work with regard for pedagogical context. 
 

Third, the pedagogical context establishes a basis for an orientation and character for 

mathematical reasoning distinctive to teaching as professional work. We have 

mentioned the way in which the pedagogical purpose of choosing a model to compare 

fractions provides an orientation for the mathematical work, giving it purpose and a 

sense of direction. Consistent with the two examples characterized in Figure 3, many 

of the items required doing mathematical work while heeding pedagogical purpose. It 

is as if, more than pedagogical knowledge or skill, pedagogical heed is required in 

responding to MKT items. 
 

ARTICULATING CONTENT KNOWLEDGE FOR TEACHING 
 

Our observations demonstrate ways in which the pedagogical context provided in well-

designed MKT items shapes the MKT being assessed. In this section, we argue that 

the formulation of the pedagogical context is what articulates content knowledge for 

teaching – it gives expression to MKT. 
 

The word articulate comes from the notion of dividing into distinct parts, which taken 

together convey a more complex sense of the whole. It can mean to pronounce clearly, 

but also to joint something — to formulate in an article or articles or to express or 

convey (a thought) by means of language. It is this sense that pedagogical context 

provides a means of expressing or conveying MKT that we mean here.  
 

The analysis in the previous section demonstrated the role of pedagogical context in 

shifting the focus from disciplinary tasks to pedagogical mathematics tasks, associating 

tasks with pedagogical purpose, and establishing a particular orientation and character 

for mathematical reasoning distinctive to teaching. One way to interpret this is that 

without the pedagogical context these items would be limited to the domain of other 

mathematical tasks that typify disciplinary work (e.g., traits in Figure  

4) and would fail to assess the distinctive knowledge and skill known to be associated 

with increased learning. In other words, the doing of mathematical work (such as 

comparing fractions) while keeping in mind a purpose (of choosing a representational 
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model) and attending to what is involved (in using a model, as one uses it or talks about 

it) is common in teaching, but uncommon in the discipline of mathematics. For 

instance, a disciplinary impulse can lead one to focus on the mathematics problem 

given to students or to explore variations or generalizations of a mathematical problem 

(a distraction that played out in many of the interviews with mathematicians), losing 

track of the need to interpret the mathematical validity of a student’s confusing 

approach or generate a mathematical problem with a solution satisfying specific 

criteria. These latter tasks typify MKT, and it is pedagogical context that allows for 

their expression and that thus makes visible the articulation of the task of teaching, 

such as shown in Figure 3. 
 

Our analysis is limited to sampling from items that have been produced to date, with a 

set of features of pedagogical context that is likely narrow. For instance, student 

background is not a prominent feature and plays a minor role in the items analysed. 

This is likely a result of narrowness of existing items and likely to change as scholars 

continue to expand work in this arena. For instance, Goffney (2010) has pointed out 

the mathematical demands of equitable teaching and Wilson (2016) has explored the 

development of assessment items to measure such knowledge in relation to dual 

language learners. Despite these limitations, we propose that the role of pedagogical 

context is important in the development of tasks to support the development of 

equitable teaching and that lessons from the above analysis can provide valuable 

guidance. 
 

We close by offering a suggestion about how MKT might be articulated in the work of 

specifying the design of MKT tasks, in line with an approach developed by Illustrative 

Mathematics. Their approach requires not only writing a problem, but providing a 

commentary (and sample solutions). Consider the item in Figure 5. 
  

Ms. Seidel is introducing the distributive property. To motivate her students, she wants to give them 

an example that will focus their attention on how using the distributive property can simplify 

computation. In which of the following examples will the use of the distributive property most 

simplify the computation?  
a) 12 x 29 + 12 x 38 = ___  
b) 17 x 37 + 17 x 63 = ___  
c) 13 x 13 + 15 x 15 = ___  
d) 16 x 24 + 16 x 24 = ___ 

 

Figure 5: Choosing examples item 
 

Based on a narrative for doing the task (Figure 6), a commentary might be written 

(Figure 7), where the commentary characterizes the MKT that the task is intended to 

develop or assess, intended use or the task, and the pedagogical context provided in 

the scenario. The production and review of such a commentary provide powerful tools 

for collaborative efforts to develop MKT tasks, where explicit statements about 

rationale for pedagogical context significantly enhance development, review, and 

professional sanctioning. 
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1. Tracking on the fact that the instructional purpose for the example is to focus 

students’ attention on how using the distributive property can simplify computation. 

2. Considering different ways of evaluating the expressions and of using the distributive 

property and what these imply about what it means to simplify the computation, 

including recognizing the following: the most reasonable way of using the distributive 

property in (a) yields 12(29 + 38) = (12)(67), which reduces the computation from 

two to one application of multiplication; the most reasonable way of using the 

distributive property in (b) yields 17(37 + 63) = (17)(100), which reduces the 

computation from two non-trivial applications of multiplication to one simple one; it 

is not clear how to use the distributive property in (c); and although there are 

numerous quantities that could be factored out of the two terms (to similar effect as in 

(a)), none significantly simplifies the complexity of the multiplication to be done (use 

of doubling can be made with or without the use of the distributive property).  
3. Recognizing that in problems such as these the distributive property does not avoid 

multiplication, but does allow for regrouping quantities into powers of 10, which 

greatly simplifies multiplication in a base ten system, and that (b) is the only one that 

affords this opportunity.   

Figure 6: Narrative for the MKT reasoning involved in choosing examples item.  
 

Examples shape instructional opportunities, however crafting and choosing good examples requires 

mathematical dexterity and skill in doing mathematical problems while tracking on instructional 

goals. This task asks for an example in which the distributive property can be used to simplify 

computation significantly. The purpose of this task is to see whether teachers flexibly consider 

different ways of evaluating the expressions using the distributive property and, simultaneously, 

what these imply for efficiency of the computation. It requires recognizing that the distributive 

property does not avoid multiplication, but does allow for regrouping quantities into powers of 10, 

which greatly simplifies multiplication in a base ten system. The task is currently written as a 

multiple-choice item for assessment. But it also can be used for launching a discussion about the 

nature of examples for which the distributive property is useful. 
 

The mathematical task of teaching is choosing examples, but the teaching scenario needs to create a 

realistic need for choosing an example that requires the distributive property. In this scenario, the 

pedagogical purpose is to motivate learning of the distributive property. In particular, the scenario 

proposes motivating the distributive property by giving an example that will focus students’ 

attention on how using the distributive property can simplify computation. This means that the 

example needs to provide a sharp contrast in the extent to which the computation is simplified by 

using the property relative to not using it. The examples given in the options in this task are selected 

to create such a contrast, where only option (b) significantly reduces the complexity of the 

multiplication. The instructional setting of introducing the distributive property contributes to a 

sense that the scenario is realistic. 
 

Figure 7: Commentary for choosing examples item. 
 

Through this process, task developers can encode implicit hypotheses about what 

matters about the pedagogical context when teachers face particular content problems 
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of practice. Teachers who are able to use the pedagogical context in tasks as a resource 

for responding to tasks demonstrate knowledge in a way that simulates teacher 

knowledge use in teaching; their reasoning with the pedagogical context can be used 

to scrutinize and make visible the implicit hypotheses, iterate item development, and 

refine articulations of mathematical tasks of teaching and MKT assessed. 
 

Bringing together content and pedagogy has been a persistent theme in conversations 

about the content-knowledge education of teachers over the last 50 years. However, 

taking stock of scholarship on content knowledge for teaching, Graeber and Tirosh 

(2008) remind us that, while the concepts of pedagogical content knowledge and 

content knowledge for teaching are useful, the union of content and pedagogy remains 

elusive. Beyond introducing complexity and challenge for writing MKT tasks, 

pedagogical information plays a non-trivial function in tasks designed to develop and 

assess professionally situated mathematical knowledge by articulating constrained 

instances of the relationship between content and teaching that is at the heart of the 

notion of MKT. Ball (2000) characterizes the “intertwining of content and pedagogy” 

as a continuation of Dewey’s (1964/1904) effort to find the “proper relationship” 

between theory and practice. Our growing understanding of the role of pedagogical 

context in the design of and reasoning within MKT tasks is beginning to give us a better 

understanding of the “proper relationship” between content and pedagogy in 

characterizations of content knowledge for teaching. 
 

NOTES 

 

1. This work is based on research supported by the National Science Foundation under grants DRL-1008317, REC-
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from which this paper is drawn. We also want to thank members of the Mathematics Teaching and Learning to Teach 

and Learning Mathematics for Teaching projects who helped with data collection and analysis: Deborah Ball, Hyman 

Bass, Arne Jakobsen, Kahye Kim, Yeon Kim, Minsung Kwon, Lindsey Mann, and Rohen Shah. The opinions reported 

here are the authors and do not necessarily reflect the views of the National Science Foundation or our colleagues.  
 
2. We were denied access to COACTIV items and release of TEDS-M items occurred after we completed interviewing. 
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In this study we explore the potential relationships between the specialised knowledge 

of two university lecturers in linear algebra and their beliefs about mathematics 

teaching and learning. We scrutinise the lecturers’ knowledge with the aid of the model 

Mathematics Teacher’s Specialised Knowledge (MTSK), from which the subdomains 

Knowledge of topics (KoT), Knowledge of mathematics teaching (KMT) and 

Knowledge of features of learning mathematics (KFLM) enable us to establish 

associations with their beliefs. We found that the beliefs manifested by these two 

lecturers about methodology and subject significance are related to their KoT in terms 

of procedures and applications, KMT in terms of examples for teaching, and also to 

KFLM in terms of student errors. 
 

Keywords: specialised knowledge, beliefs, university lecturer, linear 

algebra. INTRODUCTION 

 

Amongst studies into mathematics education, teachers’ knowledge has received special 

attention. There has been found to be a connection between this knowledge and the 

teacher’s beliefs, and both contribute to the quality of teaching. There have been few 

studies directed towards the relationship between university lecturers’ knowledge and 

their beliefs about teaching and learning mathematics. We presented the findings of 

one study, focusing on the specialised knowledge deployed by a lecturer when teaching 

the topic of matrices and determinants, in a paper at the CERME meeting in the Czech 

Republic (Vasco, Climent, Escudero-Ávila, & Flores-Medrano, 2015). The paper 

presented here develops this line of research, examining possible relationships between 

the specialised knowledge displayed by two linear algebra lecturers, and their beliefs 

about teaching and learning mathematics. 
 

MATHEMATIC TEACHERS’ SPECIALISED KNOWLEDGE 
 

In the last few decades, teachers’ knowledge has attracted a great deal of interest from 

researchers, and various frameworks have been developed for the purpose. In our case, 

we have made use of the model Mathematics Teachers’ Specialised Knowledge 

(MTSK) (Carrillo, Climent, Contreras, & Muñoz-Catalán, 2013). This model was 

developed in response to the difficulties experienced in applying the model 

Mathematics Knowledge for Teaching (MKT) (Ball, Thames, & Phelps, 2008), 

specifically with respect to the characterisation and demarcation of the different 

subdomains into which it is constituted, and aims instead to represent the specialised  
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nature of teachers’ knowledge as an integral and inseparable element of that 

knowledge. 
 

The MTSK model comprises two knowledge domains: Mathematical Knowledge 

(MK) and Pedagogical Content Knowledge (PCK). In addition to these two domains, 

and in a relation of mutual permeability with them, are teachers’ beliefs about 

mathematics and how the subject is taught and learnt. These operate on teachers’ 

classroom practice. MK is itself constituted by the subdomains Knowledge of topics 

(KoT), Knowledge of the structure of mathematics (KSM) and Knowledge of practices 

in mathematics (KPM). For its part, PCK includes the subdomains Knowledge of 

mathematics teaching (KMT), Knowledge of features of learning mathematics 

(KFLM) and Knowledge of mathematics learning standards (KMLS). For details of 

the subdomains and categories making up the framework, readers are directed to 

previous CERME presentations (Carrillo et al., 2013; Vasco et al., 2015) and related 

papers (Vasco, Climent, Escudero-Ávila, Montes, & Ribeiro, 2016). In this paper we 

limit ourselves to a brief overview of the subdomains KoT, KMT and KFLM, as it is 

these which allowed us to establish the relationships between the teachers’ specialised 

knowledge and their beliefs about teaching and learning mathematics. 
 

KoT is defined as a thorough, grounded knowledge of mathematical content. It 

comprises the categories of phenomenology and applications (knowledge of 

phenomena associated with the meanings of a mathematical topic and ways a topic can 

be applied), properties and fundamentals (knowledge of properties which fulfil a 

mathematical objective or are necessary to carry out a procedure), representations 

(knowledge of the different ways a topic can be represented), definitions (knowledge 

of descriptions and characterisations of a concept, including related examples, along 

the lines of the constructs concept definition and concept image developed by Tall & 

Vinner, 1981), and procedures (knowledge about how, under what conditions and why 

something is done, and the key features which result in doing it). 
 

KMT, as the name suggests, concerns knowledge about the teaching of mathematics 

and includes the following categories: theories of teaching (that is, specific to 

mathematics education), material and virtual resources (books, whiteboards, software, 

and so on as tools for teaching mathematics), and activities, tasks and examples for 

teaching (knowledge of examples for teaching a mathematical idea and their potency 

for the topic in question). It is important to distinguish between teachers’ knowledge 

of examples relating to definitions, which, as noted above, pertain to KoT, and those 

relating to examples for teaching, which are the provenance of KMT, and allow 

teachers to highlight features specific to particular topics. In this respect, Bills et al., 

(2006) note that the deployment of examples in class is complex, involving careful 

choice in directing learners’ attention adequately so as to reach the right 

generalisations. 
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The authors classify the different types of examples into generic examples (examples 

of concepts and illustrations of procedures), counterexamples (in support of an 

opposing hypothesis or proposition relating to a concept, procedure or step in a 

demonstration), and non-examples (of use in demarking the boundaries of a concept or 

procedure, or in demonstrating the conditions of a theorem). In considering how to 

maximise the effectiveness of the use of examples in teaching mathematical concepts, 

Blanco, Figueiredo, Contreras, & Mellado (2011) focus on the attributes transparency 

and variation. Transparency refers to degree to which the key aspects of the example 

are evident to the learner, such that it becomes a point of reference. In the case of 

variation Watson & Mason (2005) consider dimensions of possible variation, along 

which certain aspects or details might change while remaining within the limits of 

being a recognizable example of the concept in question (different ways of approaching 

the same concept). 
 

Finally, KFLM is knowledge about how mathematics is learned. The chief focus is not 

on the student, but rather on mathematical content as the object of learning. The 

categories included here are: learning styles (knowledge of theories of the cognitive 

development of the student), areas of strengths and weaknesses associated with 

learning (that is, of the student in regard to the content), the students’ forms of 

interacting with the content (knowledge of student strategies), and the student’s 

motivation with regard to mathematics (knowledge of students’ expectations about the 

content). 
 

BELIEFS ABOUT TEACHING AND LEARNING MATHEMATICS 
 

Teachers’ knowledge and beliefs interact (Charalambous, 2015), and these interactions 

can lead to a better understanding of both aspects. In this paper we present possible 

connections between the subdomains of the specialised knowledge of two linear algebra 

teachers and their beliefs about the mathematics teaching and learning. 
 

We are aware that different positions can be taken in relation to the terms “beliefs” and 

“conceptions”. As the individual’s set of incontrovertible personal truths, beliefs are an 

important means of taking account of the affective aspects of the teacher’s personality. 

Conceptions, on the other hand, can be considered as a conceptual substrate, 

influencing all aspects of a cognitive nature and playing a key role in determining the 

teacher’s thinking and actions (Ponte, 1994). In this study we will use the term “beliefs” 

to refer indistinguishably to conceptions and beliefs (as discussed above), although 

aware that our focus is chiefly cognitive. 
 

In order to study the lecturers’ mathematics teaching and learning beliefs (MTLB), we 

drew on the classifications in Carrillo & Contreras (1994) for tendencies (traditional, 

technological, spontaneous and investigative) and categories (methodology, subject 

significance, learning conception, student’s role, teacher’s role). Each category has 

corresponding indicators by which teachers’ beliefs can be inferred. The aim is to arrive 

at an interpretative description of the teacher’s beliefs, rather than assign the 
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teacher to any specific tendency. For example, in the category methodology, the 

following indicators describe teachers’ orientation in terms of classroom practice: 

‘repetition of [N type] exercises characterise classroom practice’ (traditional 

tendency); ‘the exercises aim to reproduce logical thought processes and, in 

consonance with this, error analysis by the students (technological tendency). In the 

case in hand, both descriptors help us to describe the conceptions of Carlos and Jordy 

regarding their classroom practice, with a view to identifying associations with their 

specialised knowledge, without delving into their corresponding teaching tendencies. 
 

METHODOLOGY 
 

This is a qualitative study, taking a case-study design (Yin, 2003). It focuses on two 

lecturers teaching linear algebra in the first year of a degree course at the University, 

and who, for the purposes of this study, will be referred to as Jordy and Carlos. We 

attempt to provide an answer to the research question, ‘What interaction is there 

between the specialized knowledge of two linear algebra lecturers and their beliefs 

about mathematics teaching and learning?’ In this paper, due to limitations of space, 

we will focus principally on the knowledge which is manifested in the use of examples. 

The two lecturers were chosen for their willingness to take part in the study and our 

intrinsic interest in the teaching cohort to which they belonged, with a view to 

subsequent participation. Jordy is a graduate of the Educational Sciences faculty, 

specializing in mathematics, with 22 years’ experience in teaching mathematics at 

secondary level and 9 years at the university. Carlos is a geologist with 17 years’ 

experience of teaching mathematics in the university. 
 

Data collection was carried out via class observations (using video recordings) and 

semi-structured interviews. The topic of matrices, determinants and systems of linear 

equation was chosen to be observed as it was first in the study programme for the 

course in linear algebra, and essential for tackling subsequent topics. The analysis of 

these data followed the procedures of content analysis (Bardin, 1996), sifting through 

the teachers’ actions and statements for evidence of knowledge pertaining to the 

appropriate MTSK subdomains, and beliefs about mathematics teaching and learning, 

using throughout the categories outlined above – from the MTSK model in the case of 

knowledge, and the analytical tools in Carrillo & Contreras (1994) in the case of 

beliefs. 
 

RESULTS  

Tables 1, 2 and 3 summarise the relationships between the teachers’ knowledge and 

their beliefs. With regards to methodology, both lecturers pursued procedural 

objectives with their classes, demonstrating an interest in their students gaining mastery 

of the operations and algorithms associated with the mathematical content in question. 

Jordy and Carlos ascribed an instrumental end to teaching matrices (subject 

significance), of interest because they provide solutions to systems of linear equations 

or to find the value of a variable. This is made clear in their interviews: 
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Jordy: 
 

[In answer to what he wanted his students to learn about matrices] To be able 

to do the required operations, pose problems involving matrices and know 

how to solve them. Because matrices allow you to solve systems of equations. 
 

Carlos: 
 

When we’re talking about matrices, we’re talking specifically about 

variables, and there are different procedures for finding variables when we 

apply matrices. 
 

Evidence of knowledge about scenarios requiring the use of the content and potential 

applications (KoT – phenomenology and applications) is demonstrated in the case of 

Jordy through mathematical situations (solving systems of equations, fundamentally), 

and in the case of Carlos through some situations which could arise in real life. The 

kind of knowledge displayed in these instances would seem to be consistent with their 

beliefs about the subject significance of matrices (that is, serving practical ends, with 

high value given to the ability to reproduce the content further on in time). Below are 

the relevant excerpts from their interviews: 
 

Jordy: 
  

Now we need to turn our attention to vectors, and after that other areas based 

on matrices, so you see that this content is important because of what comes 

later in terms of calculus and differential equations. 
 

Carlos: 
 

I give the students practical examples from real life, so that they can see that 

matrices are not just applicable to a specific science, but to any area, such as 

nutrition, sport, or a factory. 
 

There was also evidence of associations between the teachers’ knowledge about KoT 

– procedures and their beliefs about teaching – methodology. Jordy chooses not to 

present the content as a unitary procedure; instead, he sets up a series of exercises 

which aim to reproduce the logical processes involved. Carlos, on the other hand, does 

decide to present the content in this way, and the lesson activity is marked by the 

repetition of exercises. In setting up the class in this way, Jordy manifests a depth of 

knowledge pertaining to the category KoT – procedures, which leads him to go beyond 

a plain exposition of the procedures in order to underline the reasons underlying their 

use. In the case of Carlos, the knowledge in evidence is of the type KoT – procedures, 

How is something done, and hence his knowledge would appear to be external to 

mathematics, attuned to an eminently utilitarian view of the subject. 

Categories and indicators of beliefs MTSK 

Methodology: replicating patterns  of KoT-procedures:   How   is   something 

thought (Jordy) and mechanical (Carlos). done?   (Jordy  and   Carlos)   and   the 

Subject significance: Orientation reasoning underlying procedures (Jordy). 

(applicability), Objective (informative, KoT- phenomenology and applications: 

utilitarian) (Jordy and Carlos) applications to mathematics itself (Jordy) 

    and applications to real life (Carlos). 
 
 

Table 1: Associations between beliefs and KoT of Jordy and Carlos 
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There are also associations between Jordy’s knowledge of examples for teaching (KoT  

– examples for teaching) and his beliefs about methodology. Jordy seems to conceive of 

the role of the lecturer as that of replicating the process of building knowledge via a 

selection of examples which allow different features of the content to be highlighted. The 

extract below is from his introduction to the topic of multiplying matrices: 
 

Jordy: In order to add matrices we need to meet a condition. What was it? 

Student: They need to have the same dimensions. 

Jordy: They need to have the same dimensions. In order to multiply matrices we 

 also    need to   meet    a    condition.    If   we    take    matrix    A 

  What are the dimensions of this matrix? 

Student: Two rows, three columns. 

Jordy: The dimension is 2x3. To multiply two matrices we need the number of 

 columns in the first matrix to be the same as the number of rows in the 

 second matrix. If A looks like this, B has to have three rows, it doesn’t 

 matter how many columns it has. Let’s imagine that matrix B is a column 

 matrix It can be multiplied with this one, the only condition is that it 

 has three rows. The dimensions of tis matrix are . . . 

Student: 3x1  

Jordy: If the matrix doesn’t meet this condition, then as you say it cannot be 

 multiplied […] [The lecturer writes two matrices, 3x2 y 3x4.] What we do is 

 we take the first row of matrix A and we multiply it by the items in the first 

 column of matrix B […].  
 

Jordy generally presented the content using three of four examples, in this case 

avoiding entering into the topic of multiplying square matrices of the same order so as 

to make it clear to the students how important it is to define the dimensions of the 

matrices to be multiplied in order to determine whether it can be carried out or not. 

Jordy employed a wide variety of generic examples (Bills et al., 2006), which meant 

that he could focus students’ attention on the more salient features and on aspects 

providing a wide range of images. We associate this knowledge of examples with 

Knowledge of Mathematics Teaching (KMT). The examples used by Jordy show 

evidence of transparency (Blanco et al., 2011), given that the matrices A(2x3) and 

B(3x1) used by the teacher are aimed at directing learners’ attention towards salient 

aspects of the content (the dimensions of the matrices). In addition, the teacher draws 

attention to aspects that might vary in the examples employed (dimensions of possible 

variation, Watson & Mason, 2005), in this case the possible dimensions of matrix B in 

relation to A (leading to the examples B(3x2) and B(3x4)). 
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Furthermore, Jordy’s conceptions are aligned with a kind of classroom practice 

favouring what could be called replicative structured exercises (that is, the student 

exercises are designed to encourage them to replicate the logical thought processes). 

He warns students about potential pitfalls along the way. This conception, considered 

in methodology, is associated with his knowledge about errors and difficulties in 

learning (KFLM – areas of strengths and weaknesses associated with learning). 

Hence, when dealing with the topic of multiplying matrices he advises the students to 

define the dimensions in order to avoid falling into the common error of applying the 

algorithm for adding matrices, multiplying (in the case of matrices with the same 

dimensions) elements in corresponding positions (as he explains in an interview): 
 

Jordy: 

 
 

The error that they can always fall into first is thinking that they have to 

multiply number by number according to the position it’s in. So, at least in 

this case, multiplying matrices, I tend to bang on about dimensions. 
 

Thus, his knowledge of students’ learning difficulties with respect to the content 

(KFLM) is associated with his knowledge about examples for teaching content (KMT) 

and his conceptions about methodology (replicative structured exercises, with emphasis 

on warning students about pitfalls). At the same time, his knowledge of examples is 

related to his conception of teacher’s role (presenting content by means of replicating 

the process of its construction). 
 

Categories and indicators of beliefs  MTSK  
 

      
 

Methodology:   replicating patterns of KFLM-weaknesses associated with 
 

thought with emphasis on errors  learning: transposition of algorithm for 
 

Teacher’s role:   deliver content by adding matrices to multiplication; failure 
 

replicating process    of knowledge to note dimensions of matrices  
 

   
 

construction    KMT-examples for teaching: variability 
 

    of examples   
 

       
 

 

Table 2: Associations between Jordy’s beliefs and his KMT and KFLM 
 

In Carlos’ case, his knowledge about the category of examples for teaching (KMT) is 

intertwined with his beliefs about subject significance, that is, that the point of the 

subject is essentially informative with practical applications in everyday life. To this 

end, the lecturer develops the work on matrices around a set of exercises intended to 

reproduce real life situations (with the matrices representing, in this case, models of 

cars for different routes and with different fuel efficiency). 
 

Carlos: 

 
 

I always give you practical examples so that you get an idea of how they can 

be applied […] You can see here that we’ve got two tables with information 

about different situations. The first gives different routes followed by four 

makes of car (3x4), while the second table shows the petrol consumption for 

each of the models over the five week days (4x5). If we put them into matrix 

form will they be the same or not? 
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Student: 
 

No, they won’t. 
 

Carlos: 
 

No, but that isn’t what matters in this case. Here, the layout they’re in is the 

right one to multiply them because what we do is multiply the rows by the 

columns; so the number of columns in the first matrix coincides with the 

number of rows in the other one […] We have to multiply the element which 

is in the first row, first column of table T by the element which is in the first 

row, first column of table G [...]. 
 

By going through exercises of this kind, the need to define the operation (the multiplication 

of matrices) emerges, and this approach is consistent with the lecturer’s beliefs regarding 

framing what needs to be learned in practical terms. In this case, in terms of the lecturer’s 

beliefs, methodology would seem to be based on the repetition of such exercises, with less 

emphasis on the logical processes involved and on errors (unlike the case of Jordy). The 

lecturer’s KoT is evident in procedures (how it is done, essentially) and phenomenology 

(application of content to other fields). 
 

On the other hand, regarding his pedagogical content knowledge, Carlos displays KMT 

with regard to examples for teaching. His knowledge, which would seem to be 

primarily related to the practical purposes to which the contents can be put, does not 

directly correspond to any of the categories in Bills et al. (2006), so much as to 

phenomenological examples. The example is transparent (Blanco et al., 2011) in the 

sense that directs’ students’ attention and illustrates a procedure (the product of 

matrices). 
 

Categories and indicators of beliefs MTSK 
   

Methodology:  mechanical repetition  of KMT-examples  for  teaching:  examples 

exercises   of applications to real life 

Subject significance: purpose  

(informative and practical)   
   

 Table 3: Associations between Carlos’ beliefs and his KMT 

 

CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH 
 

Having established the relationships between them, we can see how the knowledge and 

beliefs of the two lecturers studied interact. Their conceptions enable us to better 

understand their knowledge and vice-versa. Their conceptions about methodology and 

subject significance are consistent with the KoT (regarding procedures and applications) 

which each of them manifests in their practice. Likewise, their conceptions about 

methodology (class practice activities with exercises which replicate patterns of thought 

versus activities focusing on mechanical repetition, with possible emphasis on errors), and 

teacher’s role indicate an association with the KMT that each demonstrates (in terms of 

knowledge of examples for teaching); in the case of emphasising error avoidance, there is 

an association with their KFLM (in terms of 
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knowledge of errors). Both aspects (beliefs and knowledge) are reflected in the 

elements they give emphasis to in the course of their teaching. Hence, dealing with the 

multiplication of matrices, one of the lecturers chooses to emphasise the conditions 

required to apply the procedure and the avoidance of potential errors, the other the 

applications to real-life situations. 
 

Teachers’ knowledge and ways of thinking are essential to the teaching of 

mathematics, and need to be understood in order for teachers to be helped to improve 

their practice, and consequently their students’ learning (Chapman, 2015). We have 

carried out an initial approach towards establishing relationships between teachers’ 

knowledge and their conceptions about the teaching and learning of mathematics, and 

this contributes to our understanding of how and why teachers do what they do in the 

classroom. Detailed analysis of teachers’ knowledge and conceptions about 

mathematics teaching and learning can help us gain a broader vision of the relationships 

between these two constructs. Furthermore, it would be interesting to explore further 

where the associations that have been uncovered lead, how they might influence, for 

example, the teacher’s beliefs in generating specialized knowledge.  
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Abstract 
 

When a researcher is required to consider the conceptual framework 

underlying a new model of professional knowledge, various questions are 

likely to come to mind: What are the authors proposing? What are the 

consequences of these proposals? What do they contribute? These questions 
are directed atexplicit elements of the conceptual framework. Nevertheless, 

there is another question which emerges: What theoretical position have the 

authors taken in developing the framework in this particular way? This is 

the question which we aim to address in this paper, shedding light not only 

on the MTSK model itself, but also on how it came into being. 
 

Keywords: Mathematics Teachers’ Specialized Knowledge; Teacher knowledge 

frameworks; Mathematical Knowledge for Teaching 
 

INTRODUCTION 
 

In the past three decades, a multiplicityof representations of teachers’ 

knowledge have emerged (e.g. Topology of professional knowledge 

(Bromme 1994); Knowledge Quartet (Rowland, Turner, Thwaites, & 

Huckstep, 2005); Knowledge for Teaching (Davis & Simmt, 2006); 

Mathematical Knowledge for Teaching (Ball, Thames, & Phelps, 2008); 

TEDS-M framework (Tatto et al., 2008); Mathematical Proficiency for 

Teaching (Schoenfeld & Kilpatrick, 2008); Didactic-Mathematical 

Knowledge (Godino, 2009); COACTIV project framework (Baumbert, 

Kunter, 2013); Mathematics Teachers Specialized Knowledge (Carrillo, 

Climent, Contreras, Muñoz-Catalán, 2013); Knowledge Atom System 

(Scheiner, 2015)). These models have largely been grounded in Shulman’s 

(1986) work, and have focused principally on two of the domains of teachers’ 

knowledge his work drew attention to (subject matter knowledge and 

pedagogical content knowledge). 
 

When one considers the number and diversity of such models, questions about 

their design and development naturally emerge, in particular with respect to the 

authors’ assumptions. Sometimes these questions are given clear answers, but 

at others they remain implicit. Lerman (2013) claims that the authors of some 

models “do not make any overt commitment on their position, though readers 

can infer where they stand” (p.629). Specifically, 
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his reflection concerns whether theapproach underlying aparticular modelis 
individual or social. 

 

In this paper, our aim is to give an account of the choices and assumptions 
involved inthe process of developing the Mathematics Teachers' Specialized 

Knowledge model, MTSK (Carrillo, et al., 2013), so as to allow the readers, 
in keeping with Lerman’s charge, to know where we stand. 

 

Mathematics Teachers’ Specialized Knowledge 
 

This section provides an overview of the MTSK model, giving particular 

attentionto the manner in which professional knowledge is organised in the 
model, so that subsequent observations in the following sections concerning 

the conceptual structure of the model can be better appreciated. 
 

The aim of the model is to provide an interpretative framework from which 

to explore our understanding of the knowledge deployed by teachers in the 

course of their teaching and related activities. It is this very professional 
dimension of the knowledge in question which, from this perspective, is 

designated “specialised”, whenever the connection to mathematical content 

is clear. As a result, the model excludes all those elements which can be 

considered as pertaining to the domain of general pedagogical knowledge.  
 

Building on the foundational work of Shulman (1986) and Ball et al. (2008), 
we retain the dichotomy between subject matter knowledge (here 

mathematical knowledge) and pedagogical content knowledge, PCK, andadd 

a third domain encompassing beliefs. Each of these three principal domains 

is further subdivided, as described below. 
 

Mathematical knowledge consists of three subdomains which reflect the 

nature of mathematical content. Firstly, there is necessarily the knowledge 

associated with specific mathematical topics. This includes such things as 

definitions, phenomenology, properties, meanings and the operations that 

can be carried out. Together, these elements constitute the subdomain 

Knowledge of Topics (KoT).Second, there is the knowledge of the complex 

web of interrelations which bind these topics and associated concepts 

together. It is a kind of topographical knowledge, or to take another 

metaphor, it concerns the understanding of the edification of mathematical 

knowledge, whence the name Knowledge of the Structure of Mathematics 

(KSM). Finally, the third subdomain, Knowledge of the Practice of 

Mathematics (KPM), comprises knowledge of the syntax of mathematics 

(Schwab, 1978) and heuristic techniques related to problem-solving. 
 

With respect to the domain of Pedagogical Content Knowledge, we follow 
tradition in focusing on teaching, students and the curriculum, albeit with 
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variousspecific interpretations deriving from our particular position on 

certain issues (see below). The first of the three subdomains into which this 

area is divided, Knowledge of Mathematics Teaching (KMT), concerns, on 

the one hand, the knowledge the teacher can draw on regarding resources, 

methods, strategies and modes of presenting content to students, and on the 

other, the theories, whether personal or institutional, which underpin their 

approach to teaching mathematics. The second subdomain is Knowledge of 

the Features of Learning Mathematics (KFLM). This is the knowledge 

relating to how mathematics is learned, and includes the different kinds of 

difficulties, obstacles and strengths that students encounter, the types of 

interaction they tend to have with the content, and theories of learning 

mathematics which provide teachers with the tools for understanding 

learning. Finally, Knowledge of Mathematics Learning Standards (KMLS) 

comprises all reference material within the teacher’s scope that enables them 

to decide what should be taught at any particular point along the educational 

spectrum, and how it should be taught. This includes, for example, 

knowledge of the curriculum, different professional standards, and even the 

opinion of senior teachers. 
 

Finally, there is the domain of beliefs, which include beliefs about 
mathematics itself, as well as those about how it is learned and how it should 

be taught (Ernest, 1989). 
 

PRE-DESIGN CONSIDERATIONS 
 

This section summarises the considerations which went intothe design of the 

MTSK model. First,we discusswhat prompted the decision to create a new 

model in the first place. This is followed by a focus on the notion of 

specialisation, which is central to our conceptualisation, and how this affects 
our view of the role of mathematics in the model. Finally, we offer a brief 

account of our beliefs about mathematics teaching and learning and how 

these have influenced features of the model. 
 

Why a new model? 
 

Currently, the MKT model (Ball et al., 2008) is widely used in the research 

literature as an effective tool for capturing the knowledge which teachers 

deploy as they go about the business of their profession. Nevertheless, the 

model has been observed to have certain limitations deriving from the 

overlap between subdomains, and from problems in the notion of specialized 

content knowledge (Silverman, Thompson, 2008). The model also takes an 

evaluative perspective towards teachers’ knowledge, with the ultimate aim 

that of assessing the quality of the knowledge under consideration. Another 

shortcoming is that it is designed to be used primarily in the classroom and 

is less effective as a tool for analysing teachers’ knowledge outside this 

context. 
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Such issues as these, which affect the theoretical principles of the model, 

could be addressed by recasting it with modifications to the definitions of the 

subdomains, but in deciding to adopt a whole new model and to eliminate 

completely the subdomain of specialized content knowledge, we aim to draw 

attention to the intrinsically professional nature of all the teacher’s 

knowledge. Furthermore, as shall be seen, the MTSK model is predicated on 

an interpretative perspective, giving it a significantly different orientation to 

its predecessor, and is designed to offer a multi-methodological access to 

data, in the sense that it allows the analysis of teachers’ knowledge to be 

effected beyond the classroom, providing the opportunity for a fuller 

understanding to be achieved. 
 

The role of specialisation 
 

As suggested above, our conceptual basis takes a different view to that of 
MKT with respect to the way in which teachers’ knowledge can be regarded 

as specialised, maintaining that certain aspects of their knowledge is 
exclusive to the teaching profession. 

 

Specialised is understood, within the ambit of our model, to refer to any 

knowledge relating to the discipline in question deployed in a professional 

context, whether that be the actual activity of classroom teaching, or by 
extension lesson preparation, some type of procedure for reflecting on one’s 

teaching, or teaching-based conversations with peers. In this sense 

specialisation is holistic, a feature intrinsic to all elements of teachers’ 

knowledge included in the model, including the network of connections 

between subdomains, to which we also give prominence. In this respect, we 

extend the early ideas of Shulman (1986) regarding PCK to encompass the 
entire domain of mathematical knowledge. 

 

The role of Mathematics 
 

One drawback levelled at some models is that their conceptual framework is 

not specific to mathematics. In the MTSK model, as detailed in the sections 

below, the domain of SMK is reconfigured and renamed MK. This is more 

than just a change of label. The new domain is conceived of and structured 

in terms of categories which reflect the different features of mathematical 

knowledge. Likewise, the domain of PCK only addresses elements of 

knowledge pertinent to mathematics or to specific questions of teaching and 

learning the subject, leaving aside any unrelated item. Thus, for example, the 

subdomain Knowledge of the Features of Learning Mathematics excludes 

elements that can be considered general pedagogical knowledge, such as 

being aware that the types of activities appropriate to the latter part of the 

school day should take into account the pupils’ tiredness. 
 

Our beliefs about mathematics, and its teaching and learning 
 
 
 
 

 

190 



In line with Schoenfeld (2011), we recognize that our own beliefs about 

mathematics and how the subject is taught and learned (Ernest, 

1989)permeate the very conceptual basis of the MTSK model. This is true 

of any researcher or research group. The position of any group or individual 

can always be perceived behind any theoretical proposal, not merely when 

the model is put into practice, but in the actualconceptual base itself where 

decisions about what categories to include and what form they should take 

are necessarily determined by the researchers’ beliefs.In our case, a dynamic 

vision of mathematics (Ernest, 1989) leads us, for example, to accord a 

significant role to heuristic strategies, which we locate in the subdomain 

Knowledge of the Practice of Mathematics; the same belief prompted us to 

include a subdomain comprising knowledge of the different types of 

connections and associations in mathematics (Knowledge of the Structure of 

Mathematics). By the same token, a belief in the value of active inquiry in 

mathematics education (Carrillo and Contreras, 1994) resulted in our 

emphasizing, among other things, the interaction of the pupil with the 

subject, which in turn demands that the teacher be aware of how to contrive 

circumstances favourable to such interaction, as included I the subdomain 

Knowledge of the Features of Learning Mathematics. In general, a relativist 

and social view of knowledge accounts for the inclusion of varying curricular 

proposals and the experience of fellow teachers as sources of Knowledge of 

Mathematics Learning Standards. 
 

DESIGN CHOICES 
 

In this section we outline the considerations which were taken into account 

at the design stage of the model. The organization of the section follows the 

structure of the model itself, starting with the research perspective that was 

adopted, then moving on to the specific features of the three domains which 
make up the model – Mathematical Knowledge, Pedagogical Content 

Knowledge, and Beliefs – and finally discussing the methodological 

questions which were considered relevant to using the MTSK model for 

research. To this we add a brief observation about the educational levels we 

envisage MTSK being used with. 
 

Research perspective/paradigm 
 

Models of professional knowledge tend to exhibit a certain orientation 
according to their use. For example, studies using the MKT model (Ball et. 

al, 2008) are most frequently directed towards an evaluation of teachers’ 

mathematical knowledge within the ambit of primary education in the USA. 

In the course of developing MTSK, our objective was to construct a model 

that would allow us to study the nature of mathematics teachers’ knowledge 

without making any judgements about perceived gaps or the closeness of fit 
to some ideal profile (e.g. Godino, 2009). Rather we have aimed to work 

consistently within an interpretative paradigm (Bryman, 
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2001), albeit aware that once such an analysis has been undertaken with an 
individual or group of teachers, there always remains the option of setting 
about identifying areas where knowledge is lacking with a view to supplying 

the deficiencies. 
 

Organisation of the domain of mathematical knowledge 
 

In the model proposed by Ball et al (2008), the distinguishing feature by which 

knowledge is considered common or specialised is whether it is shared with 

other professions or not. In other words, the domain of mathematical knowledge 

is characterised in terms of the person using the knowledge, and is thus extrinsic 

to mathematics itself. Consequently, when we set about designing MTSK we 

made a commitment to characterising the domain of mathematical knowledge 

not in terms of the user but in terms of the ways that the subject is understood. 

To this end, KoT is defined as knowledge of specific mathematical topics, at 

both basic and advanced levels. By the same token, KSM aims to capture an 

overarching vision of mathematical knowledge, in which the teacher makes 

connections between different concepts and topics. Finally, KPM concerns 

what has been termed 
 

‘syntactic knowledge’ (Schwab, 

1978). The scheme (Figure 1) 

we have adopted in dividing up 

the domain of mathematical 

knowledge has proved its worth 

in the field, allowing us to 
characterise the  

knowledge displayed by 

different mathematics teachers 

in the realms of fractions 

(Rojas, Flores, Carrillo, 2015), 
infinity (Montes, Carrillo, 

2015), algebra (Vasco, 

Climent, Escudero-Ávila, 

Montes, Ribeiro, 2016) and 

geometry by means of 

Figure 1: MTSK scheme
 analyzing the teachers’ 

reflections on their teaching  

for indications of the nature of this knowledge, and by making inferences 
about the particular way they understand a topic from how they manage the 
learning taking place in their classroom. 

 

The organisation of the PCK domain 
 

In the domain of Pedagogical Content Knowledge, we see no cause for 
rethinking the tripartite configuration of teacher-pupil-curriculum inherited 

from Shulman (1986), although the MTSK model does seek to characterise 
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the specific contribution of mathematical content to this area of knowledge. 
Thus, in our efforts to develop descriptors for each subdomain(Sosa, Flores-

Medrano, Carrillo, 2015) all pedagogical considerations unrelated to 

mathematics were excluded. In the same spirit, when considering the 

conceptual basis of the domain, and especially the subdomains, the influence 

of research on teachers’ knowledge was acknowledged, recognising that, in 
addition to the habitual sources, teachers can develop their knowledge 

through an interest in research into mathematics education. 
 

Theinclusion of beliefs 
 

A significant aspect of the way in which the MTSK model was conceived, 

and shared with the COACTIV model (Baumbert, Kunter, 2013), is the 

inclusion of teachers’ beliefs as an element permeating their knowledge. This 

inclusion derives from our research into beliefs (Carrillo, Contreras, 1994), 

the experience of which has confirmed the interaction of beliefs and 
knowledge in multiple ways (Aguilar, 2016). 

 

Methodological aspects 
 

Unlike previous models, MTSK does not assume that the chief source of data 

for research into teacher knowledge is what goes on in the classroom. Rather, 

following Baxter and Lederman (2001), our premise is that any research 

aiming to truly explore professional knowledge should take a multi-

methodological approach, as a significant part of this knowledge is not 

necessarily manifested through the actual teaching that takes place. For this 

reason, our research using MTSK typically involves a combination of data 

sources which includes interviews, questionnaires, discussions of events 

during the lesson and hypothetical scenarios, analysis of contributions to 

online forums, as well as, of course, analysis of actual classroom practice, 

although this latter may not always be practicable. Likewise, the 

methodological approach which was adopted can be divided into two 

phases.In the first of these, based on Grounded Theory (Strauss and Corbin, 

1998), various doctoral theses contributed to the development of the 

theoretical construct, specifying the content of subdomains, refining 

descriptors and working through actual examples, the detailed consideration 

of which helped to clarify the conceptual base. In the second phase, content 

analysis using MTSK is being carried out along with educational studies 

seeking to establish the model’s potential for identifying areas for attention 

in initial and in-service training. 
 

Applying MTSK to different educational stages 
 

As mentioned above, the development of MTSK was carried out at the same 

time as various doctoral studies focused on diverse contexts from primary, 
through secondary to university education. In each instance, with appropriate 

adaptations to the specific mathematical context involved, the 
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model proved itself to be useful. The model is also currently being applied 
to teachers working in nursery education, and there are projects in the 

pipeline which aim to study the adaptability of the model in analysing the 

knowledge deployed by teacher trainers. In our view, this kind of versatility 

is an additional bonus, although we are aware that, especially in the domain 

of mathematical knowledge, determining what is KSM and what is KPM 
could result in certain difficulties given the nature of the mathematics to be 

covered at each educational stage. 
 

FINAL REFLECTIONS 
 

This paper has outlined the theoretical position and the decisions taken by 

the research team regarding the conceptual base of the MTSK model. The 

aim has been to go beyond a simple description of the structural organisation 

of the model to provide a full and clear account of the conceptual 

groundwork on which the model is based for any researcher wishing to know 
more about it. 

 

In our view, detailed accounts such as this, consistent with that proposed by 
Lerman (2013), can lead to a more appropriate use of models predicated on 

different conceptual foundations, and attuned to the aims and standpoint of 

the researchers in question. Where a new use is proposed for a model, the 

need for a process of reflection becomes evident, which can lead to a shift in 

the conceptual base, and which in itself would represent a contribution to the 
discipline. 

 

Finally, we believe that amongst the different theoretical positions adopted 

by the various models that have been developed, there is a certain amount of 
common ground to be found, and consequently the search for common 
elements among them would not be fruitless and could potentially lead to 

Networking processes (Prediger, Bikner-Ashbahs, Arzarello, 2008). 
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There is evidence for recommendations to link mathematics teacher education (MTE) 

closely to school mathematics and to emphasise proving why rather than proving that 

when teaching reasoning and proof (R&P) in schools. In spite of that we suggest not 

to take the implication that MTE focuses on proving why to extremes. We outline the 

background, framework, and results of a pilot to an intervention study that seeks to 

address the problems of R&P in MTE. The results suggest that teachers face more 

problems with R&P than expected and have difficulties just selecting situations from 

school in need of a mathematical justification, let alone developing justifications and 

supporting their students’ learning of R&P. This supports our suggestion that a dual 

emphasis on proving that and proving why is needed in MTE. 
 

Keywords: Mathematics teacher education, reasoning and proof, Patterns of 
Participation (PoP), proving that – proving why. 
 

Recommendations for teacher education increasingly emphasise issues that are specific 

to the profession. This is so in suggestions that academic mathematics does not suffice 

as teachers’ content preparation (e.g. Ball, Thames, & Phelps, 2008; e.g. Rowland, 

Turner, Thwaites, & Huckstep, 2009). It is apparent in the explicit emphasis on the 

tasks of teaching in the college based parts of programmes, which involves a shift 

“from a focus on what teachers know and believe to a greater focus on what teachers 

do” (Ball & Forzani, 2009, p. 503). And the professional emphasis shows in 

suggestions that teaching-learning processes in mathematics teacher education (MTE) 

should model those envisaged for school mathematics if reform recommendations are 

to materialize in school (Krainer, 1998; Lunenberg, Korthagen, & Swennen, 2007). 
 

We present the pilot to an intervention study for teachers in primary and lower 

secondary school in Denmark. The study is on reasoning and proving (R&P), a 

notoriously difficult topic for all students, including prospective teachers. In line with 

the general trend outlined above, it has been suggested to use approaches recommended 

for schools in mathematics teacher education and shift the emphasis from the 

disciplinary practice of proving that to proving why (Rowland, 2002). Our study, 

Reasoning and Proving in Teacher Education (RaPiTE), is in line with this 

recommendation, but building on studies of practising teachers we argue that it should 

not be taken too far. In a sense to be explained later, we suggest that prospective 

teachers need to become engaged in R&P processes that are “sufficiently close” to 

classroom practice as well as to the discipline of mathematics.  
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As the rationale of RaPiTE is based on research with practising teachers, the pilot 

addresses the question of whether the dual emphasis on school and academic 

mathematics is suitable for MTE. One result of the pilot is that research participants 

face even greater difficulties with R&P than expected and have problems identifying 

classroom situations in need of a mathematical justification, let alone devising 

justifications and engaging their students in working with them. This supports that 

MTE needs to be close to both instruction in schools and to the disciplinary practice of 

proving that, if teachers are to facilitate their students’ proficiency with R&P. 
 

Below we outline recent scholarship on R&P in school mathematics and MTE. We 

then present our framework, Patterns of Participation (PoP), and elaborate on the 

approach of RaPiTE, before describing the organisation, methods, and results of the 

pilot. We finish with a discussion of how the results relate to the main study.  

 

R&P IN SCHOOL AND IN MATHEMATICS TEACHER EDUCATION 
 

It is generally agreed that R&P are treated with less care than they deserve in schools 

and that mathematical argumentation at times degenerates into authoritative proof 

schemes (Harel, 2007). Proofs are often dealt with in secondary geometry only and for 

the purpose of verification of results that are presented ready-made. A.J. Stylianides 

(2007a) suggests that the late introduction of proofs may cause a disconnect in 

students’ mathematical experiences that contributes to later problems with R&P. 

Yackel & Hanna (2003) argue that current uses of proof do not allow students to 

develop understandings of and proficiency with the multiple purposes of proving and 

do not facilitate their understanding of the contents in question. 
 

Addressing these problems, Yackel and Hanna (2003) focus on the exploratory and 

communicative functions of proof. NCTM (2008) locates proof in a reasoning-and-

proof cycle of exploration, conjecture, and justification. Emphasising proving as a 

specifically mathematical mode of justification, A.J. Stylianides (2007b) suggests that 

proving in school (and elsewhere) be understood as making mathematically valid 

inferences on the basis of what is or may become taken-as-shared in terms of content 

and modes of argumentation in the community in question. These recommendations 

seek to engage students at all school levels in a range of R&P-processes, including 

developing specifically mathematical justifications. They also intend to develop 

students’ understanding of the meaning of mathematical reasoning as well as of the 

topic under investigation. The latter of these intentions implies a shift of emphasis from 

proving that to proving why in school mathematics. 
 

One suggestion for how to focus on proving why is to rely on generic arguments. They 

can be based on a single-case key idea inductive argument (Morris, 2007). As an 

example, consider the case of Larry, a grade 5 teacher whose class is working on perfect 

squares (Skott, in press). The students have previously made geometrical 

representations of square numbers with centicubes (cubes that may be assembled and 

used e.g. for teaching place value). The class has now made a table of the natural 
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numbers from 1 to 14 and their squares on the board. This leads to the observation that 

5
2
–4

2
=9=5+4. A single-case key idea inductive argument (not developed in the class) 

may build on the geometric representations used before. Placing two squares with side 
lengths 4 and 5 on top of each other with two pairs of sides aligned provides an 
explanation of the result and may be used to develop a generic argument that the 
difference between two consecutive perfect squares is the sum of their bases. 
 

While it may alleviate some problems with R&P to engage students in investigating 

and conjecturing and focus on proving why, it may not sufficiently address others. In 

particular, students may become involved in the first two phases of the reasoning-and-

proof cycle, but still rely on empirical or other justifications that do not qualify as 

mathematical. In Bieda’s (2010) multiple case study experienced middle school 

teachers use a textbook that emphasizes R&P. In class, students produce conjectures in 

response to textbook tasks, but only in about half the cases do they provide some form 

of justification. Further, students’ example-based justifications are accepted as much 

as their more general ones, and they had little opportunity to develop understandings 

of the specifics of mathematical reasoning and proof. A possible explanation, Bieda 

says, is that the teachers become involved in a reform agenda that prioritises “student-

centred teaching”, which requires them to play a relatively unobtrusive role in relation 

to the students’ learning. 
 

Similarly, Larry (cf. above) never capitalised on the students’ conjecture that (n+1)
2
– 

n
2
 = (n+1)+n, and sought to develop a mathematically valid justification, generic or 

otherwise. Also, the first author’s longitudinal study of a teacher, Anna, suggests that 
her intention of supporting the development of students’ proficiency with mathematical 
communication and R&P is often submerged by other concerns, e.g. not to jeopardise 
her relationship with the students (Skott, 2013). Consequently she accepts arguments 
and justifications that do not qualify as mathematical. 
 

The studies mentioned above suggest that teachers find it difficult to capitalise on the 

R&P potential of situations that “arise naturally from students’ work as they explore 

mathematical phenomena, examine particular cases, discuss alternative hypotheses, 

and generate conjectures” (A. J. Stylianides & Ball, 2008, p. 312). As a result of the 

difficulties, mathematical R&P may lose its content specificity. We suggest that PoP 

may be able to explain why, and we let these explanations inform our development 

initiatives on R&P in MTE. 
 

THE PATTERNS-OF-PARTICIPATION FRAMEWORK AND RAPITE 
 

The PoP-framework adopts a participatory approach to human functioning, drawing on 

social practice theory (e.g. Holland, Skinner, Lachicotte Jr, & Cain, 1998; Lave, 1997; 

Wenger, 1998) and on Sfard’s theory of commognition (Sfard, 2008). These 

frameworks focus, respectively, on emerging social processes (e.g. romance at a US 

university campus, cf. Holland & Eisenhart, 1990) and on well-structured cultural 

practices (e.g. mathematics, cf. Sfard, 2008). Rather than focusing on the practices 
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per se, however, PoP re-centres the individual and asks how a teacher’s involvement 

in unfolding school and classroom events relates to and is transformed by her re-

engagement in other past and present practices and discourses. We have found the I-

me distinction in symbolic interactionism (Blumer, 1969; Mead, 1934) helpful for this 

purpose. It allows us to focus on how the teacher takes the attitude to herself of different 

individual and generalized others as classroom processes unfold. 
 

If, for instance, a teacher seeks to develop a good mathematical argument with a group 

of students, who appear to be weak and vulnerable in the situation, she may 

simultaneously take the attitude to herself of colleagues who focus on creating trusting 

relationships with the students; of the school leadership or of parents, who emphasise 

students’ performance on standardized tests; or of her teacher education programme 

that focuses on the use of manipulatives to facilitate student learning with 

understanding (Skott, 2013, 2015; Skott, Larsen, & Østergaard, 2011). The teacher’s 

engagement with each of these social constellations – or others – may transform or 

subsume her involvement in the practice of mathematical R&P and for instance have 

her accept justifications that do not qualify as mathematical. PoP provides a perspective 

on if and how this is the case. 
 

PoP has so far framed studies conducted “in the perspective of teacher education” 

(Krainer & Goffree, 1998). These studies are not on MTE, but develop understandings 

of teaching-learning practices in schools and may raise questions about MTE and 

inform decisions on how to address them. As indicated above, the results suggest that 

even when teachers engage students in elements of the R&P cycle, modes of 

justification may lose their subject specificity. To avoid this it seems that MTE needs 

to fulfil two requirements. First, it must be close to teaching-learning processes in 

schools, as R&P practices are otherwise too distant from classroom interaction for 

teachers to draw on them when teaching. This is in line with the suggestion to 

emphasise proving why using generic arguments (Rowland, 2002). Second, and in spite 

of that, MTE must be close to the disciplinary practice of R&P and include significant 

elements of proving that so as to make mathematical R&P a practice for teachers to 

draw on as they interact with their students and to limit the risk of classroom processes 

losing their subject specificity. The assumption of RaPiTE, then, is that MTE needs to 

avoid the two extremes of focusing either on academic mathematics or school 

mathematics, not by reducing the emphasis on either but by transforming both (Skott, 

in press). 
 

To be “sufficiently close” to both school mathematics and academic mathematics we 

use tasks and conjectures that may be used in or developed from tasks used in school 

and take them beyond the school level. Examples include: 
 

(1) Does 8 always divide n
2
-1, if n is an odd integer? (This is from an interaction in 

Larry’s grade 5, cf. the previous example on perfect squares (Skott, in press)); 
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(2) Assume that you have a set of rods similar to Cuisenaire rods representing the 

positive integers from 1 to n. For what values of n can you make two “trains” of rods 

of equal length? Three trains? m trains? 
 

THE PILOT STUDY 
 

The pilot study takes place at prestigious college in Denmark. The student teachers 

(from now on: teachers) have all performed fairly well in secondary school, and 

according to curricular documents they have worked with mathematical reasoning both 

in primary and secondary school. At the college, they need to specialize in Danish or 

mathematics. The research participants are a class of 31 prospective teachers for grades 

4-9, who are among the 35 %, who specialize in mathematics. 
 

Organisation and methods 
 

The pilot consists of two parts, a questionnaire and a short teaching-learning sequence 

on R&P in connection with the teachers’ first practicum. We do not expect the 

questionnaire and the observations of the teaching-learning sequence to shed light on 

relatively stable and context-independent mental constructs. Also, we do not assume 

any causal relation between responses to the questionnaire and teachers’ contributions 

to classroom practice. At best, the questionnaire allows us to understand how the 

teachers react discursively to R&P in a setting in which they are not challenged by 

other concerns that may emerge in classroom interaction. From a PoP perspective it is 

an empirical question, whether teachers orient themselves towards such a discourse as 

they engage with their students in the classroom. However, if teachers face significant 

problems with R&P in the questionnaire, we consider it unlikely that they engage 

proficiently with these processes when teaching. 
 

At the beginning of the academic year the teachers fill in the questionnaire, which 

consists of open items on why they decided to go into teaching, why they chose to 

specialize in mathematics, and what their general experiences are with school 

mathematics. They are also asked about specific experiences with R&P (e.g. “Describe 

how you felt about reasoning and proofs in mathematics”) and to consider situations 

from school mathematics with an element of mathematical reasoning.  
 

The second part of the pilot, the focus of the present paper, is the teaching-learning 

sequence on R&P, which is connected to the teachers’ first practicum. As part of their 

first course on mathematics at the college, they are re-introduced to R&P in a 12-lesson 

sequence, organised as two sessions of six 45-minute lessons. This sequence was not 

taught by the authors of the present paper, but the second and third authors planned it 

and developed the teaching-learning materials. The intentions and the contents were 

discussed in detail with the colleague, who taught the sequence.  
 

In the sequence the teachers are introduced to different types of arguments (cf. G. J. 

Stylianides & Stylianides, 2009), which leads to discussions of why R&P is taught in 

school, of what to expect in terms of student learning, and of the relationship and 
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possible transition from empirical arguments to proofs. Also, the teachers watch and 

discuss a video of school students making and justifying conjectures about a number 

pattern in a sequence of geometric figures. This leads to discussions about the quality 

of the students’ arguments and how students may be supported in developing them 

further. Subsequently, the teachers become involved in all three parts of the R&P cycle, 

for instance as they work on a version of the second task mentioned previously on 

making “trains” of equal length. As part of this they are to make geometrical or number 

theoretical justifications for their claims. They also discuss comments from school 

students, who have previously worked on the same task. One of these reads: 
 

“If I am to make two trains of equal length the sum must be even. If the sum is odd, I would 

have one left over. If the sum is even there could be other problems [...]. We do not know 

if it is sufficient that the sum is even.” 
 

After these sessions on mathematical R&P, the teachers form eight groups of three or 

four, each group going on a two-week practicum in a middle or lower secondary school. 

Before and during their practicum the students are to (1) plan for their students’ 

involvement in R&P; (2) video record each other’s teaching; and (3) select one video 

clip from the practicum in which the students are particularly involved in R&P. After 

the practicum, the teachers discuss the video clips and the inherent potentials for and 

problems with R&P in a whole-day session. Below we focus on the teachers’ response 

to the last requirement and on the subsequent discussion. 
 

The sequence on R&P before and after the practicum was video recorded and 

transcribed. Like the responses to the questionnaire, the transcripts were analysed with 

no pre-developed set of codes, using coding procedures inspired by grounded theory 

(Charmaz, 2006). The initial coding and categorization of the data material was first 

done by authors 2 and 3 independently. The coding included word-by-word, line-by-

line, incident-to-incident and in Vivo coding (Charmaz, 2006). Memo-writing was 

used increase the level of abstraction. Subsequently codes and categories were 

compared and discussed among all authors and inconsistencies were resolved. 
 

The analysis resulted in categories on (1) teachers’ reasons for selecting the specific 

video clips; (2) the character of R&P in explicit discussions of these processes; (3) 

student learning and its possible relation to R&P; (4) the significance of R&P in school 

mathematics; (5) “blackboard-talk”, that is, whole-class teaching as it relates to student 

learning in general and to R&P in particular. 
 

Results 
 

The results of the questionnaire support previous findings that many teachers have 

difficulties with deciding what a valid mathematical argument is. This is the case also 

for a large proportion of the teachers, who in the context of the questionnaire claim to 

be good at mathematics and to like engaging in mathematical R&P. 
 

In the observations from the college classroom, the teachers face considerable 

problems arguing how or why the video clips they selected from their practicum is  
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related to R&P. Four of the groups do not provide a coherent explanation for why they 

selected the episode, and three of the other groups select the clips for reasons that are 

unrelated to mathematical reasoning. The last group claims that their clip is on 

reasoning, but it shows students making number stories for tasks on fractions.  
 

Looking at the clips themselves, rather than at the teachers’ reasons for selecting them, 

three have no connection to mathematical reasoning (e.g. the teacher presents the 

solution to a procedural task on the board). The other episodes have some potential for 

student involvement in R&P, but the teachers do not emphasise aspects of R&P in the 

discussion in the classroom. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 Figure 2 
 

One example with some potential for involving the students in the phases of the R&P 

cycle concerns the pattern in the number of squares in a sequence of figures (fig. 1). 

The students, who are in grade 6, use cookies to represent the squares. The video clip 

shows two students, who have 33 cookies. They have written “7” and “y=4x+5” and 

made the drawing in fig. 2. However, they have trouble linking the equation to the 

geometric representation, and as the teacher joins them, the emphasis of the discussion 

is on the meaning of x and the length of the arms of the cross. This becomes a major 

concern also in the discussion at the college, which also revolves around the work of 

other students, who have written the same equation, but begun to solve it for different 

values of y, and around more general pedagogical issues such as how much support 

students should have in a situation like this. At no point does it become an issue if and 

how the episode could become the starting point for formulating a conjecture in the 

form of statement that could be verified. In this sense, mathematical justifications in 

the form of proving never become an issue. 
 

Another example with R&P-potential concerns finding the point equidistant from the 

vertices of a triangle. In the video clip, a school mentor, the teacher normally teaching 

the class, unintentionally shows the students an incorrect procedure for constructing 

perpendicular bisectors. The students use the incorrect procedure but having measured 

the distances on their drawing they realise that something is wrong. They then shift 

their attention to the question of how to draw a perpendicular bisector and pay no 

attention to why it may help them solve the initial problem. In the discussion at the 

college the teachers discuss the episode, focusing on what they 
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describe as lack of conceptual understanding on the part of the students and on the use 

of whole-class instruction in general. It does not become an issue if and how the 

episode may become a starting point for an exploration of the problem, for formulating 

a conjecture on properties of perpendicular bisectors, let alone developing justifications 

for such conjectures. 
 

DISCUSSION AND CONCLUSIONS 
 

The pilot confirms that teachers often face problems with R&P. The questionnaire 

establishes a setting remote from the classroom and the results do not in and by 

themselves indicate how the teachers react to similar questions when teaching. 

However, a PoP perspective suggests that the risk of not engaging sufficiently with 

R&P is greater in classrooms with many other pressing concerns beyond the quality of 

a mathematical argument. Further, our observations indicate that the teachers face 

problems identifying classroom situations with R&P, and in episodes with some 

potential for mathematical justification, modes of argumentation lose their subject 

specificity and conjectures are not subjected to mathematical verification. 
 

In the cookie-episode the students engage in the important task of finding and 

generalising a pattern. Their difficulties may have been alleviated by moving the arms 

of the cross into a rectangular array with four columns and the centre cookie left over. 

This may be used as a single-case key idea inductive argument that builds only on 

rectangular representations of multiplication, and which may be turned into a generic 

argument that shows why the equation is right for all n. For this to happen, the teacher 

needs sufficient experiences with proving why in school contexts for it to become a 

mathematical practice (s)he can draw on in the interaction. It is of obvious importance 

that programmes for teacher education provide such experiences. 
 

In other situations students’ suggestions do not lend themselves as easily to generic 
arguments that prove why. This is the case for instance with the conjecture from Larry’s 

classroom that if n is odd, 8 divides n
2
-1. However, straightforward algebraic 

arguments and proof by induction may be used to prove the conjecture. However, if 
teachers are not sufficiently familiar with such arguments they have no alternative but 
to rely on the empirical ones used by the students. 
 

From a PoP perspective these examples indicate that teachers need significant 

experiences with both proving that and proving why, if they are to support R&P 

activities in the classroom. The emphasis on proving that does not advocate a return in 

MTE to standard university courses with no relation to classroom practice; the 

mathematical practices involved are in that case too remote from school mathematics 

for teachers to draw on them in classroom interaction. However, using examples from 

school mathematics to develop means of proving that, including the much criticised 

proof by induction (Rowland, 2002), is necessary if teachers are to develop sufficient 

proficiency with dealing with all aspects of the reasoning and proof cycle in the 

classroom and capitalise on the potentials of their students’ conjectures. 
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The pilot study examined the feasibility of proposals for MTE that are based on 

research with practising teachers. Our conjecture is that MTE needs to be close to both 

school and academic mathematics for teachers to link mathematical proficiency to 

instruction. In the case of R&P this means drawing on genuinely mathematical modes 

of justification in the classroom. The pilot supports the conjecture. 
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In the study presented here we address the issue of how to use Concept Cartoons for 

investigating future primary school teachers’ mathematics content knowledge. We 

focus on various types of composition of Concept Cartoons, and on advantages and 
disadvantages associated with using these types of Concept Cartoons for diagnostic 

purposes. 
 

Keywords: Concept Cartoons, future teachers’ knowledge, mathematics content. 

 

INTRODUCTION 
 

The findings presented here continuously extend our contribution from last CERME 

conference (Samková & Hošpesová, 2015). The referred study belongs to a three-year 

project focusing on opportunities to influence professional competences of future primary 

school teachers through experienced inquiry based mathematics education. Within this 

project we aim to implement inquiry based methods into a set of university mathematics 

courses for future primary school teachers, and observe what impact the implementation 

has on students’ knowledge and beliefs. As one of the diagnostics tools in this project we 

use an educational tool called Concept Cartoons. 
 

In the previous contribution (Samková & Hošpesová,2015) we introduced Concept 

Cartoons in their diagnostics role. We showed that suitably chosen Concept Cartoons 

allow us to distinguish between subject matter knowledge and pedagogical content 

knowledge in the sense of Shulman (1986), and also between procedural and 
conceptual knowledge in the sense of Baroody, Feil and Johnson (2007). 
 

In this particular study we concentrate more deeply on relation between the 

composition of a given Concept Cartoon and its suitability for investigating teachers’ 
knowledge. Our research question is: What attributes of Concept Cartoons allow us to 

use them for investigating future teachers’ mathematics subject knowledge? 

 

THEORETICAL BACKGROUND OF THE 

RESEARCH Teachers and their knowledge 
 

Teachers and their knowledge needed for proper conduct of teaching are the focus of 

many educational researches. In this contribution we shall pay attention to areas related 
to Shulman’s knowledge base for teaching (1986, 1987), and Rowland’s knowledge 

quartet (Rowland, Turner, Thwaites, & Huckstep, 2009). 
 

From Shulman’s concept we focus on categories called subject matter content 
knowledge (SMK) and pedagogical content knowledge (PCK). The category of SMK 
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can be understood as “knowledge for oneself”, i.e. knowledge that the teacher can use 

during his/her own learning of a given topic. The category of PCK can be understood 

as “knowledge for helping others”, i.e. knowledge t hat the teacher can use during 

teaching a given topic to someone else. In general, SMK and PCK are unequal but not 

disjunctive. 
 

According to Grossman (1990), PCK consists of four components: conceptions of 

purposes for teaching subject matter, curricular knowledge, knowledge of pupils’ 

understanding, and knowledge of instructional strategies. Our study relates to the last 
two. Knowledge of pupils’ understanding refers to knowledge of pupils’ conceptions 

and misconceptions related to a given topic, and to extend and limits of pupils’ 

understanding of this topic. Knowledge of instructional strategies refers to strategies 

and representations needed for teaching a given topic. 
 

Rowland’s concept of knowledge quartet relates specifically to knowledge needed for 

teaching mathematics at primary school level. It consists of 20 categories grouped to 

four dimensions: foundation, transformation, connection, and contingency. The 

foundation dimension refers to teacher’s theoretical background and beliefs, 

transformation to knowledge-in-action with central focus on representations 

(analogies, examples, explanations, etc.), connection to ways the teacher achieves 

coherence within and between lessons, and contingency to teacher’s responses to 

unpredictable events in the classroom. Our study relates to all of these dimensions. 
 

Rowland et al. (2009) also specify how knowledge quartet relates to SMK and PCK: 

foundation knowledge includes most of SMK, transformation knowledge belongs mostly 

to PCK, connection and contingency knowledges both combine SMK and PCK. 
 

Concept Cartoons 
 

In the research referred here we study a primary-school educational tool called Concept 

Cartoons (Naylor & Keogh, 2013). Each Concept Cartoon is a picture showing a situation 

well known to pupils from school or everyday reality, and a group of children in a bubble-

dialog. The texts in bubbles present alternative viewpoints on the situation or alternative 

solutions to a problem arising from the situation (see Fig. 1). 
 

Originally, Concept Cartoons were created as a classroom tool oriented on pupils, their 

goal was to support teaching and learning in science classroom by generating 

discussion, stimulating investigation, and promoting learners’ involvement and 

motivation. Later the tool also expanded to mathematics (Dabell, Keogh, & Naylor, 
2008). When working with Concept Cartoons, the pupils have to choose all children in 

the picture that are right, and justify their choice. 
 

According to research conducted by authors of Concept Cartoons (Naylor, Keogh, & 

Downing, 2007), the lack of agreement amongst the children pictured in the Concept 
Cartoon encourages pupils to join the discourse with their own opinions, and such 
discourse can take a form of sustainable and purposeful argumentation. 
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Figure 1: Concept Cartoon on multiplication; template with empty bubbles and empty 

board taken from (Dabell, Keogh, & Naylor, 2008), names of children added 

 

In our project, we aspire to use Concept Cartoons as a diagnostic instrument for 

investigating various aspects of future primary school teachers’ mathematics content 

knowledge. We understand each Concept Cartoon as a model of a classroom situation, 

and observe how the future teachers respond to such a situation. The situation modelled 

by the Concept Cartoon is predictable for an experienced teacher but may be 

unpredictable for an inexperienced future teacher. That means that from future 

teachers’ training perspective, Concept Cartoons may be considered as models of 

contingent situations in the sense of Rowland’s knowledge quartet, i.e. as models of 

situations where both SMK and PCK come into play. This attribute of Concept 

Cartoons shall ensure that data collected with Concept Cartoons might refer to both 

SMK and PCK. 
 

We also need to be sure that Concept Cartoons allow us to collect enough data. For this 

purpose we shall supplement Concept Cartoons by a set of investigative questions, and 

we hope that the above mentioned way how Concept Cartoons encouraged pupils to 

present their own opinions during science lessons will also work in the case of future 

teachers during mathematics lessons. Hopefully the lack of agreement amongst the 

pictured children shall lead future teachers to responsiveness towards Concept 

Cartoons on mathematics topics, and towards willingness to contribute to the 

discussion pictured in them. 
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But still we are aware that Concept Cartoons were originally created for a different 

purpose, so that it is important to verify whether and what Concept Cartoons are 
suitable for the knowledge diagnostics. 
 

DESIGN OF THE STUDY 
 

Participants 
 

Participants of the research were 129 university students, future primary school 
teachers, in full-time or distance form of study. In our country, primary school teachers 

are not math specialists, they teach all primary school subjects.  
 

Course of the research 
 

The research was conducted in two separate stages. 
 

The first stage 
 

For the first stage of the research we selected four Concept Cartoons from the original 

set created by Dabell, Keogh, and Naylor (2008). We picked out Concept Cartoons that 
differed in several factors: 
 

- type of the pictured situation 
 

- classroom event; 
 

- everyday event; 
 

- type of the text in bubbles 
 

- proposal of a result; 
 

- proposal of a procedure and a result; 
 

- advice to a pupil who made a mistake; 
 

- number of bubbles with correct alternatives. 
 

These Concept Cartoons were assigned to students on a worksheet with four common 
questions: 
 

1) Which child do you strongly agree with? 
 

2) Which child do you strongly disagree with? 
 

3) Decide which ideas are right and which are wrong. Give reasons for your decision. 
 

4) Try to discover the cause of the mistakes, and advise the children how to correct them. 
 

Students worked on worksheets individually, approximately 80 minutes.  
 

Data from worksheets were processed qualitatively, using open coding (Miles & 

Huberman, 1994). We focused on displays of SMK and PCK related to provision and 

recognition of right and wrong answers, to recognition of procedures used by pictured 

children, and to identification of the causes of mistakes. Detailed description of 

analysis of data connected with two Concept Cartoons that proved to be suitable for 
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investigating SMK and PCK, and particular results belonging to data from 64 future 

primary school teachers in full-time form of study were reported in (Samková & 
Hošpesová, 2015). 
 

The second stage 
 

Based on findings from the first stage, we created 22 own Concept Cartoons, and used 

them in the second stage. 11 of them were modifications of original Concept Cartoons 

(just some texts in bubbles were adjusted to suit better our purpose), 11 were brand 

new (new pictured situation, new perspectives in bubbles). For some of these Concept 

Cartoons we also established new types of the text in bubbles: 
 

- proposal of a procedure; 
 

- proposal of a statement (e.g. a rule); 
 

- opinion on the validity of a statement; 
 

- opinion on the number of solutions; 
 

- reference to an absent schema. 
 

When creating the new Concept Cartoons, we put into bubbles various more or less 

usual pupils’ conceptions or misconceptions, descriptions of various ways of solving 

(correct, incorrect), or intentionally prepared authentically looking misconceptions (for 

a sample of such a misconception see Samková & Tichá, 2015). We searched for 

inspiration in our own teaching experience and in teaching experience of our 

colleagues (e.g. Tichá & Hošpesová, 2010), in results of educational research (e.g. 

Ryan & Williams, 2011; Bana, Farrell, & McIntosh, 1995), in books and textbooks 

(Ashlock, 2002, 2010). The process of creation of one of the Concept Cartoons is 

described in detail in (Samková, Tichá, & Hošpesová, 2015). 
 

These Concept Cartoons were assigned to various groups of participants. 
 

Data from both stages of study were again processed qualitatively. In this time, we 

focused on displays of SMK and PCK described above but this time in relation to 
composition of given Concept Cartoons. We also monitored the amount of relevant 

data obtained from participants to various compositions of Concept Cartoons. 

 

FINDINGS 
 

For better comprehensibility of this section we shall illustrate the reported findings by 

means of a set of Concept Cartoons that are all based on common strategies for mental 

multiplication of integers. Such topic belongs to primary school curriculum, where we 

can find recommended strategies as rearranging numbers (e.g. counting 2 x 5 instead 

of 5 x 2), rearranging operations (e.g. counting 14 x (2 x 5) instead of (14 x 2) x 5), 

using repeated operations (e.g. counting 120 : 8 as 120 : 2 : 2 : 2), adjustment (e.g. 

counting 18 x 6 as (18 x 5) + (18 x 1), or counting 18 x 9 as (18 x 10) – (18 x 1)), using 

inverse relationships (e.g. calculating 12 x 25 as 12 x (100 : 4) = (12 x 100) : 4 or as 

12 : 4 x 100), etc. For a detailed overview see e.g. (DfE, 2010). 
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Bubbles with just results 
 

One of the studied types of Concept Cartoons contained bubbles proposing various results 

(solutions) of a pictured task. If the task was in a form of a calculation (e.g. as in Fig. 2, 

except Petra’s bubble), then the respondents too often tended just to compare the correct 

result of the calculation with numbers in bubbles, and did not seek procedures hidden 

behind the incorrect results. Even though all four questions were assigned with the 

Concept Cartoon. These Concept Cartoons often emerged as not enough thought-

provoking, providing little data, and thus not suitable for diagnosis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Concept Cartoon with results in bubbles; template with empty bubbles and 

empty board taken from (Dabell, Keogh, & Naylor, 2008), names of children added 

 

Among Concept Cartoons in our research we found just one exception – a Concept 
Cartoon containing various results to a calculation 5904 + 5106, where all proposed 

results were composed only from digits 1 and 0. This unusual composition of numbers 

attracted respondents’ attention, it showed as very thought-provoking, and we got a lot 

of relevant data (for more details see Samková & Hošpesová, 2015). 
 

In Concept Cartoons containing bubbles with results we also used tasks in the form of a 

word problem. In case when the word problem is rather difficult to solve (e.g. unequal 

partition problem with compared quantities unknown), the Concept Cartoon is suitable for 

investigating respondents’ knowledge of solving strategies as well as their grasping of a 

situation: the respondents who tend to avoid solving the difficult word problem, try to 

verify all offered alternatives instead, and this activity can reveal the level of their grasping 

of the situation (for more details see Samková & Tichá, 2015). 
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Bubbles with reference to an absent schema 
 

As diagnostically valuable appeared bubbles introducing a result and referring to an 

absent schema leading to this result (e.g. Petra in Fig. 2). These bubbles were often 
though-provoking, respondents made attempts to find out what schema the child was 

talking about, they often proposed their own schemas that could lead to the result. In 

this case the Concept Cartoons played a similar diagnostic and developmental role as 

problem posing (namely as posing problems corresponding to a given calculation, see 

Tichá & Hošpesová, 2010). 
 

Bubbles with procedures / with procedures and results 
 

Another of the studied types of Concept Cartoons contained bubbles proposing various 

solution procedures of the pictured task, either with a result or without it (Fig. 1). With 

this type of bubble content, respondents can comment described results and procedures, 

look for errors in procedures leading to incorrect results (and also in procedures leading 

to correct results). This kind of Concept Cartoons proved to be thought-provoking for 

respondents. Unlike the previous case with just results, now a lot of concrete facts is 

offered to the respondents to judge and discuss, so that the respondents’ responses provide 

a lot of relevant data on various dimensions of knowledge: 
 

S11: Dan decomposed 26 as 20+6, and then added 12x20 to 12x6. His procedure 

is similar to "column" multiplication. 
 

Petra: the same as Dan, she just multiplied 26 by 10+2. 
 

S19: I agree with Dan and Petra. And also with Victor – but he should not use 

the formulation "have to", better would be "may". 
 

Victor: his procedure  is not the only one that is right. But he is right.  

10x20=200, 2x6=12. Transparently and quickly solved! Correct. 
 

For the diagnostic purposes, it showed profitable to include into one of the bubbles a 
procedure that is “clever” (unusual, tricky, advant ageously using a certain attribute or 

relation) – e.g. as in Eve’s bubble in Fig. 3. Such bubble allows to reveal good 

knowledge when a respondent is able to decode the background of the procedure (S4 

below), and also poor knowledge when the respondent offers inappropriate explanation 

and/or blames the child to count randomly (S15 below): 
 

S4: 12x100=1200, 100:4=25, 1 is missing to 26, 1x12=12 
 

300+12=312 
 

S15: Eve replaced 26 by 00, and got 1200. Then she divided 1200 by number of 

digits (4). In the end she added those 26 that had been previously replaced by 

zero. 
 

The result is correct, but with different numbers the rule (the procedure) 

does not hold. A coincidence. 
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To investigate knowledge more intensively, we may include into one of the bubbles a 

procedure that is “clever” but contains a mistake i n the last step, e.g. as in David’s bubble 

in (Samková & Hošpesová, 2015), or in Tina’sbubble in Fig. 1. But we must be careful 

with including this kind of bubbles – wh en a “clever” procedure is hard to decode, then 

the same procedure with a mistake might be undecodable. It happened in our research with 

Tina’s bubble in Fig. 1: only 1 of 34 respondents was able to find the background of Tina’s 

procedure, the others left her bubble without any comments or with responses like “I do 

not know what she is doin g”. To clarify the situation (both to researchers and to 

respondents), we assigned the respondents a supplementary Concept Cartoon with Tina’s 

and Eve’s bubbles together (Fig . 3). The presence of the correct version helped several 

students to decode the Tina’s procedure as well. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3: A supplementary Concept Cartoon to Fig. 1 

 

“Clever” procedures (with or without mistakes) appe ar in classroom only rarely but 
they always announce a pupil that is thoughtful enough to produce an unusual idea, or 

courageous enough to try an unusual procedure that might be profitable. Even if being 

rare, we consider such moments as very important steps in the pupil’s learning process, 

and the teacher should be prepared for them. 
 

 

CONCLUSIONS 
 

In this study we focused more deeply on an educational tool called Concept Cartoons, and 

on its possible usage in diagnosing mathematics content knowledge of future primary 

school teachers. We conducted a large survey with more than 100 participants, and tested 

with them more than 20 different Concept Cartoons. During data analysis we observed 

what attributes of Concept Cartoons allow to collect enough data that are 
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suitable for the diagnosis. Many of the original Concept Cartoons appeared to be 

unsuitable for these purposes, so that we prepared and tested also our own Concept 
Cartoons. 
 

Findings show that the decisive attribute is the form of the texts in bubbles. The greatest 

amount of relevant data we got while using Concept Cartoons containing procedures 

in their bubbles. This type of bubble content was thought-provoking, and provided a 
lot of data on both SMK and PCK aspects related to provision and recognition of right 

and wrong answers, to recognition of procedures used by pictured children, and to 

identification of the causes of mistakes. 
 

Concept Cartoons with just results in their bubbles appeared often as unsuitable, especially 

when the task was in the form of a calculation. In these cases the respondents tended to 

compare the results in bubbles with the correct result, and did not attempt to seek 

procedures hidden behind the results. Such Concept Cartoons provided little relevant data. 

Nonetheless, it was possible to take advantage of this type of Concept Cartoons in 

diagnosing – we used them for investiga ting just SMK, or took them as a basis for a new 

Concept Cartoon with a special bubble(s). The special bubbles contained unusually 

looking numbers that attracted respondents’ attention, or referred to an absent schema to 

provoke respondents to pose their own schemas. 
 

We also introduced special bubbles with a “clever” procedure, and with a “clever” 

procedure containing a mistake. In this case the difficulty of the bubbles must be 

determined carefully to optimize cases when the respondents are not able to decode 
the procedure and thus the bubble provides little relevant data. 
 

Our research confirmed that Concept Cartoons are able to encourage future teachers to 

present their opinions on mathematical topics and display their mathematics content 
knowledge through this activity, and established a typology of Concept Cartoons 

suitable for such purposes. 
 

NOTES 
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This paper discusses the relationship between teacher’s knowledge and the use of 

learning opportunities emerging from classroom interactions. In the context of 

non-standard measurements in primary school, we identify and characterize 

several connections related to the mathematical foundations of measurement. Our 

results confirm that different types of knowledge can help teachers to take 

advantage of the learning opportunities stemming from connections made in the 
classroom context. The link between extra- and intra-mathematical connections is 

also discussed. 
 

Keywords: Connections, Teacher Knowledge, Measurement, Learning 

opportunities 
 

INTRODUCTION 
 

Recent body of research on mathematics education has been fruitful in 

understanding teachers’ knowledge conceptualizations (e.g., Mathematical 
Knowledge for Teaching–MKT; Knowledge Quartet–QK; Mathematics Teachers 

Specialized Knowledge–MTSK). When analyzing the content of such models, 

connections are perceived in diverse ways (and are given different roles), either 

implicitly or explicitly. For example, Rowland, Turner, Thwaites, and Huckstep 

(2009) consider connections as a domain. In the case of Mathematical Knowledge 

for Teaching (Ball, Thames & Phelps, 2008), connections allow utilizing content 
of some of the sub-domains of such framework. 
 

When focusing on the way connections are established, several categorizations 

have been developed (e.g., De Gamboa & Figueiras, 2014; Montes, Ribeiro, & 

Carrillo, 2016) as a means of clarifying the kind of linkages that can be generated 

by teachers and students. In order to deepen our knowledge of connections and their 

role in practice, as well as conceptualize ways to improve the effectiveness and 
utility of such connections, it is necessary to study the concretization of the 

aforementioned categorizations, as well as expand them in relation to several 

mathematical topics. 
 

In practice, concretization of connections typically results in two distinct cases— 
anticipated situations, prepared by the teacher in advance; and those that could not 

anticipated, as they are triggered by students’ comments (e.g., linked with 
contingency moments, as noted by Rowland et al., 2009). These concretizations are 

perceived, from a research perspective, as an opportunity for learning and 
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developing a deeper and broader understanding of the content of teachers’ 
knowledge, taking into consideration the specificities of such knowledge.  
 

In this work, we focus on a prospective primary teacher’s actions, and revealed 

knowledge. We analyze an episode she has prepared in advance, aiming to explore 
non-standard length measurement units in the classroom. In that sense, we discuss 

the use of mathematical connections as a way to create and explore learning 

opportunities, and analyze how teachers’ knowledge can foster the use of such 

opportunities in the classroom. 
 

THEORETICAL BACKGROUND 
 

Attaining understanding of the measurement process is not a straightforward 

process, as in many mathematical topics (e.g., adding or dividing fractions) 

comprehension of the steps involved may be more complex than the process itself. 
Piaget (1972) noted that acquiring the notion of magnitude, for example, requires 

going through different stages, from the use of words to (correctly) express the 

magnitude, through grasping the necessary concepts, until the knowledge about the 

measurement of such magnitude is finally attained. The path through such stages is 

complex and involves a broader and deep understanding of the concept image and 
definitions involved (Tall, 1988). 
 

Stephan and Clements (2003) posited that six key concepts have to be mastered to 

develop a full understanding of and skills required for measurement: (i) Equal 

partitioning—mental process of division of an object into equal parts, requiring the 

acknowledgement of the divisibility of the object; (ii) Unit iteration—skill to 

exhaustively repeat the unit successively to cover the object; (iii) Transitivity— 

recognition of the mathematical property of measure; (iv) Conservation of the 

measure through some transformations; (v) Addition and accumulation of 

distance—recognition that the measurement process outcome is the measure of the 

object (how many units have to be repeated to equal the measurement of the object); 

and (vi) Relationship between number and measure, implying accepting that a 

variation of the unit of measure would generate a change in the measurement 

outcome (total amount of units). These six key concepts are considered when 

discussing the nature of the connections employed by teachers and those emerging 

from the answers and/or comments students make in response to different 

problems. 
 

Teachers’ knowledge of measurement is essential for ensuring that the students 
develop requisite knowledge and awareness of the topic. In that sense, a broader 

understanding of the content of such knowledge is a crucial aspect for  

conceptualizing ways for improving education. Considering the MKT 

conceptualization, in the scope of this study, four sub-domains are of crucial 

importance, namely Common Content Knowledge (CCK), Specialized Content 

Knowledge (SCK), Knowledge of Content and Students (KCS) and Knowledge of 

Content and Teachers (KCT). 
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The CCK is associated with knowing what instruments to use (in the sense of 

standard instruments/measurement) for measuring different entities. It also 

involves being able to use the instruments to correctly perform a certain 

measurement, with the understanding that no empty space must be left, as well as 

that no overlaps should exist (instrumental knowledge). Developing teaching tasks 

requires complementary content knowledge, in particular SCK related to the 

knowledge of the six key concepts involved in measurement (considered by 

Stephan and Clements, 2003). Possession of such knowledge facilitates 

understanding the whys and hows of their importance for the children to learn 

(while linking it with future learning goals). Thus, SCK corresponds to the core 

aspect of the knowledge that allows teachers to give meaning and interpret 

students’ solutions and comments (as a part of the interpretative knowledge, 

recommended by Ribeiro, Mellone and Jakobsen, 2013). 
 

Complementarily to CCK and SCK, when teachers conceptualize and implement 

mathematical tasks, they are required (in the view of many scholars and practitioners) 

to anticipate students’ difficulties, as well as to pay attention and appropriately 

respond to students’ comments. Such aspects of teachers’ knowledge are an integral 

part of the KCS, which includes the ability to anticipate student difficulties in 

differentiating the measurement instrument (non-standard unit, such as the hand) and 

the measuring unit (e.g., finger, span), as well as in using non-standard measuring 

units (e.g., using the finger length or width). Moreover, teachers must be able to use, 

prepare, and implement all classroom tasks with mathematically significant aims, as 

well as perceive (and use) students’ comments as an opportunity to make mathematical 

remarks. This approach is directly related to teachers’ KCT, including the knowledge 

required to take advantage of students’ questions, comments, and errors about the 

measuring units and the measurement procedure as a means of broadening the 

instruction and increasing potential for student understanding. Teachers are advised to 

incorporate students’ comments and consider errors they make when solving problems 

as a starting point to clarify some key (and possibly problematic) ideas on 

measurement. 
 

Similarly to teachers’ knowledge, different categorizations have been developed 
when attempting to elucidate connections. For example, De Gamboa and Figueiras 

(2014) considered two principal connection types—extra-mathematical 

connections and intra-mathematical connections. According to the authors, extra-

mathematical connections are formed between a mathematical content and a non-

mathematical situation, such as a real life problem or content from another school 
subject. Intra-mathematical connections, on the other hand, can emphasize 

transverse processes, such as generalization, communication, or heuristics for 

problem solving, or can be conceptual connections that link different features of 

concepts, such as representations, procedures, or properties. 
 

In their recent work, Montes et al. (2016) focused on the relationship between such 

connections and a concrete task, highlighting the differences between the intra- and 
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extra-mathematical connections, which they label as outside-mathematics 

connections. In the present study, two types of intra-mathematical connections are 

considered, following the framework proposed by Montes et al. (2016). More 

specifically, we analyze connections internal to the task, which occur when the 

teacher uses various aspects related to the concept included in the task, as various 

representation systems, or the relationship between a measure and a unit of 

measurement. We also focus on transverse connections, which are linked to the 

nature of some mathematical concepts that emerge in different mathematical 

contexts. This is necessary, as the notion of measure is first introduced in primary 

school, but is also discussed and expanded upon in subsequent educational stages 

(e.g., while using absolute values or in elucidating the meaning of definite 

integrals). 
 

The relationship between quantities of length and numbers generates several 

mathematical questions (Stephan & Clements, 2003). Such questions are related to 

some other mathematical connections, such as the need for using the same unit and 

the procedure when performing a measurement; the inverse relationship between the 

length of the unit and the final result (number of units); the possibility of obtaining 

slightly different results using the “same” unit (e.g., hands, finger, feet) and the same 

procedure; the approximate nature of any measure and the ways we can express it 

(using whole numbers, fractions, irrational numbers, etc.). The answers to those 

mathematical questions are the pillars on which the extra-mathematical connection 

can be built. When shifting the focus from the real world problem to its mathematical 

model, several intra-mathematical connections can emerge, and their use can foster 

the development of students’ deep understanding of length in both mathematical and 

real context. Whenever such intra-mathematical connections occur, they are 

considered sub-connections (as they are imbedded in the extra-mathematical 

connection – solving the “real life” problem). 
 

CONTEXT AND METHODS 
 

Data has been collected as part of the 4th year of the teachers’ training program – 

at University Autònoma of Barcelona. Prospective Teachers (PT) are required to 

record some of their classes during the field practice (a total of 10 hours out of 240 

hours). They have then to select one of such classes and select what they consider 

rich episodes in terms of the mathematical content approach and the students 

understanding. For selecting such episodes, they should use Sherin, Linsenmeier 
and van Es’ (2009) criterias: window, clarity and depth. 
 

In order to select and analyze the episodes using Sherin, Linsenmeier and van Es’ 

(2009) criteria, PTs are expected to activate specific professional knowledge, 

namely Common Content Knowledge (CCK), Specialized Content Knowledge 
(SCK), Knowledge of Content and Students (KCS) and Knowledge of Content and 

Teaching (KCT). In our analysis of PTs practices and analysis, we have also used 

Sherin, Linsenmeier and van Es’ (2009) criteria for characterizing the knowledge 

PT’s activate, in terms of the subdomains of MKT (Ball et al, 2008). 
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Amongst the several case studies that have been developed as part of a broader 

research project, in this paper, we focus on a PT, Carla, and her exploration of three 
tasks pertaining to length measurement using non-standard units, where Sherin, 

Linsenmeier and van Es’ (2009) criteria were used at a high level. 
 

Thus, in the discussions that follow, we focus on an episode involving three tasks 

exploring the use of non-standard units for measuring the length in a “real life” 

(classroom) context, as it helps reveal Carla’s knowledge of connections. It is 

important to note that, although the analysis tends to focus on identifying missed 

instruction opportunities, such situations are perceived as learning opportunities, 

and as a powerful tool for use in education. Thus, their inclusion enhanced the 
discussion presented in the subsequent sections. 
 

When analyzing Carla’s work, focusing on connections, we adopt categorizations 

proposed by De Gamboa and Figueiras (2014) and Montes et al. (2016) to provide 

analytical sensitivity for detecting emerging connections, in terms of their nature 
and their relationship with the task performed. These connections are characterized 

with respect to the learning opportunities they entail. Finally, we analyze how 

teachers’ knowledge can help students to take advantage of the learning 

opportunities that emerge within the classroom. 
 

ANALYSIS AND DISCUSSION 
 

The analysis that follows pertains to an episode in which the teacher generates a 

discussion about how to measure some lengths using non-standard measures. Her 
goal in implementing the three tasks explored here is to prompt the children to 

conclude that standard units of length have to be used in all measurements. In these 

tasks, students had to measure height of a book using their hands, width of their 

classroom using their feet, and the height of a pot of glue using their fingers. 
 

As the task involved measuring lengths in a “real life” context, an extra-

mathematical connection emerges, linked to a problem that needs to be answered 

using a mathematical perspective (how can we compare and represent lengths?). 

This connection relates the length with the numerical value representing such 

length, and it is grounded on the comparison of the particular length to be measured 

with the length of an object that can be used as a reference (hands, feet, etc.), 

referred to as unit of measurement. In the particular case we focus on, the extra-

mathematical connection underpinning the episode concerns the relationship 

between the understanding of length as an attribute of real world objects, and the 

mathematical foundation of length’s measurement. 
 

From the analysis of the episode, four sub-connections pertinent to the task (in 
particular, intra-mathematical conceptual sub-connections) and one transverse 

sub-connection can be identified. 
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One example of conceptual sub-connection emerged when Hugo pointed out the 

relationship between the length of the unit of measurement and the numerical result 

obtained (connecting the notion of quantity/size and its numerical representation): 
 

Teacher: Can anyone tell me why we have obtained different results?” […] 
 

Hugo: Each person has a bigger hand and the bigger it is, the less we get. And the 

smaller they are (the hands), the more they fit. 

 

This connection emerged from the task, presenting the teacher with an opportunity 
for deepening students’ understanding of the inverse relationship between the size 

of the unit of measurement and the number of units needed, which should result in 

the same absolute value if the same procedure is used (Stephan & Clements, 2003). 

It corresponds to an anticipated connection, revealing Carla’s knowledge of the 

mathematical foundations of length’s measurement related to the relationship 

between number and measure (Stephan & Clements, 2003), a particular aspect of 
the content of CCK. 
 

Another opportunity for this type of sub-connection to emerge arose when Isaac 

asked what would happen if they changed the way they open their hands (change 
in the measurement procedure –how to use the resource–, while using the same 

resource): 
 

Isaac: Is it possible to do it like this as well? (Opening the hand completely) 
 

Teacher: Of course, another thing is how we put our hands. If some of you put them 

like this (partially opened) and some of you put them as Isaac did (completely 

opened), Isaac will get less . . . . But it doesn’t mean that it is wrong; it simply 

indicates that we have different hands and we have measured differently. 

 

Such sub-connection is made possible owing to the teacher’s knowledge of the 

relationship (similarities/differences) between two different uses of the same resource 

for measuring the same distance. Isaac’s question, and the connection elaborated by 

the teacher, creates the opportunity for the students to understand that if the procedure 

is not the same, the results will not (necessarily) be comparable. In that sense, although 

Carla eludes at the connection, her explanation remains only at a superficial level, thus 

not allowing students to deepen their knowledge (and conception) of length. In fact, 

by saying “it doesn’t mean that it is wrong,” Carla is likely confusing the students, 

who consequently may not appreciate the importance of following the same procedure 

when measuring length. In that sense, although she refers to the specific sub-

connection, the opportunity for sustaining/developing students’ learning and 

understanding of the notion of length is lost (lost connection opportunity). The 

elaboration of such sub-connection is sustained in Stephan and Clements (2003) 

categorization that mandates knowing 
 

(i) equal partitioning and (vi) relationship between number and measure, as both 
are necessary to appreciate that using different procedures and/or resources many 
produce different results, even if the same unit is used (CCK). On the other hand, 
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being able to make such connection requires teachers to possess knowledge related 

to the difficulties that children experience when learning how to measure length 

(KCS). Greater KCS could have also helped Carla to notice the relationship 

between understanding the procedure and the correct understanding of the notion 

of length. 
 

While discussing the results of the task concerning measuring the width of the 
classroom using students’ feet, another intra-mathematical connection emerged. 

When sharing the results, Miguel commented that, if one separates the feet while 
performing the measurement, the result would not be the same: 
 

Miguel: If we separate the feet we are not doing (measuring) anything.  

Teacher: Of course, we have to put them next to each other.  

This sub-connection corresponds to the relationship between the measurement result 

and the accuracy of the procedure. The teacher fails to take this opportunity to continue 

exploring such sub-connection by emphasizing that the procedure must be performed 

exhaustively (intuitive introduction of the notion of algorithm), in order to obtain the 

same answer when using the same measurement unit and representational system. 

Clearly, in-depth knowledge of the mathematical foundations of length’s 

measurement (CCK) is required in order to observe (become aware of) the importance 

of using an algorithmic approach that would yield exhaustiveness, which in Stephan 

and Clements’ (2003) key concepts would correspond to unit iteration. 

Complementarily, knowing that many students experience difficulties (KCS) in the 

iteration procedure, as well as in understanding the reasons behind the possible 

differences, would be useful to identify and explore such an important feature of the 

learning of measurement. Although these last two sub-connections may be perceived, 

at first glance, as elements of the same subset, the focus of the former was on how to 

place the resource (the unit), while in latter the focus is on how to join the object along 

the length. This sub-connection, and the associated knowledge and notions, are crucial 

to correctly perform length measurements, using either a non-standard unit or a 

standard one. 
 

Another connection related to the task emerged during the discussion of the way 

students measured the height of a pot of glue using their fingers (Ribeiro, Badillo, 

Sánchez-Matamoros, & Artès, 2016). Miguel’s answer was different from that 
offered by the rest of the class. While majority of students obtained numbers close 

to 10, Miguel’s answer was one. When Carla asked him to explain how he obtained 

that result, Miguel elucidated his reasoning by placing his finger perpendicularly 

to the base of the pot, while the rest of the class was placing their fingers parallel 

to the base: 
 

Teacher: No? How many fingers did you get?  

Miguel (putting the finger vertically along the glue package): One! 
 

Teacher: One? Like this? (The teacher repeats the measurement process using the 

indicator finger horizontally)  

Miguel: No, two . . . 
 
 
 
 

 

223 



Teacher: Two? With two, you can cover the entire distance?  

Miguel: No . . . ah . . . four . . .  

Teacher: I don’t know what you are measuring . . .  

Miguel: Ah, four, four . . .  

Teacher: No! It can’t be . . . you should get eight; you are doing it wrong.  

This situation provides an excellent opportunity to discuss the importance of 

establishing a common procedure when conducting measurements (an important 

sub-connection pertinent to the task). In this case, Miguel’s answers show the use 

of non-standard units in a non-standard way (Ribeiro et al., 2016). However, 

Carla’s arguments and exemplification indicate her sole focus on the standard 

measurement process. In that sense, she seems to be taking for granted the 

underlying procedures, thus disregarding an answer that differs from her own 

(Jakobsen et al., 2014). Finally, she also fails to grasp (or at least discuss with her 

students) the relationship between the number obtained and the measurement 

method used (in line with the key concepts on measurement proposed by Stephan 

and Clements, 2003). 
 

Ability to make such a sub-connection is grounded in different aspects of teachers’ 

knowledge. Awareness of such particularities could have helped Carla, as she could 

have expanded on Miguel’s ideas to attract the attention of other students to the 

importance of using both the same units and the same measurement procedures in 

order to obtain comparable results. Once more, such knowledge is related to the 

knowledge of the mathematical foundations of measurement (CCK), but also to the 

need to keep in mind the importance of the unit and procedure used, and the difficulties 

students usually experience in grasping these concepts (KCS). Moreover, ability to 

recognize situations (when and why) that would benefit from the use of children’s 

ideas for emphasizing an important concept (KCT) is also required for helping 

students to overcome the identified (or anticipated) difficulties. 
 

The transverse connection referred to at the start of the analysis arose during the class 

discussion, and corresponds to an implicit connection between the measurement and 

the numerical value that represents such measurement. It highlights that, even if all 

the students use (exactly) the same unit and procedure, it is possible to obtain different 

results, which need to be linked both with the approximate nature of any measurement 

and the constraints of the number set used for the representation (natural, rational or 

real). This particular connection emphasizes the importance of taking into account the 

students’ academic level, as it will influence the precision with which they will be able 

to represent the result of the measurement process. For example, eight feet or eight 

and a half feet can correspond to the same measurement obtained using one’s foot as 

the unit of measurement, if we are using only natural numbers. However, considering 

the differences between those two results can create the opportunity to reflect upon 

the necessity to follow the measurement procedures accurately, and emphasizes the 

importance of being able to recognize two different numerical results as a correct 
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measure of the same length. Moreover, having the knowledge that would facilitate 

formation of such connection can support children’s understanding of the necessity of 

introducing new “unknown” numbers (different modes of representation), pointing to 

the need to represent non-exact quantities in terms of natural numbers. It is in that 

sense that this connection can be considered as transverse. 
 

To use this transverse connection to broaden students’ understanding of 

measurement notions, Carla required SCK related to the approximate nature of 

measurement as well as to how such nature relates to the different number sets. 

Obviously, in order to make such relationship explicit in the classroom, the teacher 
is required to be in possession of a KCS pertaining to the difficulties students 

encounter (as was the case in this example, as mentioned earlier). Finally, it 

requires sufficient KCT related to being able to recognize opportunities for 

including students’ ideas in the ongoing practice. 
 

FINAL REMARKS 
 

The final set of sub-connections, when using real world contexts to develop 

mathematical knowledge and insights is perceived as one more contribution for 

deepening our understanding of teachers’ knowledge content. The analysis of the 

knowledge linked to the learning opportunities triggered by connections shows that 
the use of extra-mathematical connections may rely on underlying intra-

mathematical connections that require diverse kinds of knowledge to be used.  
 

As a result, the usefulness of the extra-mathematical connection for the 
construction of mathematical knowledge depends, at least partially, on the use of 

the intra-mathematical connections for the understanding of the mathematical 

foundations of length. In this case, four connections pertinent to the task examined 

in this work are related to the foundations of length’s measurement that are at the 

core of the activity. In addition, one transverse connection emerged, related to the 
understanding of the approximate nature of measurements. 
 

However, if those intra-mathematical connections are not enhanced or misused, 
students’ learning opportunities will be underutilized. In the case presented in this 

paper, starting from three tasks requiring students to perform non-standard 

measurements, five intra-mathematical connections emerged, but they were lost 

opportunities. In that sense, the extra-mathematical connection was misused in 

relation to those learning opportunities, as students’ attention was primarily drawn 
to units, while omitting to address some core aspects of measurement, such as equal 

partition and unit iteration. 
 

Even though there are several reasons for the teacher to misuse those learning 

opportunities, e.g. classroom management, knowledge analysis reveals that there are 

some types of knowledge that would help the teacher to take greater advantage of the 

learning opportunities that arose from the intra-mathematical connections. This 

knowledge is related to the mathematical foundations of measurement (CCK), 
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the possible difficulties students can face (KCS), the relationship between 

measurements of continuous magnitudes and different types of numbers (SCK), 

and knowledge of when and how to use students’ ideas to make some important 

remarks in the classroom. It is important to emphasize that all aforementioned types 

of knowledge are intertwined, as CCK and SCK are the pillars on which KCS and 

KCT are based. Thus, coordination of different kinds of knowledge allows 

teachers’ knowledge to acquire its specialized dimension. 
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In this paper, we present two frameworks – for secondary and primary levels - aimed 

at coding and supporting the development of mathematics teachers’ instructional talk 

in South Africa. Both frameworks draw from sociocultural bases focused on mediating 

categories within teacher talk, and quality indicators within them, and a press towards 

mathematics viewed as a network of scientific concepts. Both frameworks provide 

greater disaggregation, at the lower extreme in particular. This is important in turns 

of the imperative to support development of teacher talk in a context where 

disconnection, ambiguity and gaps in teachers’ mathematical knowledge are described 

as relatively common. 
 

INTRODUCTION 
 

Several frameworks are available in the international literature that characterise the 

quality of instruction in mathematics classrooms. For example, Hill et al’s (2008) 

Mathematical Quality of Instruction framework features aspects like lesson format and 

links to learning alongside teachers’ mathematical talk. For a range of reasons outlined 

below, our attention, in the context of linked research and development projects aimed 

at improving the quality of mathematics teaching across ten primary and ten secondary 

schools in South Africa, is more specifically on the quality of the mathematics that is 

made available to learn within instruction in mathematics classrooms. The format of 

instruction and the nature of learner participation therefore fall outside our central 

scope of attention. 
 

A number of issues - some overlapping and some differing - mark the research and 

development context when looking across secondary and primary mathematics. A key 

focus in the overlapping area is on what we call ‘mathematical discourse in instruction’ 

(MDI) – which, in parallel with the issues, is articulated in different ways across the 

two phases. Important differences relate to the much greater use of physical artefacts 

in primary mathematics, in comparison with secondary mathematics. Working 

developmentally in secondary and primary mathematics teacher education in this 

context is premised on our being able to characterise the pedagogic range of MDI at 

secondary and primary levels on the ground and build from this ground upwards. A 

focus on teachers’ mathematical talk has been central to this focus and a function of a 

range in the South African context that is broader than is commonly described in the 

international literature. 
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Key issues have been identified as concerns relating to teachers’ mathematical talk in 

South Africa. Some of these issues are linked with, and characterised, in frameworks 

in the international literature base. This is particularly true at the upper end of our 

concerns across primary and secondary levels where we have episodes of teaching that 

focus broadly on ‘rules without reasons’ (e.g. Skemp, 1987), This kind of teaching is 

widely critiqued in the international literature base as procedural and limiting of access 

to mathematical discourse. At the lower end though, the international literature 

contains much more limited disaggregation. Across our work, we have described 

episodes of teaching in both phases where concerns relate more fundamentally to 

mathematical coherence. In this teaching, we see episodes that sometimes confirm 

answers as though they are already known in the classroom space rather than deriving 

them, teacher talk about knowns as if they are unknowns, and talk that is infused with 

ambiguity, error and high levels of disconnection (Adler & Ronda, in print; Venkat & 

Naidoo, 2012). 
 

While typically, the instructional triad views teaching as mediating between students 

and the mathematical object in focus, the range of problems identified above, coupled 

with evidence of significant content and pedagogic content knowledge gaps amongst 

South African teachers, leads to our attention to the teacher – mathematical object 

relation as the key initial link to both describe and strengthen in order to support 

teaching development on the ground. 
 

The range overviewed above meant that we needed frameworks that allowed for 

adequate description and categorization of the ground. This involved the identification 

of key categories within instructional talk, and characterising quality markers that 

could also serve as developmental pathways within these categories. In this paper, we 

present and discuss the categories of instructional talk that we have focused on within 

MDI at secondary and primary levels, and the quality markers within them. Looking 

across the two framings of mediating talk, we comment on the ways in which they are 

linked by a concern with incoherence and error at the lower extreme, and with 

mathematics viewed as a network of scientific concepts at the upper extreme, with 

focus on structural relations and generality as key indicators of mathematics worked 

with in these ways within instruction. We go onto present episodes of teaching drawn 

from the lower and upper level of concerns and outline our ways of coding them using 

our respective coding frameworks. 
 

MDI FRAMEWORKS 
 

Across both phases, the concerns outlined earlier led to an emphasis on the view that 

that learning is always about something. Bringing into focus what this is, in terms of 

what learners are expected to know and be able to do, is central to the work of teaching. 

Marton and Tsui (2004) refer to this ‘something’ as the object of learning: ‘The object 

of learning … is defined in terms of the content itself … and in terms of the learner’s 

way of handling the content’ (p. 228). Foregrounding the connection between ‘object’ 

and ‘learning’ is central, and contrasts with lesson ‘goal’ 

 
 
 
 
 

 

229 



formulations. An object of learning in a mathematics lesson could be a concept, 

procedure or algorithm, or meta-mathematical practice. It goes without saying that the 

object of learning needs to be in focus for the teacher. 
 

Juxtaposing primary and secondary level frameworks allows us to highlight ways in 

which the two frameworks differ in the aspects they focus on within their overall 

commonalities of focus on the mediation of mathematics predicated on the need for 

structure and generality. 
 

MDI-Secondary (MDI-S) and mediating talk 
 

In the MDI-S framework captured in Figure 1, the key generative mechanisms for the 

work of teaching are exemplification, explanatory talk and learner participation (for 

detail see Adler & Ronda, 2015). What stands between (i.e. mediates) the object (and 

here of learning) and the subject (the learner) are a range of cultural tools: examples 

and tasks, word use and the social interactions within which these are embedded. In 

this paper, our focus is on teachers’ explanatory talk and how we think about quality 

within its two key features: naming and legitimating criteria. 

 

Figure 1: Constitutive elements of MDI-S and their interrelations  
 
 
 
 
 
 
 
 
 
 
 
 

 

Explanatory talk 
 

Our emphasis on explanatory talk draws on Bernstein’s (2000) notion of evaluation1. 
For Bernstein, any pedagogic discourse, and hence the discourse in mathematics 
lessons, transmits criteria as to what counts as mathematics. The transmission of 
criteria occurs continuously, be it implicitly or explicitly, through messages that are 
communicated as to what is valued with respect to the object of learning i.e. what is to 

be known or done, and how. We call this explanatory talk2, the function of which is to 

name and legitimate what is focused on and talked about i.e. related examples and 

tasks. Analyzing how objects3 focused on are named, and what is legitimated in an 

episode is key to being able to describe the mathematics made available to learn   
 

 

1 Bernstein’s notion of ‘evaluation’ is not to be conflated with assessment. 

2 The name here draws attention to the mathematical quality of the explication or elaboration offered – we could  
2 The name here draws attention to the mathematical quality of the explication or elaboration offered – we 
could equally have named this explicatory or mediating talk.  
3 Our use of ‘object’ here is in the most general sense and includes all that is in focus e.g. words, symbols, 
images, pictures, material objects, etc. 
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through explanatory talk, as well as reach a summative judgment on naming and 

legitimating as these accumulate over time in a lesson. 
 

• Naming 
 

Learners’ encounters with mathematical objects also occur through how these are 

named. We define naming to mean the use of words to refer to other words, symbols, 

images, procedures, or relationships, in the course of instruction. The tension in 

managing both formal and informal ways of talking mathematically, and thus naming 

what is focused on in class is now widely recognized. In WMC-S, we noticed some 

teachers’ reluctance to use formal mathematical language as it is “abstract and the 

learners are put off”, and others’ over reliance on formal talk with neglect of connecting 

mathematical ideas to colloquial meanings. 
 

We categorise naming within episodes as either colloquial / non-mathematical (and 

here we include everyday language e.g. ‘over’ in division, and/or ambiguous pronouns 

such as this, that, thing, to refer typically to what is being pointed to on the chalkboard) 

or mathematical. In this latter category we distinguish mathematical words used as 

labels or name only e.g. to read a string of symbols from formal mathematical language 

used. For example, in the first lesson extract below, transpose is categorised as non-

mathematical, despite its common use in our mathematics classrooms. This is not 

because the word transpose should not be used when solving equations and 

inequalities. Our point is simply that if this is used exclusively to describe an algebraic 

transformation, with no accompanying mathematical justification (e.g. we subtract 6 

from both sides of the equation) then underlying principles or properties like 

maintaining equivalence are never made explicit. Our purpose is to see the extent of 

both colloquial and formal mathematical talk and the movement between these. 
 

• Legitimating criteria 
 

We distinguish criteria of what counts (or not) as mathematical that are particular or 

localized, or call on memory (L) (e.g. a specific or single case, an established shortcut, 

or a convention) from those that have some generality (e.g. equivalent representation, 

definition, previously established generalization; principles, structures, properties), 

distinguishing partial (PG) e.g. variables described as “letters which represent numbers 

which we do not know”; from full generality (FG) e.g. variables described as “letters 

representing any number”. We are also interested in non-mathematical criteria (NM), 

everyday knowledge or experience (E), visual cues  

(V) as to how a step, answer or process ‘looks’ (e.g. a ‘smile’ as indicating a parabola 

graph with a minimum, or memory devices that aid recall (e.g. FOIL)); or when what 

counts is simply stated, thus assigning authority to the position (P) of the speaker, 

typically the teacher. We further indicate errors in legitimating talk, which fell 

largely within NM by a negative sign e.g. V- .  
The significance of these varying criteria is the opportunities they open and close for 

learning. Most obvious are the extremes of legitimations based on the one hand on 
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principles of mathematics, thus with varying degrees of generality, and possibilities for 

learners to reproduce or reformulate what they have learned in similar and different 

settings. On the other hand, appeals to the authority of the teacher) and/or visual cues 

produce a dependency on the teacher, on memory (this is what you must do); or on 

how things ‘look’, requiring imitation that is local or situational (Sfard, 2008). While 

imitation might be necessary in aspects of mathematics learning, these cannot be the 

endpoint of learning. The criteria for what counts as mathematics that emerge over time 

in a lesson are thus key to what is made available to learn in terms of movement towards 

scientific concepts. 
 

Table 1 summarises the categories and coding for explanatory talk. The categories 

themselves do not form a hierarchy – they distinguish different kinds of talk that 

emerge over a lesson in varying ways. In the second row are the levels we assign when 

we look at the accumulating categories across a lesson. The levels are hierarchical and 

reflect our privileging of mathematical names and principled criteria. We emphasise 

here that the assignment of a level in our analysis is an interpretive judgment, reflecting 

our privileging of generality through exemplification, mathematical names and 

principled criteria, and as these unfold over a lesson. 

 

Figure 2: Explanatory talk – MDI-S  
 
 

Naming  
Within and across episodes word use 
is: 
Colloquial (NM) e.g. everyday 
language and/or ambiguous 
pronouns such as this, that, thing, to 
refer to objects in focus 

 

Math words used as name only(Ms) 

e.g. to read string of symbols 

 

Mathematical language used 

appropriately (Ma) to refer to other 

words, symbols, images, procedures 
 
Use of colloquial and mathematical 
words 

 

Level 1: NM – there is no focused math 
talk – all colloquial/  
everyday 

 

Level 2: movement predominantly 
between NM and Ms, some Ma 

 

Level 3: movement between 
colloquial NM, Ms & formal math talk 
Ma 

 
 

Explanatory talk  
Legitimating criteria  

Legitimating criteria: 
Non mathematical (NM)  
Visual (V) – e.g. cues are iconic or mnemonic;  
Positional (P) – e.g. a statement or assertion, typically by the teacher, as if 
‘fact’.  
Everyday (E) 
 

Mathematical criteria:  
Local (L) e.g. a specific or single case (real-life or math), 
established shortcut, or convention  
General (G) equivalent representation, definition, previously established 
generalization; principles, structures, properties; and these can be partial 
(GP) or ‘full’ (GF) 
 
Criteria for what counts as mathematics that emerge over time in a lesson 
and provide opportunity for learning geared towards scientific concepts. 

 

Level 0: all Criteria are NM i.e. V, P, E 

 

Level 1: criteria include L – e.g. single case, short cut. 
 

Level 2: criteria extend beyond NM and L to include Generality, but this is 
partial GP 

 

Level 3: GF math legitimation of a concept or procedure is principled 
and/or derived/proved 
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Episodes and their analysis4
 

 

Secondary – Episode 1, lower end  
 

Solving quadratic inequalities is included in the Grade 11 curriculum. For the inequality  the 

teacher instructed the class that to solve for , we “do exactly the same” as the steps followed in solving  

the equation . After “transposing 4” to obtain , “you then factorise to obtain 

 He then wrote , looked to learners some of whom called out “greater than”, 
 
and completed the inequality . He then asked the class whether he should write ‘and’ or ‘or’ 

and while some learners called ‘and’ and others ‘or’, he said “I will take ‘and’”. He continued with  

and with some learners offering ‘less than’, and others ‘greater than’, he wrote x <-2 and said “x is less  

than negative two”. The answer produced on the board was  . Having produced this 
answer, he then asked learners: “Now how come is it that the sign changed?” (pointing to > in the second 
part of the answer) and worked with learners testing various numbers to confirm the two inequalities.  
Naming: With the exception of “this ‘and’ or ‘or’ thing” (and so demonstrative pronouns) both the teache 
and learners used mathematical words as labels or to name the symbol strings they were talking about, 
hence coded as follows: (Ms).  
While in MDI-S we do not level an episode, for our purposes here, mathematical words are used, but only 
for labeling or reading symbol strings. If this persisted through the lesson, naming would then belevel 2. 
Legitimating criteria: The legitimating talk accompanying the steps taken to write down the answer  

 for the inequality  were at the level of assertions with no rationale for obtaining 

the inequality relations, nor the erroneous connector ‘and’. (P- ) The interpretive judgment, if restricted to 

this episode, would be that the legitimation was by assertion, and erroneous, and so NM and level 0. While 
the teacher proceeded to test various numbers, these were used to confirm an asserted solution and not to 
derive it. 
 

Secondary – Episode 2, more familiar  
 

In a Grade 9 lesson introducing the division of algebraic fractions, the teacher used 

 as a first example to recall the rule “change the sign and swapover”. The same  

rule was applied to  and then she put up the third example  and said 

: “It’s one and the same thing. They give you something like this (writes symbols on 

board), ok? … Over here (points to  ÷ ) you just have two numbers, a fraction 

divided by a fraction, ok? (Learners chorus ‘yes’). Over here (pointing back to example 
3) is the same thing. I’ve got, here’s one fraction divided by one fraction (circles each 
fraction).  
 
 
 
 
 
 
 
 
 
 
 

 

4 Both episodes have been described previously in papers differently focused, and where they form part of a full 
lesson analysis. 

 
 
 
 

 

233 



She then asked learners what they needed to do to complete the division, and 
continued “… before you divide you factorise, because over here it concerns the 
common factor. Why? Because we want to have one, one term at the top and one term 
below, ok?”  
After completing the steps illustrated on the right, she concluded: “you just apply the 
same principle, it’s just that when it looks complicated just pause and say what must I 
do here?” Together with contributions from the learners, she says we “take out the 
common factor x squared and we get x squared bracket x minus 1 close bracket” and 

she writes: . The class continues to call out with her the next steps i.e.  
“change the sign and swap”, and then “cancel common factors” 
 

Naming: In this episode, non-mathematical talk NM through use of ambiguous pronouns (e.g. this), was 
accompanied by mathematical words used mainly to read strings of symbols (x squared bracket xminus 1 
close bracket) Ms. There was also some appropriate formal naming of objects (e.g. a fraction divided by a 
fraction, one term, common factor) Ma. This episode, again with the limitation that we do not assign levels 
to episodes, would be Level 2. 
Legitimating criteria: The overarching legitimating criteria in this episode were to previous examples as the 
‘same thing’ and their general structure – one algebraic fraction divided by another (GF). The “top” and 
“below” (V) of the fractions were pointed to as each needing to be “one term”, and so expressed as factors 
which were defined in Episode 2 as “dividing without remainder” (GF). The division follows a short cut (L) 
(remembered from previous work … change signs and ‘swap’) with rules and procedures (factorise first, take 
out common factor, I cannot just go and say …) that were stated, notderived (P).  
In overview, the criteria for recognizing the form of the expression were general, but the criteria for the 
procedure for division were dominantly localised, as there was reliance on rules, shortcuts, and in some cases 
assertions by the teacher. Hence, again with the limitation that it is a single episode, as there is some 
generality at least at the level of form, we would assign this as Level 2. 
 
 

MDI-Primary (MDI-P) and Mediating Talk 
 

Mediating for mathematical learning in relation to focal objects, and with a drive 

towards mathematics viewed in terms of a connected network of scientific concepts, 

was central to our work as well, but the key analytical foci, for better fit with the early 

primary years where much of our dataset was located, differed. In the primary years, a 

broad swathe of evidence points to the importance of using situations, diagrams, and 

physical artefacts to provide strong visualizable and imaginable underpinnings for the 

more abstract symbolic mathematical language that is to come. Mediating for 

connection is central to this work, with physical artefacts, inscriptions, and talk then 

being the key empirical phenomena in the context of tasks and example spaces for 

examining the nature and extent of connections seen in teachers’ MDI. We look, across 

these phenomena, for features related to the extent to which mathematical structure and 

generality are made available for appropriation in instruction. 
 

As with MDI-S, we focus specifically on the ways in which mediating talk is 

categorised, and the markers of quality developed within each of the MDI-P talk 

categories. The categories we have focused on relate to: generating solutions; building 

mathematical connections; building learning connections through explanation and 

evaluation. These categories and the quality markers within them are detailed in Figure 

3. 
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The ‘generating solutions’ category is focused on teachers’ problem-solving methods 

and strategies within the task and example space in that episode. The hierarchy in this 

category marks, at the lower end, some of the problems outlined earlier with 

incoherence and disruptions to mathematical problem-solving processes. At the upper 

end, quality is viewed in relation to the offer of methods of solving that have generality 

beyond the example space being worked with, and without restriction to the particular 

artefact or inscription being worked with in that episode. 

 

Figure 3: Explanatory talk – MDI-P   

Method for generating/ Building mathematical  Building learning connections: explanations and 

validating solutions connections  evaluations - of errors/ for efficiency/ with rationales 

   for choices 

    

No method or Disconnected and/or  Pull-back 

problematic incoherent 0 

generation/validation 0  Pull back to naïve methods 

0 Disconnected /incoherent  OR 

Mixing of knowns and treatment of examples  No evaluation of incorrect offers 

unknowns OR   

 Oral recitation with no   

 additional teacher talk   

Singular Every example treated  Accepts/evaluates offers 

method/validation from scratch 1 

1 1  Accepts lr strategies or offers a strategy 

Provides a method that   OR 

generates the immediate   Notes or questions incorrect offer 

answer; enables lr to    

produce the answer in the    

immediate example space    

Localized Connect between  Advances or verifies offers 

method/validation examples or artefacts/ 2 

2 inscriptions or episodes  Builds on, acknowledges or offers a more sophisticated 

Provides a method that 2  strategy 

can generate answers   OR 

beyond the particular   Addresses errors/ misconceptions through some 

example space   elaboration, e.g. ‘Can it be ----?’ ‘Would – this be correct, 
   or this?’ Non-example offers 

Generalized Vertical and horizontal (or  Advances and explains offers 

method/validation multiple) connections 3 

3 made between examples/  Explains strategic choices for efficiency moves 

Provides a artefacts/ inscriptions /  OR 

strategy/method that can episodes  Provides rationales in response to learner offers related 

be generalized to both 3  to common misconceptions 

other example spaces   OR 

AND without restriction to   Provides rationale in anticipation of a common 

a particular   misconception 

artefact/inscription    
 
 

The ‘building mathematical connections’ category is focused on the ways in which 

examples, in that episode’s example space, are connected within instruction. At the 

lower end, disconnected/incoherent treatment of examples within episodes, or 
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episodes involving oral recitation pupil responses (relatively common in a context 

where chorused chanting of answers is relatively common) with no teacher talk, are 

represented. At the upper end, multi-directional connections within the example space 

– which is treated as a linked set in the ways described in Watson & Mason’s (2006) 

work, and focused on structure and generality, are aimed at. 
 

In the ‘building learning connections: explanations and evaluations’ strand, our 

attention is on instruction focused on progression and explanation – teaching that 

presents mathematical discourse as having both progressions and rationales. Much of 

the coding in this strand is seen in the empirical space of teacher responses to learner 

offers. At the lower end, teaching that ‘pulls back’ towards more naïve strategies, or 

fails to offer any evaluation of learner inputs, is described – with both of these 

phenomena described in South African writing (see Ensor et al, 2009, for the former, 

and Hoadley, 2006, for the latter). At the upper end, instructional talk works to advance 

mathematical offers, and provide rationales for choices of steps. 
 

Episodes and their analysis 

 

Primary – Episode 1, lower end  
 

Halving’ is the topic being dealt with in a Grade 2 class. Initially, learners are given boxes/bottle tops and 
asked to make half of 12, 10, 8 and 4. In the following exercise, with bottle tops still available, learners are 
asked to work out half of the following numbers: 2, 4, 8, 16, 22, 24, 26, 32. In fieldnotes, the observers note 
that in the early examples, some children appear to ‘know’ the answer, but have trouble with halving two-
digit numbers. The teacher steps in to explain how to work out ‘Half of 26’.Each student pair in the class is 
asked to make 26 balls from clay – which they do taking extended time and, predictably, making balls of 
different sizes. The teacher draws 26 circles on the board in a line. Her explanation for how to work out half 
of 26 proceeds as follows: ‘I want us to count to 13, and move those balls aside (marks divide on the 
board). How many balls are on the other side?13 as well. So 13 is half of 26.’  
Method for generating/validating solutions: 0 (teacher’s explanation introduces the solution, 13, at the 
outset of the problem-solving process, and then verifies its correctness, rather than working with given 
quantities to deduce the unknown)  
Mathematical connections: 0 (through much of the episode, there is no additional teacher talk relating to 
the example space; where talk comes in, the example is dealt with in incoherent ways described above) 
Learning connections: 0 (no evaluation of learner working in this episode) 

 

Primary – Episode 2, more familiar  
 

Within a lesson focused on working on place value based ‘breaking down’ and ‘building up’ of numbers the 
first episode with this focus (following some work on counting and number bonds) involves a task asking the 
class to ‘break down the numbers:13, 19, 27, 45, 67, 93, into their place value by quantity, and following this 
being written up for all examples, then represent the tens and units quantities with ten strips and unit 
squares on the board’. Learners’ offers of the symbolic breaking down are written in by the teacher on the 
board: (e.g. 13 = 10 + 3). The teacher’s associated commentary included emphasizing the horizontal 
equivalences in each example, and working with the example space as a set to note that: ‘we have two digits 
this side (gesturing down the ‘tens’ break down values), and ‘now the remainder is one’ (gesturing down the 
‘units’ break down values). Multiple learner offers across this episode all involve correct answers, but teacher 
incorporates checks of these offers in two instances through making a counter-offer and asking learners to 
explain their choices e.g. when a learner states that ‘one ten’ strip is needed for 19, the teacher picks up one 
unitsquare, asks if this is okay, and then probes why not. 

 Method for generating/validating solutions: 2 (while the methods offered for generating solutions are   
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coherent and fit the example space, this talk would not generalise beyond two-digit numbers, and would 
also not deal well with either single-digit examples or multiples of ten where the breakdown need not 
necessarily have a ‘ones’ component)  
Mathematical connections: 3 (horizontal and vertical connections made consistently) 
Learning connections: 3 (teaching proceeds smoothly in alignment and with elaborations of learner offers; 
a common misconception is anticipated in her offer of a unit square instead of the ten strip suggested by the 
learner, with probing of why the teacher’s choice is incorrect) 
 

DISCUSSION 
 

Our focus in developing and using our frameworks is on the quality of mathematics 

made available in the classroom MDI. This focus contrasts with the broader scope in 

frameworks such as Hill et al’s (2008) Mathematical Quality of Instruction where 

features like lesson format and links to learning are incorporated alongside teachers’ 

mathematical talk. Our narrower focus includes more disaggregation between the two 

levels of concern (incoherence and error at the lower extreme, and structural relations 

and generality at the upper extreme). Thus, while across both frameworks, categories 

are theoretically informed, the levels within them are empirically derived with a view 

to allowing description across the pedagogic range. We have needed key indicators of 

mathematics worked with across this wider range in instruction than is typical in 

available frameworks in the international literature. This disaggregation assists with 

our goals for being responsible in our coding of what is present in instruction, and then 

being able to be developmentally responsive in our work with teachers. 
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This study investigates preservice teachers’ faults in problem posing. Based on earlier 

theoretical and empirical contributions in the field of problem posing, the study focuses 

on preservice teachers’ ability to pose problems based on a given representational 

settings within area of multiplication and division. Qualitative analysis of problems 

produced by 95 preservice teachers unveils typical mistakes. Classification of faults in 

problem posing primarily points to limitations in mathematical content knowledge but 

also in pedagogical content knowledge of prospective teachers. I discuss implications 

of the findings: what these mistakes tell us and how these findings can help us in 

prospective teachers’ training. 
 

Keywords: preservice teachers, problem posing, representations, multiplication and 
division. 
 

INTRODUCTION 
 

Could problem posing activity be used as a diagnostic tool for revealing students’ 

knowledge of mathematics and/or knowledge of math pedagogy? Expertise of 

prospective mathematics teachers includes complex set of different elements of 

psychology, pedagogy, mathematics, philosophy, and other sciences. Ma (1999) 

discusses teachers’ “profound understanding of fundamental mathematics” as expertise 

in mathematics and how to communicate with students. Ball and colleagues (2008) 

categorized mathematics knowledge for teaching into subject matter knowledge and 

pedagogical content knowledge (Ball et al., 2008). The later includes knowledge of 

content and students, content and teaching, and content and curriculum. One of newly 

recognized elements in math pedagogy is problem posing (Brown & Walter, 1990; 

Margolinas, 2013; Singer et al., 2015). Researchers recognize that knowledge about 

students, mathematical content and pedagogical content knowledge in teaching are 

intertwined (e.g. Ball et al., 2008; Liu, 2005). I presume that “problem posing 

proficiency” should not be looked upon as general element of teaching pedagogy 

separated from the math domain which is a subject of interest in the problem posing 

activity. Therefore, I focused on pre service faults in teacher’s problem posing in 

particular area of whole number multiplication and division. Note that evaluating 

teachers’ competences by studying faults is already recognized as a valuable approach 

in mathematics education research. For example, Ma (1999) examined and compared 

mathematics teachers in the United States and China by drawing attention to the type 

of mistakes they make. 
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In the following paragraph I explain how we can analyse design of math problems. 

Then, I will discuss in more details about what I mean by “proficiency in problem 

posing” and why I believe that it is important to attend to problem posing as a key 

teachers competence. 
 

Any problem can be characterized by context (real or formal mathematical), given 

information (quantities, relations), requirements and mathematical environment 

(Malaspina et al., 2016). Math problems are described within a problem space in terms 

of its context, of givens and unknown elements and of the relations between the 

elements. Psychologically, problem space is defined as a mental representation of a 

problem that contains knowledge of the initial state and the goal state of the problem. 

The context may be abstract as well as realistic. Stoyanova and Ellerton (1996) discuss 

problem posing situations in terms of the source of ideas (e.g. classroom activities or 

textbook). A collection of problems with the same problem space may be posed by 

setting or varying 1) what is given, 2) what is searched for (unknown), or 3) the context 

(Milinković, 2015). In my study students were challenged to pose multiplication and 

division problems initialized by information set within various representations 

(pictorial, tabular and in words given numerical values to be used in problems). 
 

Proficiency in problem posing might be considered by someone as a part of 

pedagogical content knowledge (i.e. math pedagogy) while for others it is part of 

subject matter knowledge. Kilpatrick (1987) thinks that problem posing should be seen 

not only as a means of instruction but as a goal of instruction. In problem posing 

activities, teaching competences such as fluency and flexibility of subject matter 

knowledge as well as inventiveness become visible. In the literature on relations among 

subject matter knowledge, pedagogical (didactical) knowledge and curricular 

knowledge we find that problem posing was an underestimated issue. For Shulman and 

Grossman subject matter knowledge consists of understanding of concepts, facts and 

principles as well as rules of evidence and proof (Shulman & Grossman, 1988). For 

them pedagogical content knowledge includes understanding of how to represent 

subject matter in ways suitable to the needs and abilities of learners. Malaspina et al. 

(2016) show that problem posing has beneficial impact on the development of teachers’ 

didactic and mathematical competencies. 
 

Representations in problem posing 
 

Our training route in problem posing is based on a representational approach. The idea 

that representations are “tools in thinking” is well documented in the literature (Cuoaco 

& Curcio, 2001). Representations may be informally explained as different ways to 

represent a problem. Different representations are more often seen as tools in problem 

solving than as means to problem posing. Some physical representations such as 

counters or beads, or pictorial representations, such as number line or place value table 

provide good contexts for posing various problems. Tichá & Hošpesová (2016) 

explored graphical representations called branched chains to solve and pose 
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word problems. They found that for both pre-service and in-service teachers it was 

more difficult to pose a problem to match a chin model than to create a picture to 

illustrate the problem in a process of solving it. 
 

Friedlander and Tabach (2001) maintain that the teacher’s presentation of a problem 

situation in different representations encourages flexibility in students’ choice of 

representations. Representations might be seen as ways of presenting a problem on 

different levels of abstraction (Milinković, 2015). It means thinking about particular 

math idea in different paradigms. I inquired the results of problem posing efforts based 

on a range of representations which set a stage for the activity. 

 

METHODOLOGY 
 

The sample was drawn from students preparing to become elementary school teachers 

in a large university in Serbia. There were 95 students, all enrolled in the course 

Methodology of Teaching Mathematics which I taught during the fall semester of the 

third year of studying. In the course, participants learned about elementary school 

mathematics curriculum and teaching methods. They had 2 lessons per week over 

15weeks long semester involving activities of problem posing and problem solving. A 

teaching assistant attended all my lectures and was the second person (beside myself) 

who assessed student's productions with scoring guidelines set in advance.  
 

The course was designed to focus their attention to studying structure of math 

problems. As a part of regular class activities they were encouraged to analyse 

problems in different math domains (arithmetic, algebra, geometry, fractions) and 

explore possibilities to create variations of them. Each week they were asked to pose 

problems. In some occasions they designed variations of problems found in math 

textbooks. In others, they were asked to pose own problem from scratch, fulfilling some 

requirement (problems of different levels of difficulty, problems set in specific real 

context, etc.). As they learned about representations in mathematics they were asked 

to create problems using different representations or to solve problem by using 

different representations. Their productions were part of portfolios assessed at the end 

of semester. For example, they were asked to pose a problem involving numbers 32 

and 4. Students came up with simple problems of division and multiplication (Figure 

1). 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1 From student portfolios, problems with numbers 32 and 4. 
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Without doubt the most common representation of a problem situation to be modelled 

is through word problems. Students need to develop competencies in constructing 

appropriate mathematical formulations, often in a form of math expression on the basis 

of syntactical surface tools. Another way of representing problems is in pictures 

(diagrams, graphs, or tables). In this case, problems are related to analysing pictures 

and understanding what the information given in pictures is telling them and how it can 

be used to provide answer or find a solution. 
 

I set our investigation within the area of multiplication and division. Earlier, 

investigations of teachers’ knowledge of representations of multiplication pointed to 

limitations in their knowledge (Barmby & Milinkovic, 2011). It was found that teachers 

tend to use simple contexts when posing problem (distributing flowers in cases or 

quantitatively describing a problem given in picture). 
 

The problem posing test was administered at the end of the semester. The problem 

posing items were set in different representational frame. Two items referred to 

pictorially set contexts with jars and cookies (Figure 2). In the first one they were asked 

to pose ‘multiplication’ problem, in the second they were asked to pose ‘division’ 

problem.  
 
 
 
 
 
 
 
 
 

 

Figure 2 Pictorial contextual frame for designing task. 
 

In the next, students had to design “equation with unknown divider”. The final item 

assessed students’ ability to pose different problems based on information provided in 

a tabular form (Figure 3).  
 
 
 
 
 
 
 
 
 
 

 

Figure 3 Tabular contextual task frame. 
 

Two evaluators (myself and the teaching assistant) evaluated test independently. We 

compared and discussed our judgments about students’ productions. The data were 

sorted and analysed qualitatively. During evaluation emerged categories of faults in 

posing problems. Consequently, faulty posed problems were analysed along three 

identified characteristics: context, math formulation (meaningfulness of question) 
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and language. Note, “math formulation” is what defines relations between given and 

unknown elements within problem space. Also, we earlier identified context as one of 

key elements in problem space. In the analysis offered in this paper I focus on those 

two elements: context and math formulation, as they appear in problems designed by 

students. 
 

RESULTS AND DISCUSSION 
 

Before turning to the qualitative analysis let me mention that only 15 out of 95 (about 

16%) students designed all problems without faults. Equal number of students correctly 

posed multiplication and division tasks based on the picture (Figure 2). Yet, only 52 

out of 95 posed both problems correctly. Exactly the same number of students 

successfully posed three different problems based on the data given in the table. 

Slightly less, 49 students managed to pose a problem with which could be solved by 

equation with unknown divisor. (Remark that this type of requirement is commonly 

found in elementary school textbooks.) I turn now to the analysis of examples of faulty 

problems designed by students. 
 

Analysis of tasks based on pictorial representations 
 

First, I attend to results of posing multiplication tasks based on a picture. Here are some 

problems with faults made by students. I discuss how students use pictorially set 

context. 
 

‘Multiplication’ problems 
 

M04: There are 20 cookies, and 5 jars. You need to split them so that you have equal 

number of cookies in each jar. How many cookies will you put in each jar? 
 

M19: Bogdan’s aunt has bought 5 jars with equal number of cookies. After turning over 

all cookies, she divided them into 2 equal parts. Bogdan got 10 cookies. How 

many cookies was in jars all together? 
 

M51: Ana had18 cookies. She divided them into 3 jars. How many cookies did she put in 

each jar? 
 

M84: How many cookies will be in a jar if there are equal number of cookies in each jar? 
 

As we can see, M04 is designed correctly. But, to find the answer we need to use 

division instead of multiplication. This is an example of faulty defined relation between 

given and unknown elements within problem space. Problem M19 is a complex 

problem involving multiplication and division. But, from the text one cannot discern 

how many cookies were involved in the story at the beginning. If one should rely on 

picture when solving this problem, then the first part of the problem is not needed. If 

not, than it is not clear were those 10 cookies all cookies involved in the story or half 

of the total amount. Here, the student made mistake in creating context. The idea of 

“equal grouping” is missing in problem M51. In Problem M84, quantitative 

information is missing (or reference to the picture). 
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In the cases of designing ‘division’ problems based on pictorial representation students 

made similar mistakes. First, they could not discern for which word problem solution 

may be solved by multiplication and which one by division; second, they often forget 

to mention that objects need to be split equally (e.g. problem D09). In some, students 

omitted some elements of the context or added some which were not present on the 

picture. 
 

‘Division’ problems 
 

D09: Sara bought 12 cookies. She needs to split them into 3 jars. How man jars will be in 

each jar? 
 

D95: There were 3 jars on a shelf. In the first there was 2 times less cookies than in the 

second. How many cookies was in the third jar if there was total of 9 cookies. 
 

Analysis of tasks based on numerical representation 
 

Next, I analyse problems posed based on defined relation between numerals whereas 

students were free to define context. To start up, look at E14. The model equation for 

E14 is an equation with unknown addend (not divider). Similarly nonmatching 

example is E67. The model equation for E67 is not the one which the student wrote, 

which unveils students’ failure to model realistic problem situation into mathematical 

formula. Deficiency in subject matter knowledge prevented her from being successful 

in attempt to pose problem. 
 

I remarked cases in which a student did not set problem space properly as he failed to 

give sufficient information. For example, in E71 and E89 quantitative information were 

missing. In addition, the student who wrote E89 actually did not know what the model 

equation for the designed problem should be (again having flows in knowledge of 

mathematics). 
 

‘Equation with division’ problems 
 

E14: Marko have had few stickers when his mother brought him 10 more. Now he has 15 

stickers. How many stickers he had before he got stickers from his mum? 
 

E67:  How many grandchildren does granny have if she gave to each of them 5 apples and  

she had 2 leftovers?  (Student wrote equation x : 5=2!) 
 

E64: Jovan had few marbles out of which he gave half to his younger brother. How many 

marbles he had at the end? 
 

E71: Marko have had few stickers when his mother brought him 10 more. Now he has 15 

stickers. How many stickers he had before he got stickers from his mum? 
 

E89: Novak had few candies. He gave to each of his friend 5 candies. He had 4 left over.  

How many candies did mother gave to Novak? (Student wrote:  x: 5=4!) 
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Analysis of tasks based on ‘Tabular’ representation 
 

Finally, I examine problems designed whereas the information was given in a table. 

Most of the constructed problems were in the domain of statistics. These problems 

appear to be good at first glance. Yet, they were out of reach of pupils aged 7 to 11 

given the fact that statistics was not part of the elementary school curriculum in Serbia 

(e.g. E48). This indicates lack of knowledge of PCK (content and curriculum). In 

addition, there were students who were making logical mistakes (e.g. wording of 

problem T63; it is not possible to get two different grades at the same time). In the 

problem T77, as I looked at the student’s solution, I found that he did not recognize 

that there were multiple solutions for the problem. 
 

T48: What is the mean value on this test? 
 

T63: How many pupils got grade 3 and 5? 
 

T77: In one class out of 30 students 12 of pupils received a grade lower than 3 on a test in 

mathematics; number of pupils whose grade was 4 more than double the 

number of pupils who got grade 5. How many pupils got grade 4? 
 

Classification of mistakes when posing problems 
 

The problems discussed above exemplified different types of mistakes student teachers 

made such as providing insufficient information, incorrect direction for solving 

problem, creating impossible contexts or problems which were not part of primary 

school curriculum. As I went through all faulty problems I found that certain mistakes 

repeat. I recognized and classified them as follows. 
 

Here is a categorization of faults in problem posing with reference to how we define 
problem space: 
 

1. Not using (all) elements of the defined context 
 

2. Using ill-chosen relations for given elements 
 

3. Using unfitting context 
 

4. Math semantics - using inappropriate mathematical formulation 
 

5. Posing problem within math domain out of reach of children (unfamiliar math 
relations) 

 
6. Syntax faults - using inappropriate sentence structure (not discussed in this 

paper) 
 

To summarize, along lines of Shulman and Grossman (1988) and of Ball and her 

colleagues (2008), problem faults predominantly pointed to weaknesses in subject 

matter knowledge. Particularly, mistakes of type 1, 2, 4 and 6 indicate limitations in 

subject matter knowledge. On the other hand, mistakes of type 3 and 5 belong to 

pedagogical content knowledge. 
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CONCLUSIONS 
 

The problem posing activities based on variation of representational problem setting 

exposed in this paper could be a good methodological tool in teacher training. Our 

study shows how the activity of problem posing may also be a diagnostic tool in 

evaluating student teachers knowledge. This activity can help us recognize hidden 

students’ limitations either in subject matter knowledge or in pedagogical content 

knowledge. The identification of faults could give us clue how we could help students 

to overcome weaknesses them by analysing problems in details.  
 

Our classification of faults in problem posing points primarily to preservice teachers’ 

partial comprehension of multiplication and division. Thus, the results cannot be 

generalized. But, future research could explore students' competences by studying 

mistakes they make when posing problems in other math domains. From a research 

point of view, it would be valuable to examine further whether specific form of 

representation used to set a stage for the activity of problem posing may influence 

teachers’ ability to design appropriate task. As I look about the next generation of 

students, I am thinking about ways to discuss potential mistakes in problem posing 

before they happen. 
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To promote understanding of rational numbers is challenging to teachers 

and prospective teachers, and this led us to study the planning, teaching, and 

reflection processes of prospective teachers (grades 5-6) on that topic. The 
aim of the paper is to analyse how Ana, a prospective teacher, prepared, 

developed, and reflected about communication, with special focus on 

instructional explanations and on mathematics ideas about the unit on 

multiplication of fractions. Ana prepared and developed different 

explanations to reach pupils’ ideas. We discuss the nature of her didactic 

knowledge as she seeks to promote pupils’ understanding of the 
multiplication of inverse rational numbers. 

 

Keywords: Prospective teachers, Teaching practice, Communication, Rational 
numbers, Multiplication. 
 

INTRODUCTION 
 

Rational numbers are a fundamental topic in the mathematics curriculum. Teaching it 

presents a strong challenge to teachers’ knowledge and practice and they must use 

different representations and meanings in order to promote pupils’ understanding of this 

concept. However, we know little about how teachers use different representations and 

meanings, for what purpose and facing what difficulties (Mitchell, Charalambous  

& Hill, 2013). We especially want to understand grade 5-6 prospective teachers’ 

knowledge and practice during supervised teaching practice, as this enables a close 
look at the nature of their knowledge. In analysing teaching practice we focus on tasks, 

classroom communication and prospective teachers’ actions, striving to understand the 

nature of their didactics knowledge. In this paper the aim is to analyse how a 

prospective teacher, prepared, developed, and reflected about communication, with 

special focus on instructional explanations and on mathematics ideas about the unit 

on multiplication of fractions. 
 

PROSPECTIVE TEACHERS’ KNOWLEDGE AND COMMUNICATION 
 

Prospective teachers’ knowledge may be considered from different perspectives. Both 

mathematics and didactics knowledge are critically important and deeply interconnected 

within teaching practice. Besides mapping both kinds of knowledge, it is important to 

understand their nature and how they relate to teaching practice. Didactics knowledge has 

two essential dimensions: knowledge about both tasks and pupils (Ponte & Chapman, 

2015). Teachers must be able to select, design, and sequence tasks and to explore pupils’ 

strategies, establishing learning sequences and recognizing 
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learning opportunities. They also must anticipate pupils’ common mistakes and 

misconceptions, listen and interpret their ideas, anticipate their solutions, and know 

what they will consider challenging, interesting, or confusing (Son & Crespo, 2009). 

A fundamental idea about rational numbers is that they “have multiple interpretations, 

and making sense of them depends on identifying the unit” (Barnett-Clarke et al., 2010, 

p. 17). Regarding representations, teachers should know how pupils deal with pictorial 

and symbolic representations (verbal, fractions, decimal and percentages) and how to 

relate them, making sense of the numerical set as a whole (Barnett-Clarke et al., 2010). 

So, when preparing tasks, teachers should recognize the pros and cons of using certain 

representations and know how to take advantage of pupils’ strategies and 

representations to promote mathematics ideas (Ball et al., 2008; Stylianou, 2010). 

However, the use of particular representations may raise challenges to teachers since 

they may induce pupils into mistakes or incomplete conversions and may be far from 

pupils’ initial knowledge. 
 

Tasks and communications are essential aspects of teaching practice (Ponte, Quaresma  

& Branco, 2012) and they need special attention from teachers when preparing, teaching 

and reflecting about teaching practice. Communication is a fundamental element of 

teaching practice and it is inherent to the process of building knowledge (Menezes et al., 

2014). Communication involves sharing something and, to do so, we make use of gestures, 

images and symbolic representations, explanations and questions. Communication may be 

oral or written, and it includes both linguistic and mathematics representations (Ponte & 

Serrazina, 2000). One important aspect of communication is questioning using 

confirmation, focus, and inquiry questions (Ponte  
& Serrazina, 2000). Communication also includes those representations that are used to 

aid in solving a task, such as building or illustrating objects, concepts, and mathematics 

situations. These representations may arise from pupils or not (Mitchell et al., 2013). 

Instructional explanations are another important aspect of communication. Far from being 

mere “transmissions of content,” instructional explanations support the establishment of 

relationships between mathematics concepts. Active, pictorial (iconic and drawings), and 

symbolic representations (Bishop & Goffree, 1986; Bruner, 1999), together with verbal 

communication (Ponte & Serrazina, 2000) may be used to convey concepts and 

procedures to pupils. Instructional explanations may have different purposes and 

characteristics, focusing on procedures and/or concepts, and may be carried out at different 

times during a lesson. According to Charalambous, Hill, and Ball (2011), explanations can 

be used to introduce new content, answer pupil questions, or support pupils with 

difficulties. A good explanation may eliminate erroneous ideas, meanings and processes. 

Charalambous et al. (2011), in a study of prospective teacher education looked at the issue 

of the quality of explanations and concluded that an incoherent, incomplete, or unclear 

explanation may affect pupils’ learning. On the other hand, a “good explanation” is 

meaningful and easy to understand. Thus, prospective teachers must: (i) keep the audience 

in mind, using language suitable for pupils; (ii) define appropriately the key terms and 

concepts; (iii) highlight the main mathematics ideas while explaining the process step-by-

step; (iv) use appropriate 
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examples and representations while also modelling procedures and concepts; and (v) 
clarify the issue in question, showing how it should be answered.  
 

RESEARCH METHODOLOGY 
 

This is a qualitative and interpretative case study. Ana is a 24-year old prospective 

teacher of a School of Education, doing supervised teaching practice on rational 

numbers (grade 5) in her last year of studies. She studied mathematics 12 years before 

coming to teacher education and is regarded as a good student. She is visibly insecure 

about what she intends to carry out in her practice and feels torn between direct and 

exploratory teaching. Ana was interviewed at the beginning (IE) and end (FE) of her 

supervised teacher practice. Ana’s classes were observed and video taped for later 

analysis and video-stimulated recall interviews before and after each lesson (BCiE, 

ACiE) (Nguyen, McFadden, Tangen & Beutel, 2013). Her lessons plans and personal 

notes were also analysed. Data analysis is descriptive and interpretative searching to 

understand the processes of planning, teaching, and reflecting about the product of two 

inverse fractions. During planning, we analysed the strategies for solving tasks and 

representations that she prepared to support her explanations. During teaching, we 

focused on how Ana provided explanations and highlighted several aspects. During 

reflection, we emphasized her view of the explanations that she gave and the 

mathematics ideas that emerged. The categories used for analysis were taken from 

framework presented formerly in this paper. 
 

PLANNING, TEACHING AND REFLECTING ON 

EXPLANATIONS Class preparation 
 

Ana taught several lessons about rational numbers, four of which introduced new 

concepts. In the first, the key idea was to explore the inverse of a rational number. As 

the pupils already knew how to multiply rational numbers, the aim of the task was that 
they pictorially represent expressions to visualize that “the product of a number by its 

inverse is 1.” For Ana, it was essential that the pupils understand the rule: 
 

So that there might be a logical sequence to the classes. Because when they were doing 

multiplication, they identified the rule themselves and when they were adding as well… 

That way they will really realize what they are doing instead of memorizing…. I wanted 
 

to try to use the process of understanding rather than memorizing. As this is a new attempt, 

for me, let’s say... I’ll just experiment to see what’ll happen. To see what works better, let’s 

say. (BC1E) 
 

Ana prepared a plan which briefly described what she intended to accomplish. She defined 

objectives and general ideas about the activity that was supposed to happen in different 

moments of the class. The plan was sent to her supervisors and did not anticipate possible 

pupils’ solutions to the tasks. Therefore she did not discuss with her supervisors her 

potential reaction to pupils’ answers. However, Ana solved the task in a personal 

notebook. She did not include the answers in the lesson plan as she was reluctant to expose 

possible weaknesses to her “supervisors/evaluators.” Our analysis 
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of the different records found that she solved the problems in different ways 
(symbolically and pictorially), as shown in Figure 1.  
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Solution of the proposed task (1
st

 version). 
 

Doing symbolic computations, she answered the problems using the algorithm a/b×c/d  

= ac/cd and when she obtained integers she turned them into fractions. When solving 

the problem “2/5 of 5/2”, using a pictorial representation, she used a unit of five that 

she divided into two equal parts by colouring two rectangles and a half. She divided 

the new unit into five parts and coloured two of them in the same manner as the 
rectangle. Thus, Ana began to interpret the fraction 5/2 as a quotient when she divided 

5 rectangles in half. She then thought of “2/5” as an operator when she took one fifth 

to be a new whole and then she took two parts. Thus the product of 2/5 by 5/2 were 

two parts of five, which were equivalent to a rectangle. 
 

Class 1: Solving 2/5 of 5/2 
 

In class, Ana asked the pupils to represent the expressions 1/4 of 4 and 1/3 of 3. In 

these expressions, the fractions have the operator meaning, which posed no problems 

to the pupils or to her. She then wrote “2/5 of 5/2” on the board and again asked the 
pupils to represent the expression “with a drawing or a diagram.” The pupils began to 

solve the task and Ana moved around the room, emphasizing the need to illustrate the 

expression pictorially. At a certain point, she realized that there were recurrent 

questions from pupils, and she decided to discuss the task with the whole class. She 

began to focus pupils’ attention on the fraction 5/2, focusing their attention on 5, as the 

starting unit, and dividing the unit into two parts. A pupil proposed to divide each of 
the 5 rectangles into halves and Ana drew Figure 2 and explained: 
 

Ana: 

 
 

Gabi wanted to divide each of the 5 units in half. But is that what they want us 

to do?... We have five units… And we’re going to divide them into two parts... 

[Gabi’s idea] will help us find out where the half of our five parts is... What will 

it be? [draws a line through the middle] Why? We have here two and a half units 

and another 2 units and a half... We will now have five halves. And now these 

2/5? Now we have to represent 2/5 of 5/2. That is, when we represent the 5/2 we 

find our unity for 2/5. In other words, when we will represent 2/5. Why? Because 

now our universe will now turn into just one part. That's where we'll represent 

2/5… What shall we colour? 2 parts of 5... 
 

Gabi: 
 

I thought about putting just 5/2 (five halves). 
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Ana: You’re right. These 2/5 will only belong to this part. We don’t need to 

represent 2/5 of our entire universe, of the 5 units. It’s just this part here. And 

now what will these 2/5 be? They will be these two parts, these 5. What will 

that give us? 
 

Gabi: One.  
 
 
 
 
 
 
 
 

 

Figure 2. Ana’s representation in the 1
st

 class. 
 

Ana had planned to discuss the pupils’ answers but during class she rushed ahead and 

explained the problem herself. She explained that the improper fraction 5/2 is a quotient 

where the unit is 5 and is divided into two parts. She defined the terms of the expression 

emphasizing the importance of indicating the reference unit and stressing the word of to 

know that a multiplication was involved. She then told pupils that they had gotten to a new 

unit and considered two fifths of this new unit. Thus, using step-by-step modelling, she 

explained the main mathematics idea that she intended to illustrate. However, the pupils 

seemed to interpret the fractions as a part-whole relationship. Ana did not reject this view, 

nor did she explore these two perspectives, missing the opportunity to clarify how her 

explanation fitted the pupils’ previous ideas. 
 

Reconsidering the explanation 
 

After class, at the request of the school supervisor, Ana tried to recast her explanation. 
In her notebook, we found another attempt at solution where we realize that she had 
not decided on the way she wanted to represent 5/2 (Figure 3):  
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Second solution of 2/5 to 5/2. 
 

When we analysed her notes, we realized that Ana thought of 5/2 as a fraction meaning a 

part-whole as well as a quotient where the numerator is the dividend and the denominator 

is the divisor. Thus 5 is the dividend and 2 is the divisor and that is why she divided the 

five rectangles in half. In the second illustration (Figure 4) we see that she scratched out 

two rectangles as being extra and used only two rectangles and a half or five half 

rectangles. She seemed to be satisfied with the solution about the fraction 5/2. In this 

second solution she thought of the rectangle as a unit and interpreted the 
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fraction as part-whole. So, in trying to decide on how to illustrate the expression 2/5 of 

5/2 she hesitated between the part-whole and quotient meanings depending on the unit 
identified and the representation used. From a didactics point of view, this question 
may have an impact on pupils’ understanding of the concept. 
 

To review the explanations for pupils, Ana wrote down in her notebook some ideas to 

point out. We note that she had anticipated potential ways to illustrate the concept and 
to clarify the issue. Figure 4 appeared in notes that she produced before making a 
PowerPoint that the showed in the second class about inverse rational numbers.   
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Solution of the proposed task for class 1 and 2 (2
nd

 version). 
 

When we analysed her log, we realized that Ana had kept the final idea and considered 

the fractions to mean part-whole, drawing three rectangles. It is worth noting that the 
right side of the figure predicted the explanation she later gave. She had anticipated 

identifying the unit 5/2 (improper fraction) and intended to decompose it into 1 + 1 + 
1/2. In the second step she planned to split the five halves into five parts and then taking 

two parts of this whole. 
 

Class 2: Continued discussion of the solutions focusing on procedures 
 

In the next day, Ana began by handing out a form to systematize the ideas explored in 
the previous lesson and reviewed the work done. She projected the hand out on the 

whiteboard (Figure 5) and explored the expressions 1/4 of 4 and 1/3 of 3. In this 
explanation the fractions took on the meaning as operators.  
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Summary table projected on the whiteboard. 
 

Ana asked a pupil how to multiply using calculation procedures. Thus, although the 
proposed expressions are the same we have a new task with a different nature focused 

in procedural skills. Note that pupils were asked to solve the expressions using the 
multiplication calculation procedures. 
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At the end of the solving process, Ana repeated the operation and the respective 

product, leading the pupil to verbalize that 4/4 is equal to 1. Next a pupil went to the 
board to solve "1/3 of 3" and another pupil "2/5 of 5/2" using the same multiplication 

procedures. Finally, and to systematise the operation of 2/5 of 5/2, Ana used a 
PowerPoint and explained again the solution (Figure 6).  
 
 
 
 
 
 
 
 

 

Figure 6. PowerPoint situation 2/5 of 5/2. 
 

Ana: 

 
 

We figured it out by the calculation. But yesterday how did we do it? By a 

diagram. So let's clarify what we were doing yesterday. What do we see in 

5/2? If we use the mixed number numeral, what are we going to get? We’ll 

have 2/2 + 2/2 + 1/2. What does this tell us? 
  

Pupil: 
 

2 1/2. 
 

Ana: 
 

2 1/2, which is what we have here (pointing to the first slide). In other words, 

we have two units, which we have here, 1 plus 1 plus a half, which is what 

we have represented here, right? And what we want to know is 2/5 of 5/2. So 

how do we do? We have represented our whole. We have 2 units and then 

we have the 5 in total, don’t we? Each unit is divided into two and what do 

we want? 2/5 The two parts of five. So what do we get? One, two... will 

correspond to how much? How much will 2/5 of 5/2 be? 
  

Pupil: 
 

One. 
 

Ana began her explanation by reviewing the work done previously in order to focus 

pupils’ attention again on the expression 2/5 of 5/2. Then she said that 5/2 can be 

represented by a mixed numeral but she did not explain why. In order to explain the 

step-by-step process, she decomposed the mixed numeral so that pupils could see why 

the unit are two and a half rectangles. Finally, she represented pictorially each step, 
showing how the multiplication can be seen as two pieces of five (5/2) which 

corresponds to two rectangle halves, namely a unit. She then confirmed with the pupils 

that the issue in question was clarified. 
 

Reflecting on how to explain 2/5 of 5/2 
 

At the end of the process, in her reflection, Ana explained what had happened and what 
it meant, saying: 
 

[The explanation of the first class] goes beyond the procedure and may lead to a conflict 

of ideas. Ideas...Conflicting ideas is good for discussion. However, confusing pupils is 

something else. So, I think that’s more what happened, the kids were confused. Why? . . . 

In this case, since I was asking something that went a bit beyond what we were working 
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on, talking about, it demanded a little more and they ended up just feeling a little “what’s 

just happened here ?!”… [In fact] it was halves of 5. This was the problem... At the time I 

clarified their confusion... (FE) 
 

In this reflection Ana felt that her explanation did not consider the children’s 
knowledge. The pupils began by interpreting the fraction 5/2 as a part-whole relation 

and she stuck to her plan and interpreted the fraction as a quotient. Maybe that is why 
she felt she confused the pupils and the meaning of the quotient might have become 

confusing. She described a dialog from the first class: 
 

Ana: 

 
 

She said we had five units, which were five square [rectangles] and we had 

to split them in half. And the question was “how to divide them in half?” 

Because I did not know if she was going to divide each unit in half or if she 

wanted to divide the set of units in half. She went to the board to divide each 

unit in half. 
 

Researcher: 
 

So she believed there were five units? 
 

Ana: 
 

Rather than five, only one unit. And that's what I think I failed to take 

advantage of. Because I wanted them to realize that the five was a unit that 

could be divided in half. And after this, they were going to be thinking of a 

unit for two-fifths, let’s say... (AC1E) 
 

In this reflection we realize that Ana had difficulty in understanding what unit the pupil 
was thinking of. In this interview, just after the first class, she appeared to be insecure 

about her explanation since the pupils had not fully understood her unit of reference. 

After this interview, she reflected with the school supervisor, who helped her to 

understand the pupils’ perspective. As a result of this conversation and as described, 

Ana rethought her explanation. While reflecting on the second class and planning 

future attempts, she said: 
 

For me this process was so logical it didn’t occur to me that they would be thinking of the 

five parts...I thought it would be easy for them to get here. Why? Because at the time I did 

not divide them into five, only at the second step did I divide them. I missed out on one of 

the strategies, so to speak… My way made more sense… Then, when the [new] proposal 

made sense… I think the kids realized where we wanted to go, but maybe the strategy 

should have been explored another way… [We could have] compared the two strategies, 

both proposals... That would have even been ideal. Perfect! (AC2E) 
 

In this excerpt, Ana still did not feel completely confident about the explanation given 

in the second class. For her, it made more sense to focus on half of 5 as a reference of 
five halves. But she found that focusing on the meaning of the part of the whole, and 

thus on the reference unit “rectangle” made more sense for the pupils. So her final 
solution was to combine the two perspectives without explaining how.  
 

Ana’s reflections show that she did not question the purpose of these classes. She was 
confident in the tasks she had designed. However, this confidence did not extend to her 

explanations. She did not foresee alternative solutions to the first task and the 
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difficulties the pupils might feel. So, when she faced an unexpected solution, she found 
it hard to understand the pupils’ thinking. 
 

Conclusion 
 

This paper presents the case of Ana, who, as a part of her supervised teaching practice, 

was supposed to explore the concept of inverse rational numbers. To this end, she 

planned and carried out a lesson. So that the pupils might visualize the product obtained 

in a task and not be “given” a rule to memorize, she asked them to draw an illustration 

of the expressions. During planning, she solved the expressions both symbolically and 

pictorially but did not anticipate possible pupils’ solutions. Relating what she planned 

with what she accomplished in the classroom we conclude that Ana shows weaknesses 

in her didactical knowledge about pupils because she did not anticipate that her pupils 

could identify one rectangle as the unit and interpret 2/5 as a part-whole relationship. 

Note that Ana did not talk with her school supervisor and did not realize that the pupils 

could interpret the fractions as a relation part-whole as a result of their mathematics 

experience. When Ana designed the task she proposed an expression that could have 

multiple interpretations. This issue raises questions about her didactical knowledge 

about tasks. 
 

When Ana was faced with an unexpected interpretation from her pupils she chose to stick 

to her plan. So, she did not consider the pupils’ perspective nor did she compare the two 

views. In this situation, she was not able to apprehend the pupils’ understanding and adapt 

her approach. She planned to discuss the pupils’ solutions but rushed ahead and took 

“control” of communication and built an instructional explanation supported in her ideas 

of the reference unit and her interpretation of 2/5 of 5/2. To convey concepts and 

procedures to pupils she used pictorial and symbolic representations (Bishop & Goffree, 

1986) connected with verbal communication (Ponte & Serrazina, 2000). According to 

Charalambous, Hill, and Ball (2011) Ana gave a “good explanation” but, as these authors 

highlight, she did not offer a meaningful and easy to understand explanation because she 

did not take in account her pupils’ previous experience and knowledge. Ana later planned 

a second, 45-minute class. After talking to the cooperating teacher and reflecting, she 

rethought her explanation. In this second stage, her explanation was more confident and 

she was able to deal with unforeseen conceptual issues and was more attentive to pupils’ 

ideas. Throughout the process, Ana reflected on these issues, became aware of the 

complexity of teaching rational numbers, and developed her didactic knowledge about 

pupils. 
 

It is not our aim to analyse issues related to the supervision process, but some reflections 

may be made. Ana’s case illustrates the complexity of teachers’ knowledge for teaching 

rational numbers (Barnett-Clarke et al., 2010). As a teaching practice that focuses on 

understanding concepts is complex and requires careful planning (Serrazina, 2012), both 

prospective teachers and their educators must be aware of issues related to planning and 

carrying out such teaching practice. During planning, prospective teachers need to discuss 

alternative solutions with their supervisors to be able to deal with unforeseen situations. 

Such issues are related to didactics knowledge 
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regarding pupils and tasks and about classroom communication. Just as Mitchell et al. 

(2013) indicate, prospective teachers sometimes think that pictorial representations 
illustrate concepts by themselves. However, this does not always happen and it is 

important to reflect on the most appropriate representations for which purposes and 
how they might support pupils’ learning. 
 

NOTE 
 
This study is supported by national funds by FCT – Fundação para a Ciência e a Tecnologia through a grant 
reference SFRH/ BD/99258/2013. 
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In this paper we analyse the practice of two grade 3 teachers in order to understand 

how they promote their pupils’ understanding of representations. Two lessons were 

video recorded and we focused on teacher-pupils’ interactions. Data collected from 

three different moments (introduction of the task, pupils’ autonomous work, and whole 

class discussion) were analysed through content analysis. The results show that the 

way the teachers organize the different classroom moments are related to their 

perception of pupils’ needs and difficulties and that to promote their pupils’ 

understanding of representations both adapt their actions and questioning to this 

perception. 
 
Keywords: teachers’ practices, teachers’ actions, representations. 

 
INTRODUCTION 

 
The way teachers use representations in their practice has a great influence in pupils’ 

understanding of representations (Stylianou, 2010). Faced with a challenging situa-tion 

it may be very difficult to pupils to choose a suitable representation to handle that 

situation. In addition, the fact that mathematical representations are related to each 

other enhances pupils’ difficulties in understanding and learning about repre-sentations 

(Goldin, 2008). Tripathi (2008) suggests that teachers must use several types of 

representations to promote pupils’ understanding of a given concept. How-ever, 

Acevedo Nistal et al. (2009) refer that the use of too many representations may be in 

the origin of pupils’ difficulties in making a suitable choice. In this study we look at 

the practice of two grade 3 teachers aiming to understand how they promote their 

pupils’ understanding of representations. 
 
TEACHERS’ PRACTICES AND REPRESENTATIONS 
 
“Representation” includes the process of representing as well as the resulting product 

(NCTM, 2000). Bruner (1999) categorizes representations as active, iconic or sym-

bolic. Thomas, Mulligan and Goldin (2002) refer three types of representations: pic-

torial, iconic, and notational. Webb et al. (2008) categorize representations in infor-

mal, preformal and formal and Ponte and Serrazina (2000) also refer to oral lan-guage. 
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The importance of the role of the teacher in supporting pupils’ learning of represen-

tations has received attention from several authors. For example, McClain (2000) 

analyses a grade 1 teacher’s practice, showing how she translates what pupils say in-to 

symbolic representations and how it influences the development of pupils’ nota-tions 

and symbolizations. According to the author, the teacher tries to get her pupils to use 

more formal representations, introducing the notation of addition and subtrac-tion 

based on their answers. She concludes that the representations proposed by the teacher 

were gradually adopted and adapted by her pupils, contributing to the en-richment of 

whole group discussions. In a similar perspective, Stylianou (2010) re-fers to teachers’ 

introduction of representations as a way to feature new concepts, il-lustrations and 

processes in solving problems. She states that creating links between these concepts is 

a crucial element to support pupils’ learning. She suggests that teachers should use 

more than one representation related to the same concept, select-ing those that they 

find more adequate. 
 

For Swan (2007), the success of a task varies according to teachers’ actions, how 

teachers lead pupils in doing it, the role that they assume, how they introduce the task, 

and the questions that they make during the whole class discussion. Teacher’s actions 

can be analyzed regarding how they promote pupils’ understanding of repre-sentations 

while they are involved in different kinds of activity, namely choosing or designing a 

representation, using and transforming a representation, or reflecting about 

representations (Table 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 1 – Teachers’ actions in different moments of the pupils’ activity. 
 

Thus, to support their pupils’ design or selection of a representation, teachers may  

(i) promote free choice, by letting them to decide about which the most appropriate 

representations are; (ii) hint pupils about the representation they should use; or (iii) 

give suggestions or examples. To promote pupils’ use or transformation of a given 

representation, the teacher may (i) pose them open questions to make them think about 

hypothetical transformations (conversions or treatments) of representations;  
(ii) ask pupils in a more structured way to explain what they did; (iii) guide pupils to 
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establish connections between representations; or (iv) guide pupils to make conver-

sions and treatments of representations. Finally, teachers may enhance their pupils’ 

reflection about representations by (i) promoting the evaluation of the work that has 

been done; (ii) systematizing information; or (iii) informing about new representa-tions 

and their connections with used ones. 
 

METHODOLOGY 
 

This study is part of a qualitative research on the practices of primary school teachers 

concerning their work with mathematical representations and was undertaken in a 

school near Lisbon with the first author as a non-participant observer. The partici-pants 

are Sofia and Sara, two young grade 3 teachers. They were on a team of grade 3 

teachers that worked together very often. In this paper we present some episodes of 

their classes, showing how they strive to promote pupils’ understanding of represen-

tation as they work on the following task: “In a theatre play performed by grade 3 

pupils, João, Pedro and Ulisses wanted to be the King. On the other hand, Ana, Inês 

and Estrela wanted to play the Queen. How many pairs of King/Queen may be 

formed?” 
 

The teachers chose this task taking into account that they felt that their pupils were 

struggling with problem solving with whole numbers. Data was collected by video 

recording and by collecting pupils’ written work. We analysed data through content 

analysis in the moments of introduction of the task, pupils’ autonomous work and 

whole class discussion (Ponte, 2005). Pupils’ representations were categorized ac-

cording to Bruner (1999), Thomas at al. (2002), Webb et al. (2008) and Ponte and 

Serrazina (2000). We categorized as informal representations all pictorial representa-

tions (drawings), as preformal we consider iconic representations (non mathematical 

symbols and schemes) and verbal representations (words) and as formal representa-

tion the symbolic representations (mathematical symbols). The teachers’ actions were 

categorized according to the framework indicated in Figure 1. 

 

SOFIA’S CLASS 
 

Introduction of the task 
 

Sofia reads the statement of the task, stressing the information that she finds im-portant 

(number of boys and girls, awareness that a problem may have more than one answer), 

thus providing hints to the pupils. Noticing that some pupils struggle to un-derstand the 

meaning of the verbal representation (the word “pair”), she challenges the pupils 

through open questioning (“Can I have two pairs and a half?”, “What is a pair?”), but 

as the pupils remain silent, she decides to question them in a structured way (“How 

many persons do I have in a pair?”), getting an interpretation from one pupil (“A group 

of two!”). 
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Pupil’s autonomous work 
 

As Sofia notices that pupils are still struggling to find a strategy to solve the task, she 

decides to explore the task statement once more, addressing its key points. She gives 

hints and makes suggestions leading the pupils to review some of the task conditions 

like who can be Queen or King (“Who can be the King and the Queen?”, “Only one of 

the boys can be the King?”). She reinforces what she considers to be a complete 

solution (“So I want you tell me all the possibilities… All the ways of making a pair!”). 

To help the pupils to interpret the task statement she also suggests an active 

representation (“Imagine that . . . I am going to pick the King and Queen!… These 

three girls raise their arms . . . And these three boys want to be the King… And now… 

Which are the possibilities?”). 
 

Sofia walks through the class, observing and questioning in detail almost all pupils. 

She challenges Angelo through open questioning to explain his mixed representation 

(“Can you explain me what is this? …”). After noticing that the pupil has an incom-

plete answer (he says that there are three possible pairs – figure 1a) Sofia challenges 

him through open questioning (“Why João does not like Inês or Estrela? Is he angry 

with them?”), and then she informs him (“How many are the possibilities! It does not 

say: ‘Tell me three [possibilities]…’”). When the pupil understands that his answer is 

incomplete, she lets him to continue to work autonomously. Later, Sofia comes back 

and challenges Angelo again, through open questioning, to explain his new mixed 

representation (figure 1b) (“What are you doing?”, “And what are you repeating 

here?”). Faced with his teacher’s challenge, Angelo explains to her why he now con-

siders nine pairs and he easily describes his representation. 
 
 

a b  

 
 

 
 
 
 
 
 
 
 
 
 

 

Figure 1a e 1b – Angelo’s mixed representations before and after Sofia actions (verbal 

and iconic). 
 

Another pupil, Joaquim assumes that he has to use a pictorial representation (he is 

drawing every Queen and King) and starts to complain. Noticing that more pupils are 

also using pictorial representations, Sofia questions the class hinting them (“Did an-

yone told you: Spend a lot of time on drawings!? Or to draw all the Kings and 

Queens?). As another pupil answers her questioning (“No! Why [should we draw]?! 

They have names!”) she reinforces that the pupils may choose freely their representa- 
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tion. Later, she returns to see how he is doing and she notices that Joaquim followed 
the advice of his colleague and he drew an mixed representation (figure 2).  
 
 
 
 
 
 
 
 

 

Figure 2 – Joaquim’s mixed representation (verbal and iconic). 
 

This time, she challenges Joaquim (figure 2) through open questioning to explain his 

representation (“What are you doing?”) and he does it easily. During the pupil’s au-

tonomous work, most solve the task by using different types of informal and prefor-

mal representations. At that time, Sofia decides to begin the whole class discussion. 
 

Whole class discussion 
 

Sofia begins by inviting Luís to present his solution (he had an incomplete answer, as 

he indicated that there were six different pairs) and write it on the board. She asks him 

in a structured way to explain his representation (“Why did you not considered João 

and Estrela?”, “Can João be paired with someone else?”). During the discus-sion, 

through an iconic representation that Sofia made on the board, Luís and other pupils 

acknowledge that they forgot some pairs, and identify them easily (“Ah! He can [also 

be paired] with Ana!”). 
 

Then, Sofia decides to pose to the whole class a follow up question (“If one of the girls 

drop out, how many pairs would be possible?”). This is a question that was solved 

during the autonomous work, only by the fastest pupils. One of those pupils, Laura, 

has no difficulty in presenting her answer and explaining to the class how she thought. 

Sofia then decides to transform Laura’s oral representation into a mixed and then a 

symbolic representation (figure 3c). At the same time, she tries to guide the pupils to 

establish connections between the representations that were written on the board 

(Figure 3a and 3c).   

a  
b  

c 
 
 
 
 
 
 

 

Figure 3a,3b and 3c– Sofia’s iconic, symbolic and mixed representations. 
 

At the end of the discussion, Sofia introduces the multiplication sign (“If we have… 
Three boys [she writes “3” below the boys’ names] and three girls ([she writes “3” 
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below the girls’ names]… I have (she puts the × sign writing 3×3)… Nine! Nine pos-
sibilities!”) (Figure 3b). 
 

SARA’S CLASS 
 

Introduction of the task 
 

Sara challenges a pupil, André, to explain to her the statement of the task (“What did 

you get from the exercise?”). Faced with André’s difficulty in answering to her chal-

lenge, she hints him (“How many pairs… What is a pair?”). At a certain point she 

notices that the pupils are having difficulty in understanding the meaning of the ver-

bal representation “pair” and she informs the pupils (“We need to have a King and a 

Queen!”). Afterwards she guides the pupils to focus into the information that she finds 

important (each pair must have a King and a Queen, who are the eligible boys and girls, 

there are several possible pairs). When the introduction of the task is al-most finished, 

some pupils try to answer it orally without writing the answer (“I did it! It is…”!) and 

Sara reinforces the importance of writing and justifying all the an-swers in their 

notebook (“So do it!... In your exercise book!”, “I want you to explain me which are 

the pairs! And why!”). 
 

Pupil’s autonomous work 
 

As some pupils try to answer Sara orally, she reinforces the importance of writing down 

their answer. Other pupils present their incomplete answers and she hints them, by 

saying “there are more pairs to be found”. Most pupils get the right answer by us-ing a 

verbal representation similar to the answer of Carlos (Figure 4).  
 
 
 
 
 
 
 
 

 

Figure 4 - Verbal representation used by Carlos. 
 

Sara challenges Carlos to explain his representation (“And why? How did you saw it?”) 

and he does it easily. She continues to walk through the class and observes her pupils’ 

work. When she finds answers with different representations, she questions them with 

more detail. 
 

At some point Sara notices Mauro’s mixed representation (Figure 5). She challenges 

him through open questioning to explain how he solved the task (“Explain it to me…”) 

which he does with no difficulty. She praises his representation loudly (“Good work!”) 

in order to induce other pupils to also find different representations. 
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Figure 5 - Mixed representation (verbal and iconic) used by Mauro. 
 

After, Sara questions Mariana, the only pupil that uses a symbolic representation 

(3+3+3 as a vertical computation) to solve the task. She challenges her to explain the 

representation (“I am not understanding [your representation]… Could you explain it 

to me?”). Most specifically, she wants to know if Mariana understands the meaning of 

each portion. As the pupil points to each portion and explains it (Ana with the three 

[boys] (points to the first line), Inês with three (points to the second line) and Estela 

with all three (points to the third line)… And it’s nine!!”), Sara is pleased with her 

answer and continues walking through the class. 
 

Then Sara questions Leonardo, a pupil that felt compelled to find a “different repre-
sentation” (Figure 6):  
 
 
 
 
 
 
 
 
 

 

Figure 6 – Leonardo’s mixed (verbal and iconic) representation 
 

Sara challenges Leonardo to explain his mixed representation which he does easily (“J” 

from João… “I” from Inês!…So… (as he points to each capital letter) Ana, Inês and 

Estrela. U is Ulisses… and Ana, Inês e Estrela! (points to P) This is Pedro with Ana, 

Inês e Estrela… Nine pairs!”). Then, Sara praises him loudly, and, once again, she tries 

to motivate other pupils to find different representations. 
 

Whole class discussion 
 

Sara asks several pupils to present their answer to the class. The first is Jonas, a real-ly 

shy and insecure pupil with whom Sara had been talking during pupils’ autono-mous 

work, noticing that he had a right answer (figure 7). In the beginning of the whole class 

discussion Sara challenges Jonas to explain his answer (“Explain to me…”, “Why?”). 

However, faced with the difficulty of the pupil in answering, she decides to question 

him in a more structured way (“You did the pairs… Do you know why?”). She ends 

by guiding Jonas, giving him some information related to his first explanation (“You 

were trying to join a boy and a girl… Was it?”). 
 

Afterwards, Sara challenges Mauro to show his answer (an iconic representation where 

he connects, in a scheme, the different characters’ names) (“How did you did that?”) 

and, sometimes she questions him in a more structured way (“What is that 
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[connection]?”). In the end of Mauro’s presentation, she guides the pupils in estab-
lishing connections between Jonas’ and Mauro’s representations. 
 

The last pupil to present her answer is Mariana, who used a symbolic representation. 

This is also a very shy pupil and Sara begins by question her in a more structured way. 

Although Mariana explained perfectly her representation during pupils’ auton-omous 

work, now she feels the need of using an active representation (counting her fingers) 

to assure that her answer is right. This leads Sara to change her actions and inform the 

class about Mariana’s explanation. Next, Sara teases pupils to catch their attention (“I 

am going to teach you a trick!”. When she starts talking it seems like she is guiding 

pupils to interpret the statement of the task (“How many boys?”, “How many girls?”). 

However, a glimpse of information (“Each boy can be in three pairs…”) is actually a 

challenge that triggers pupils to convert the presented repre-sentations into a symbolic 

representation of multiplication (“Teacher! There are three pairs of three!”, “It is three 

times three!”).  
 

a 

 

d 
 
 

 

b 
 

c 
 
 
 
 

 

Figure 7 – Mauro’s iconic representation (a), Jonas mixed representation (b), Mariana 

symbolic representation (c), and the class symbolic representation (d). 
 

Pleased with her pupils’ answers, Sara writes the symbolic representation (3×3=9) 

above Mauro’s representation (figure 7). 
 

CONCLUSION 
 

In the introduction of the task, both teachers lead pupils in interpreting the statement 

of the task, focusing some key elements (number of boys and girls, characters names, 

main condition to have a pair). In both classes pupils struggle to interpret the mean-ing 

of the verbal representation “pair”, and both teachers felt the need of negotiating the 

meaning of “pair”. The main differences between Sofia and Sara concern their actions, 

as Sofia mainly hints through questioning (Who? How? How many?) and Sara often 

challenges her pupils. 
 

During pupils’ autonomous work, Sofia and Sara (i) ask their pupils to write down their 
answers, despite the efforts of some to answer only orally; (ii) promote their 
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pupils’ free choice of representations; and (iii) do not suggest alternatives nor guide 

their pupils to find conversions or treatments, even when they are struggling. Appar-

ently, these actions would enable the emergence of a large variety of representations, 

but that does not happen in both classes. Thus, while Sofia’s pupils use several types 

of representations (mainly informal and preformal), most pupils in Sara’s class use an 

identical mixed representation and just a few use the symbolic representation of adding. 

The different results from their classes, seem to constrain the actions of Sofia and Sara. 

In Sofia’s class, when a pupil shows her a wrong or incomplete answer she first 

challenges and questions the pupil, then she lets him to solve the task autono-mously, 

and later she comes back to question that pupil again. In Sara’s class, when a pupil 

shows her a wrong or incomplete answer she briefly advises him or her to re-view their 

answer. It seems that she is searching for pupils that are using different types of 

representations (as she also tries to motivate pupils to do that). When she finds someone 

that, according to her, has an interesting representation, she questions the pupil 

lingeringly, in order to understand if he or she is understanding his/her rep-resentation 

and is able to explain it. 
 

In whole class discussions, both teachers register on the board all representations 

presented and that facilitates the establishment of connections between representa-

tions. Sofia and Sara also guide the pupils to establish connections between the rep-

resentations presented and the symbolic representation of multiplication that no pupil 

has used during the autonomous work (Stylianou, 2010). As during pupils’ autono-

mous work, teachers’ actions in whole class discussions are also constrained by pu-

pils’ results and difficulties. That way, Sofia decides to ask a pupil with an incom-plete 

answer to present his answer and then her actions are mainly informing, as she felt the 

need of guiding pupils to formal representations (her pupils used different types of 

representations but mainly informal and preformal ones) as in MacClain (2000). At the 

same time, Sara asked some key pupils to present their answers that included different 

representation types (her pupils used mainly the same iconic rep-resentation). At the 

end of whole class discussion, Sofia challenges pupils so they can find by themselves 

that 3×3 is also a representation that can be used to answer the task. 
 

During the class, the success of the task was influenced by the teachers’ actions that 

changed according to pupils’ activity (Swan, 2007). Regarding representations, Sofia 

and Sara moved towards more formal or more informal representations according to 

their perceptions of their pupils’ difficulties. Regarding teachers’ questioning, both 

tend to change their questions in what we may consider as a low or high level of 

challenge according to pupils’ difficulties. That way, they usually started by chal-

lenging their pupils (a higher level of questioning) but, sometimes they felt that they 

had to decrease their questioning level into questioning in a more structured way. 
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What (Should) Teachers Assess in Elementary Geometry? 
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Abstract. Instructional practices based on teachers' personal, physical and 

instructional/institutional resources deeply influence the processes of assessment. How 

do these resources shape a situation of assessment on an open task and how does 

assessment of pupils' answers indicate particular teachers' resources? This study 

examines these questions on the topic of reflection and symmetric figures in elementary 

geometry in grade three in a primary school in Berlin by connecting the theory of didactic 

situations (TDS, Brousseau, 1997) with components of teachers' knowledge by Levenberg 

& Patkin (2014). The empirical insights offered in the paper may, further on, inform a 

selection of content for the purpose of a research-based design of a PD program. 
 

Keywords: geometry, assessment, theory of didactic situations, teachers' personal 

resources, professional development. 
 

INTRODUCTION 
 

The complexity of mathematics teaching practices has already been addressed from 

several aspects as for example, teachers' knowledge and beliefs, or the role of personal, 

physical and instructional resources and their relationships (e.g. Topics of the TWG 19 

and 20 at CERME 9). “Teachers' actions and meaning-making as they relate to instruction, 

including task selection and design, classroom communication, assessment, etc.” are of a 

particular interest in the current debates about teacher education (Call of the ERME TC3). 

This paper focuses on assessment as an action which is deeply influenced by instructional 

practices and based on teachers' personal, physical and instructional resources. Although 

the Call distinguishes between teachers' “personal resources, on the one hand, and 

physical and institutional/instructional ones, on the other hand” (TWG 19), I would rather 

refer to them as three different kinds of resources. By personal resources I mean primarily 

teachers' knowledge in mathematics besides other (according to Levenberg & Patkin, 

2014), whereas by physical resources I refer to physical objects regardless if they are 

natural or man's creations. Instructional resources may be of diverse nature, for example, 

the content of the curricula and textbooks, or mathematical visualizations and geometric 

representations of mathematical concepts in narrow sense. This certainly does not state 

that the physical resources cannot be used for instructional purposes, on the contrary, 

physical objects or pictures and drawings of them are often used in classroom instruction. 

A textbook is also a physical artifact by itself though its existence is meaningless if it is 

not used for instruction, and therefore, I consider it as an instructional resource. I argue 

for my insistence on such triple distinction of the resources by an epistemological and 

didactic analysis of three dimensions of mathematics, about which I talk in the next 

section. Further on, I use the 
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Theory of Didactic Situations (TDS) to show the presence of these connections in a 

mathematics classroom related to assessment about reflection in grade three. Then, I 

explain how such assessment could indicate the quality of teachers' resources. The paper 

finalizes with a suggestion for the 'what' question by van den Heuvel-Panhuizen (2005) 

and Prediger et al. (2015) about the content which “teachers should learn and multipliers 

need to know” (p. 233). 
 

THEORETICAL FRAMEWORK 
 

Teachers' Personal, Physical and Institutional/Instructional Resources Regarding 

Reflection and Symmetric Figures 
 

Are there (at least) three different kinds of mathematics (contemporary, school and every 

day) and if so, how do they differ from each other, is a question tackled by Civil (2002; 

see also Sfard, 1998). Although such a strong differentiation may seem artificial, it may 

be valuable for investigating the interplay between different types of resources for 

teaching. Here is an attempt to exemplify such investigation by concepts in geometry as 

reflection and symmetric figures. 
 

In contemporary mathematics, the basic Euclidean isometries, reflections (both, mirror or 

line reflection and point reflection-mirror for 2pi radians), rotations, translations, and 

combinations of these, are distance-preserving geometric transformations in two- or three 

dimensional Euclidean space. Any congruence transformation can be represented as a 

composition of maximum three reflections, and therefore the reflection is considered to 

be a fundamental concept. Further on, a figure is called symmetric if there exists a 

reflection which maps it to itself. This exemplifies the importance of symmetry, which 

has different meanings throughout different mathematical contents (e.g. a property, a 

relation) and everyday contexts. Symmetry is “not only a key idea in geometry […] but 

also a key organizing principle in mathematics” (Jones, 2002, p. 131). While a use of 

formal concept definitions is a necessity for the introduction of concepts at the university 

level mathematics, an everyday application may be sufficient for an initial introduction of 

the same concept in school. 
 

Symmetry is a model topic for study in school. It is embedded in reality, it is 

conceptually simple for younger pupils, and concrete examples abound. Its 

study yields many useful results, applicable in the real world. Equally 

important, it is a rich subject whose study is an excellent practice ground for 

mathematicians and scientists (Ellis-Davies 1986, p. 30). 
 

In everyday life, through the senses for vision and touch children enter the world of 

mathematics (without any formalities, e.g. definitions). For example, a painting is 

beautiful because of the 'hidden' symmetric properties in it (regardless of the person's 

mathematical knowledge about reflection) . Meanwhile, in primary school mathematics, 

e.g in Berlin, reflection and symmetry as a property of figures are introduced even in grade 

one, through everyday contexts and with the aid of physical and instructional 
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resources. A common example is the use of life creatures in the nature, e.g. butterflies 

(physical resources) or objects made of paper, e.g. stars, hearts, etc. The teaching and 

learning is also supported by the use of different tools such as mirrors or special rulers 

(instructional resources). Axes of symmetry are mentioned in grade three and pupils are 

expected to identify and draw axes of symmetric figures and also reflect figures. In 

comparison, according the K-12 Standards for Mathematical Practice in geometry for 

grade 4, pupils have to “recognize a line of symmetry for a two- dimensional figure as a 

line across the figure such that the figure can be folded along the line into matching parts 

[...], identify line-symmetric figures and draw lines of symmetry” (NCTM, 2000). The 

differences in the curricula and standards open a new question for a possible consideration 

of the institutional as a fourth type of resource (separate from the instructional, in contrast 

to the statement in the Call, TWG 19). 
 

The Role of the Teachers in Considering Different Resources in Assessment 
 

In reality, absolute symmetry as it is defined in mathematics does not exist. To what extent 

are primary school teachers aware of the validity of this statement and the co-existence of 

the different facets of mathematics (as a science or as knowledge to be applied and studied 

in and out of school)? What is the role of the teacher in bringing together all of them in 

the classroom? How far can the teacher push everyday mathematics in the classroom 

instruction and assessment? We may debate that the pupils get motivated when they 

engage in everyday situations but how much mathematics do they really learn on the way? 

Do the teachers sometimes forget all the mathematics that they not only have to teach but 

also assess? For example, how much are the primary school teachers familiar with the 

specific content knowledge about geometric transformations, in particular reflection? 
 

I start the discussion mainly pointing out teachers' knowledge as a part of teachers' 

personal resources (which also include beliefs and identity but are not discussed in this 

study). Namely, Levenberg & Patkin (2014, p. 94) identify six components of teachers' 

knowledge: knowledge of the subject matter, knowledge of the learner, background 

knowledge of the school environment, curricular knowledge, didactic knowledge and self-

knowledge. In this paper, I prefer to talk about teachers' content knowledge in 

mathematics. To refer to this particular component, i.e. teacher's individual knowledge of 

the subject matter, I use the term “knowing” (which belongs to a person) and distinguish 

it from (generally available) “knowledge” (borrowed terminology by Brousseau, 1997 

and González-Martín et al., 2014) meaning mathematical knowledge about reflections as 

described in the previous subsection. I also use the rest of the components as indicators in 

the analysis of teacher's personal resources (in order to answer the research question in 

this study). 
 

Now, a backward look at the above questions allows a presentation of some answers 

already existing in literature. Geometry is perceived as a subject matter in which many 

teachers demonstrate a knowledge gap and is therefore difficult for them to create and 
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evaluate rich mathematical tasks (Ribeiro, 2011). In particular, “the meaning of symmetry 

is not precisely defined” (Leikin, Berman & Zaslavsky, 1998 and see also Leikin, 2003) 

which may be a source for teachers' difficulties. Despite such insufficiency, there are 

teachers who do not comprehend this issue in its fullness (Levenberg & Patkin, 2014, p. 

97). Further on, in relation to the first question in this subsection, 
 

“During geometry lessons, the use of all types of visual displays, pictures, 

presentations and movies, which show geometry in the pupils' environment 

(both natural and hand-made), constitutes a bridge between the concrete and the 

abstract” (Patkin & Levenberg, 2012, p. 14). 
 

Regarding to the rest of the questions, it seems that a Didactic Situation (TDS) is a suitable 

model to analyze the teachers' roles in bringing all three resources at one place, and 

moreover, not only in instruction but also in assessment. Namely, an open task (I come to 

this term in the next subsection) asking for naming symmetric figures ensures several 

adjusted conditions of a Situation (see González- Martín et al., 2014, p. 118). For example, 

it targets reflection and symmetric figures as mathematical knowledge to be gained and it 

does not make any reference of the targeted knowledge (e.g. by stating a particular figure) 

. Further on, pupils may name inadequate solutions which at a particular time of cognitive 

development or accessible mathematics may be accepted as adequate. Then, the solutions 

named by one pupil may be discussed and verified by the others. An exemplary task 

fulfilling these conditions of a DS is given and elaborated in the section Findings and 

Discussion (see Figure 1). 
 

Next questions that arise are how do teachers evaluate pupils' achievements and 

understanding about symmetric figures in grade three, what kind of data provide pupils' 

answers and finally, how could the assessment influence further learning for both parties? 
 

Assessment through Open Tasks 
 

Due to the limitations of this paper, I would not go into details about how are open or 

open- ended tasks defined and classified or which are the advantages of their usage (for 

some specifications see Kwon, Park & Park, 2006; Yee, 2002) . Rather, I emphasize that, 

in this study, assessment through open tasks is not seen as a process of collecting data 

about pupils' achievements, instead as a process of learning and in particular beneficial 

for both the pupils and the teachers. In addition, future steps in a larger study may aim to 

design rich tasks for multi-age classes in the first three years of schooling. A question 

which arises from this initial study is the following. How should a teacher evaluate 

answers on an open task, when it appears as one, on a test which has been created by 

authorities and not by her/himself? A particular test can be considered as an 

instructional/institutional and not as a personal resource because it has been suggested to 

the teacher as accompanying material to the textbook in use. If the pupils’ answers 
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coincide with the examples in the textbook or with those discussed by the teacher during 

the lecture, they will certainly be evaluated as correct. In such case, it seems that pupils 

are granted for memorizing and repeating of what has already been stated during the 

instruction, which is certainly, not one of the most important goals of the teaching of 

mathematics. If they do not coincide, they may be evaluated as incorrect, which is another 

threat. 
 

RESEARCH QUESTIONS AND METHODOLOGY 
 

Research question (RQ). How could a teacher's assessment of pupils' responses on an 

open task in grade three indicate teacher's personal resources, in particular, teacher's 

knowing of the mathematical knowledge about reflection and symmetric figures? 
 

The RQ goes beyond analyzing how does a teacher assess pupils' knowledge about 

reflection and line-symmetric figures. Namely, the investigations on the RQ do not only 

look at how does a teacher decide about true or false answers or distribute points. They 

also try to examine how does this distribution indicate the teacher's awareness of the co-

emergence of the three aspects of mathematics in connection to the three kinds of 

resources in an assessment situation and in particular what is the teacher's knowing of the 

mathematical knowledge about mirror symmetry. This indication relates to the 

components of the teachers' resources. 
 

For the analysis regarding the RQ in this theoretical paper I refer to the core elements of 

TDS (Brousseau, 1997 and González-Martín et al., 2014), where the DS is an assessment 

situation on an open task by analyzing the “relationships between students, a teacher and 

a milieu” (González-Martín et al., 2014, p.119). The milieu is defined as “the set of 

material objects, knowledge available, and interactions with others, if any, that the learner 

has in the course of said activity” (González-Martín et al., 2014, p.119). In the DS in this 

study, “the set of material objects” is consisted of the personal, physical and instructional 

resources (used during instruction) on which the pupil can reflect on when solving the 

open task in the DS (during assessment). “ Knowledge available” refers to the coherence 

between the three types of mathematics that the teacher has (or has to a certain amount) 

brought in the classroom. This directly relates the teachers’ personal resources, 

specifically their knowing of the subject matter. Since the DS is an assessment situation, 

there are no direct “interactions with others” when solving or evaluating the open task. 

Yet, “the learner” in this Situation is not perceived as “a learner”, rather learners, i.e. both 

the pupil and the teacher. I continue the discussion based on the core elements of the TDS 

in the next section. 
 

FINDINGS AND DISCUSSION 
 

The open task in this DS is one out of five tasks on a written assignment about recognizing 

and drawing line-symmetric figures in the third grade primary school in Berlin. The 

analysis does not only focus on the way a teacher has assessed pupil's 
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answers and compares the assessment with a plausible one. Moreover, it tries to identify 

some indication which may lead to answering the RQ. The task is the following [1]. 
 

Task: Name 3 figures or representations from your surrounding, that are symmetric 

(Figure 1) [2]. Pupil's answers are: a circle, a heart and a triangle (Figure 1).  
 
 
 
 
 

 

Figure 1: Assessment on an Open Task about Symmetric Figures 
 

The task is an open-ended task for the reason that it does not have one fixed answer and it 

requires divergent thinking, although the formulation of the task may necessitate additional 

information. For example, are “figures” physical or mathematical objects, and are 

“representations” any kind of drawings (e.g. a drawing of a butterfly) or mathematical 

geometrical concepts (e.g. a square) or pictures and visual displays of physically existing 

objects (e.g. a window)? Further on, what does a “surrounding” (environment) for a pupil 

mean? Is it the classroom, or the school yard with all natural and man-made physical objects 

or the mathematical world the pupil lives in, or something else? These questions are relevant 

for an eventual design of rich tasks (steps 4 and 5, according to Prediger et al., 2015 which is 

discussed in the section Conclusions). 
 

The teacher evaluated the solution with 1 out of 3 points (Figure 1), accepting only the 

“circle” as a correct answer. A short analysis of the textbooks for grade one to three 

“Einstern” 1, 2, and 3, which were in use, shows that the circle does not appear as an 

example of a symmetric figure in any of them. I see the infinite number of axes of 

symmetry of the circle (and the complexity of teaching it) as a reason for this absence of 

the circle as an example of a symmetric figure from these textbooks. The question is 

whether it has been discussed by the teacher. If not, this answer shows a possible higher 

pupil's knowledge than what is expected at this level of education. This refers to a core 

TDS tool named as a didactic contract which is “the implicit set of expectations that 

teacher and students have from each other regarding mathematical knowledge...” 

(González-Martín et al., 2014, p.119). Namely, if the teacher is aware of the absence of 

the circle as a symmetric figure from the corresponding curriculum for grade three, and 

the reasons therefore, (curricular knowledge – one of the six components of teachers' 

knowledge according to Levenberg & Patkin, 2014, p. 94), he/ she may acknowledge this 

pupil's answer. The adidactic level of the DS (the other level is called a didactic level, 

according to Artigue, 2000) concerns pupil's possible engagements involving interactions 

with the milieu and, as this answer “a circle” shows, involves maybe a posteriori 

enrichment which does not necessarily involve relationships between the pupil and the 

teacher but between the pupil and the milieu alone. The rest of the tasks in the exam show 

that figures with finite number of axes of symmetry have been discussed during 

instruction but with no more than two axes. Figures as n-sided regular convex polygons 

having reflection symmetry in n axes, for n greater or equal to three do not 
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appear among the tasks in the exam and it is not clear whether they have been discussed 

during instruction (regardless using physical and instructional resources or not) . This 

assumption brings into focus teacher’s personal resources and maybe the knowing of the 

knowledge about the symmetry group of an n-sided regular polygon being a dihedral 

group of order 2n (n reflections and n rotations). Finally, figures with infinite number of 

axes of symmetry as the circle seem to have remained out of the instructional scope and 

therefore the above-mentioned desirable acknowledgment seems to be grounded. 
 

The third answer “a triangle” was rejected to be correct by the teacher. This indicates 

teacher's content knowledge. Yet, what is a triangle into the pupil’s mind? The topic about 

reflections is on the beginning, while the one about the existence of tree different kinds of 

triangles is at the end of grade three. Short analysis of the textbooks for grades one to 

three, which were in use in the classroom, shows that there are only a few irregular 

triangles (dominance of prototypes). This fact is enough reason to think that the pupil 

perceives the geometric shape of a triangle as being either equilateral or isosceles, and as 

a consequence a symmetric figure. Therefore, the answer may be considered as an 

adequate one at this particular moment, although such answer cannot be accepted as 

correct in the fourth and any other later grade. This indicates possible insufficient teacher's 

curricula and didactic knowledge but moreover knowledge of the learner (components by 

Levenberg & Patkin, 2014). In the vocabulary of the TDS, the feedback provided by the 

milieu (pupil's validation - “a triangle” being a symmetric figure) shows that the milieu 

which was in the current use of the DS appears to have been “insufficient to ensure 

adidacticity in terms of adding new pieces of knowledge” (González-Martín et al., 2014, 

p. 119). This, further on, means that the institutionalisation as “the ultimate phase of a 

Situation in which the teacher brings the students back to the didactic level and makes the 

necessary links with the aimed knowledge and provides the semiotic tools to present this 

knowledge, especially if these were not produced” (González-Martín et al., 2014, p. 120) 

does not seem to have taken place. 
 

The second pupil's answer is “ a heart” which is also evaluated as an incorrect one by the 

teacher, probably because it is a non-visible object. The reasons for stating such probable 

interpretation are the following. Looking at other pupils' answers as “a window”, “a 

board”, “a door”, etc. which have been considered as correct by the teacher, it seems that 

physical resources in the classroom have been discussed a lot during instruction. It may 

be the case that the most of the pupils have been granted for reproducing such examples. 

However, the symmetry of these physical objects is really discussable and it is a question 

if this has been spotted by the teacher and pointed out to the pupils. Namely, a window 

may as well be used as an example of a non-symmetrical object, because the handle 

“ruins” the symmetry. Even if we consider the window without its handle, its ‘parallel’ 

sides are not exactly equal in length in reality. It is the ideal (imaginary) rectangular shape 

of the physical object “a window” which is symmetric, and not the realistic object itself. 

So, have counter examples been discussed? 
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I now discuss further examples which may appear as pupils' answers on the given task. 

How can a teacher evaluate an answer as “a house”? (S)he cannot know if the pupil has 

an image of a symmetric or a non-symmetric house (the problem of reality vs. 

representations). Such answers can not immediately be assessed and, as a consequence, 

seek deep teacher's involvement in asking additional questions or requesting drawings 

from the pupils. In such situations the role of the teacher in bringing all 'three aspects' of 

mathematics comes into focus. Depending on the imagination and creativity of teachers 

pupils develop interest and improve their underlining in geometry (Patkin & Levenberg, 

2012, p. 14). 
 

Dilemmas related to the task, that come on my mind now, are can a teacher expect an 

answer as “there are no such objects in my surrounding” or “symmetric objects do no 

really exist in our surrounding”. How would the teacher evaluate such answers? Could 

such answers be viewed as signs for pupils' giftedness in mathematics, and likewise the 

answer “a circle”? These are questions which require further analyses. 
 

Further on, does the utilization of physical resources for instructional purposes make the 

school mathematics real to an extent that it is not possible to 'avoid' them (see Boaler, 

1993 and a more extreme view by Lockhart, 2009)? Does not it seem that their usage may 

sometimes even prevent eventual early insights into mathematics? What is it with those 

pupils (like the one in this study) who are already able to think of and manipulate with 

abstract mathematical objects (e.g. circles, triangles) but are further 'forced' to use 

concrete objects (physical resources, e.g windows)? 
 

CONCLUSIONS 
 

Although “many concepts of symmetry are not firmly established before twelve years of 

age” (Genkins, 1975), the answers of the participating seven-year old pupil in this study 

show her/his understanding of reflection and symmetric figures. They show a 

development of “mathematical learning as the result of the students' work and ideas – and 

not as a result of imitating the teachers' actions” (González-Martín et al., 2014, p. 118). 
 

The paper opens a question for the need of a precise definition of three (or more) types of 

resources for teaching and assessment which have by now been perceived as two distant 

groups. The theoretical part of this study shows why and how is the content about 

reflections and symmetry (as a property of figures) relevant and suitable for implementing 

different types of resources related to the diversity of aspects of mathematics in the 

classroom. This conclusion may be considered as the first step in the five step approach 

for content specification according to Prediger et al., (2015, p. 239). The empirical 

findings based on a one to one (a teacher - a pupil) case study offer insights in the 

“concrete professional demands” required for assessing pupils' knowledge about 

reflection (step 2 in the same approach, p. 239). They specify teacher's difficulties with 

tasks in geometry (Ribeiro, 2011) related to the exact content of reflection and symmetric 

figures. This shows an answer of the 'what' question (van den Heuvel- 
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Panhuizen, 2005) - content knowledge about reflections. The empirical explorations in this 

study may be widened by a greater range of cases taking into account teachers' perspectives 

(step 3 in a development of a design of a PD program according to the same group of authors). 

Further on, it confirms the existing difference between “a theoretical Situation, as an ideal -

type model and its actual implementation in the classroom which allows assessment of the 

students' actual work about mathematics” (González- Martín et al., 2014, p. 120). Moreover, 

this “assessment of the students' actual work” indicates teacher's insufficient personal 

resources about reflection in relation to the components of teacher's knowledge (Levenberg 

& Patkin, 2014, p. 94) which directly meets the main RQ in this study. “What teachers assess” 

is not only the pupils' knowledge but also, although implicitly, their personal resources and 

specifically their own knowing of the knowledge in geometry. “What teachers should assess” 

is the overall understanding of a concept (in geometry, e. g. reflection) on the basis of pupils' 

individual (imaginary and abstract) resources and/ or physical and instructional resources, 

and regardless if it has been achieved by interactions with the milieu and with or without the 

teacher. 
 

NOTES 

 
1. The total scored points on the written assignment, according to the evaluation of the particular teacher, is 19 out of 22 

points. 
 
2. The task and the pupil's answers are translated from German to English by the author of this paper. 
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Mediating mathematics teaching for connections and generality. 
 

Mike Askew 
 

University of Witwatersrand, michael.askew@wits.ac.za 
 

This paper is located within the South African context of large class numbers and 

limited resources. Taking a sociocultural theoretical perspective the paper examines 

the mediational means–artefact-based and human–employed by a teacher in two 

Grade 2 lessons separated by three years. Differences are noted in the extent to which 

in each lesson the teacher’s mediation focuses on mathematical connections and 

generality–on mathematics as a ‘scientific’ discipline in the Vygotskian sense. The 

differences observed show that even within the culturally dominant practice of whole 

class, teacher-centred, pedagogies with limited resources the mathematical ‘objects’ 

brought into being in lessons can be connected both within the mathematics, and across 

examples. 
 

Keywords: artefact and human mediation, sociocultural theory, primary. 
 

INTRODUCTION 
 

A breadth of research evidence highlights challenges in raising levels of attainment in 

primary mathematics in many South African schools. Besides international evidence 

for the low standing of mathematical achievement in South Africa in comparison to 

other nations, national research points to low levels of attainment in primary schools 

(Department of Basic Education, 2014) and also to possible underlying reasons, two of 

which are relevant here. First is evidence of teaching that treats mathematics as 

unconnected procedures or facts that learners need to remember rather than make sense 

of (Askew, Venkat & Mathews, 2012). Secondly, is teaching characterised by ‘extreme 

localisation’ (Venkat & Naidoo, 2012), whereby mathematical tasks neither build upon 

what learners have previously learned, nor connect together different aspects of 

mathematics: tasks are approached by teachers and pupils alike as having to be 

answered through naïve, practical methods, most commonly unit counting or tallying 

(Ensor et al., 2009). 
 

In this context the Wits Maths Connect – Primary project (WMC–P) focuses on 

developing and investigating interventions aimed at improving the teaching and 

learning of mathematics in ten government primary schools. Baseline data collection 

in 2011 involved observing and videotaping single numeracy lessons across all the 

Grade 2 classes in the ten schools. Follow-up video data in 2014 of lessons again in 

Grade 2 saw many of the 2011 teachers recorded again. While the majority of the 2011 

lessons appeared, on the surface, to unfold smoothly, closer analysis revealed a 

disconnected sequencing of actions and operations leading to ambiguity in and 

obscuring of the mathematical learning objects. Many of the teachers videoed in 2014 

had worked with the project team on professional development activities and many of 

the 2014 lessons were more coherent and demonstrated a strong shift in the extent to 

which the object of learning was brought into being by teachers explicitly drawing 
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attention to different connections between tasks, examples and representations. This 

paper presents two such lessons–both from the same teacher–to highlight and explore 

the nature of such differences. 
 

THEORETICAL FRAMING 
 

The theoretical background framing the analysis that follows is based in Vygotskian-

based sociocultural theory and the assumption that learning comes about through 

mediated transactions (Wertsch, 1991). Kozulin (2003) describes mediation as 

occurring through two key forms–via artifact-based mediation and via human 

mediation: both of these forms are attended to in the following analysis. Sociocultural 

theory is helpful in the examination of whether teachers present mathematical 

classroom examples as set within networks of scientific concepts (Vygotsky, 1987). 

Kozulin (op. cit.) notes that viewing disciplines as networks of scientific concepts is 

revealed in teaching where there are explicit mediation moves towards generality. This 

counterpoints concerns about localization that we have observed in the project and 

noted above, that is teaching approaches that may enable learners to provide answers 

within the context of the support provided in the lesson but which are unlikely to be 

appropriated by learners as methods to be used beyond the lesson. 
 

Teachers’ choices of examples are important in mediating towards generality. Watson 
 

& Mason (2006) have studied and theorized about examples and example spaces, 

emphasizing the importance of connecting between sets of examples within 

mathematics lessons in order to draw attention to structure and generalization. They 

too note, however, that teaching often only focuses on generating solutions to 

immediate problems rather than abstracting generalities across examples, thus the issue 

of localization is not unique to the South African context, although it may be more 

extreme there. Adler & Venkat’s (2014) analysis of secondary mathematics teaching 

also shows that a focus on structure and generality can be brought about through 

mediating actions that attend to connections. 
 

The notion of connections has wide support as central to mathematics instruction. For 

example, Askew and colleagues (1997) in their study of effective teachers of numeracy 

(ETN) (numeracy defined, essentially, as number, operations and applications), 

examined factors that might contribute to gains in learner attainment (measured as class 

mean gains across a year in pre- and post-test assessments). From questionnaires given 

to 100 primary school teachers and case studies of 18 of these teachers three archetypes 

of teacher orientations towards teaching primary numeracy emerged. Two of these 

archetypes–transmission and discovery orientations–were identified as associated with 

narrower learner gains. In contrast, many of the teachers whose classes showed the 

highest learning gains over the year, displayed characteristics of the third orientation–

connectionist–characterised by beliefs and practices that assumed amongst other things 

that: teaching not only needs to help learners connect different aspects of mathematics 

but also mediated mathematical content through a variety of connected words, symbols 

and diagrams. This paper 
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looks at a teacher’s mediating means–artefact-based and human–in two lessons and the 

extent to which these focused on making such connections. 
 

METHODOLOGY 
 

The WMC-P project has collected videos of lessons taught to the 2011 Grade 2 cohort 

tracked through into Grade 3 in 2012. Then from 2013, attention turned to lessons 

taught to the new Grade 1 cohort, who were tracked through Grades 2 and 3 across 

2014-15. Thus, at the teacher level, there is a body of data of two lessons taught by the 

same teacher to the same grade, with one drawn from the early years of the project 

(2011/12), and one drawn from the later years (2013-15). 
 

Our analysis of the videos starts by dividing lessons into episodes identified through 

shifts in the mathematical task focused on. Within episodes, we list the example spaces, 

along with any evidence of incorrect or inefficient offers from learners, as the absence 

of these raises the possibility that the lesson was revising previous learning, which 

could then reduce the need for teacher mediation. Each episode is then examined for 

evidence of teacher mediation, both artifact-based (number charts, counters and so 

forth as well as teacher inscriptions) and human, in particular talk and gesture.  
 

While overall the videotaped lesson observation dataset consists of almost one hundred 

lessons, the data drawn upon here is of one teacher, Mrs. S and her lessons from 2011 

and 2014, both with a Grade 2 class. Mrs S is an experienced Foundation Phase teacher, 

teaching in 2011 one of three grade 2 classes in an urban Johannesburg school, with 

approximately 100 learners in the grade cohort, and, in 2014, one of four grade 2 

classes, with a cohort of approximately 170 learners: relatively large, and increasing 

class sizes thus adding to the pedagogic challenges. In both years the language of 

instruction was English. Mrs. S is chosen as a ‘telling case’ as her lessons are not only 

typical of what we observed at the two times, but they also display differences in the 

sorts of mediation enacted at each time. It is beyond the scope of this paper to address 

the means and reasons for the changes observed in Mrs. S teaching and hence the 

analysis addresses the following research questions: 
 

1. How does teacher mediation operate in historically disadvantaged foundation 

phase classrooms? 
 

2. Can differences in teacher mediation be observed over time? 
 

FINDINGS 
 

Lesson 1 (2011): The lesson comprised two main episodes: forward and backward skip 

counting, then what the teacher called repeated subtraction – finding the answers to 

calculations where a number was repeatedly subtracted, for example, 10 – 2 – 2 or 20 

– 5 – 5 – 5. The initial whole class counting forward in 2’s to 100 appeared to present 

no difficulties to learners and it was followed by class counting backwards in 2s from 

100, again unproblematic. The final count was back from 50 in 5s. Some 
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learners could be heard making errors, the teacher got the class to repeat the count 

and errors could still be heard. The teacher turned to a 1-100 chart on the board: 
 

Mrs S: Uh uh, wait [T claps her hands] wait, I want to use my number chart. I want you 

to look at the board. I saw some people were missing one out. We are counting 

back in...? 
 

Mrs S+Class: Fives 
 

Mrs S: 

 
 

From fifty. Where’s fifty? 
 

Class: 
 

Here [some learners point to the board] 
 

Mrs S: 
 

Here. Ok here. Let’s go. [T points to 50 on the number chart on the board.] 
 

Class: 
 

[Count in unison back to 5, while T points to the numbers, with some learners 

also saying ‘zero’.] 
 

Mrs S: 
 

Zero isn’t it? [The last number said.] 
 

Class: 
 

Yes. 
 

Mrs S: 
 

All right. So when we count back in fives, how many numbers do we skip? [T 

points to the number chart. A learner shouts ‘four’.] How many? [Learners shout 

‘five’, or ‘four’.] We skip four, isn’t it, one, two, three, four, then we get to the 

next one. One, two, three, four, [T demonstrates on the chart.] the next one is 

the answer. One, two, three, four, then we get to the next one. One, two, three, 

four. The next one because we are counting in…? 
 

Mrs S+Class: Fives 
 

Mrs S: So the fifth one is the answer, until you get to five, to zero at the end there. All 

right, that’s enough of that. [T removes the number chart from the board.] 
 

Here the teacher provided a localized explanation for how to count back in fives: it 

meant skipping over four spaces on the 100 chart (counting the spaces but not the 

numbers in those spaces), the number in the fifth space providing the answer. The 

teacher’s mediating talk made no moves towards the ‘fading’ of the resource, either 

through talk of expecting recall of the backward number word sequence, or of ways in 

which this action is particular to the 100 square and would need to be adapted for a 

different resource or worked with differently in the absence of the chart. Further to this 

the teacher made no reference to the patterns in the answers obtained – either 

numerically or spatially (as in their positioning in vertical columns on the 100 square). 

Nor was there any exploring with learners how this might be extended to other skip 

counts, say counting back in 6’s. Thus, the teacher’s mediation provided learners with 

a method to remember, but a method that was primarily contingent on the availability 

of a practical resource: a localised, non-scientific, method. With the chart available this 

method enables the production of the answers but in the way explained here it is likely 

to be difficult for learners to appropriate in that the spaces were counted rather than the 

numbers landed on articulated. So while there is 
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artefact-based mediation, this was not used to draw attention to structure or 

generality. 
 

The lesson then moved into the main part, repeated subtraction. The first example 

comprised answering 10 – 2, and the teacher advised the learners thus: 
 

Mrs S: Ten minus two [Writes 10 – 2 on board] Ten minus two. Use your number chart. 

You count back, isn’t it? This is subtraction, you count back. Anyone needs 

counters? [Many learners raise their hands.] If there’s a problem, you can use 

the number chart. Others you can, if you want to, use your counters… 
 

This followed soon after the learners had, it would appear, successfully orally counted 

back in twos from 100, but neither here nor in any subsequent dialogue did the teacher 

refer back to this counting. And although she told the children they could use their 100 

squares, she did not make any reference to the method for counting back in 5s that she 

just modelled, nor any advice on how best to use counters. Thus the teacher’s mediation 

was again localized in that it did not draw learners’ attention to the network of 

mathematical ideas in play within and across the example spaces.  
 

As the learners were getting organised with paper, charts and counters the teacher 

engaged them in singing a song about ten pawpaws on a tree and the wind blowing 

them away one at a time. She subsequently used this to explain how to count back two–

one pawpaw blown away followed by a second. Here we see a ‘pulling back’ to a more 

naïve method–the learners had just demonstrated that they could count back in twos, 

but the teacher encouraged a return to counting back in single units. Again, an 

opportunity was missed to make a connection with what the learners already knew. The 

next examples were 10 – 2 – 2, then 10 – 2 – 2 – 2, each worked by counting back in 

ones from the previous answer. The calculations and the answers 8, 6, 4 were listed 

under each other on the board, but no comment made on the connections between or 

patterns within the answers. The teacher immediately turned to 10 - 5. 
 

Mrs S: Now I’m changing. The pawpaws are no longer ten. I want my tree to have 

fifteen. My tree has fifteen now. Can you do this one for me? [T writes 15 – 5] 

My tree’s having fifteen pawpaws now. [Learners work this problem out, many 

using counters] Hey? Yes [T walks around, some learners raise their hands.] 

Mm. Ok, P? What’s the answer? 
 

Learner: Ten? 
 

Mrs S: Is it 10? 
 

Learners:  No. 
 

Mrs S: Who says no? [Learners shout out answers like ‘Yes’, ‘12’, ‘6’, ‘10’.] Ok, the 

answer is ten, he is correct. [T completes ‘15 – 5’ with ‘= 10’.] 
 

Again the mediating approach is one of localisation: all learners had 100 charts 

available but no backward referencing was made to what the teacher had previously 

modelled on the board, rather learners not knowing the answer were encouraged to 
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use counters. No attempt was made to work with any incorrect answers: again this is 

typical of many lessons observed where the teacher largely ignored incorrect answers, 

with more answers being sought until the correct answer was elicited. Once the correct 

answer was in the public space, then any incorrect answers were set aside. 15 – 5 was 

followed by 15 – 5 – 5 and in a similar fashion, the answer was established from first 

principles, taking 5 away from 15 and then from 10. 
 

The lesson proceeded with the teacher modelling 10 – 2 – 2 – 2 by taking away two 

from ten (again counting back in ones) and writing a small 8 above the second 2 from 

the right, then taking two from eight and writing 6 above the third two from the right, 

and so forth. While the teacher made some reference to prior answers in this episode, 

she did count again in every case The learners were then given the following to work 

through individually: 10–2–2–2–2; 15–5–5; 15–5–5–5; 20–5–5; 20–5–5–5. 
 

The lesson can thus be characterized as presenting the mathematics contained within it 

as a series of discrete tasks, each of which was to be answered in isolation of any other 

task, either within the example set (20–5–5–5 was not linked to 20–5–5 for instance) 

nor across the tasks (the subtractions not being linked to the oral counting back). If 

learners did make any connections then that would only be a result of them 

‘discovering’ them, as the teacher did not draw their attention to the potential of there 

being connections. This is consistent with the sequential working of individual 

examples highlighted by Venkat & Naidoo (2012) where the dominant practice focused 

in temporally localised ways on each current example. 
 

Lesson 2 (2014): This lesson comprised two main episodes: rapid recall of number 

bonds for twelve, followed by an extended sequence on place value. The second 

episode is focused on her as it contained a number of sub-episodes covering: 

partitioning two-digit numbers into tens and ones and linking this to base ten blocks, 

recording the partitioning in extended form (27 = 20 + 7) and with the T U notation, 

building up numbers using ten strips and single squares, identifying the value of a digit 

in a two-digit number, ordering numbers, and adding ten to a number. (An extended 

analysis of this lesson’s connections is given in Askew (2015) – the analysis here 

focuses in particular on the teacher’s mediational means.) 
 

Prior to the lesson Mrs S had listed in a column on the board: 13, 19, 27, 45, 67, 93. 

After the class had read out the numbers the teacher said she wanted learners to break 

the numbers down. A girl asked to break down thirteen replied ‘ten plus three’. 

Alongside the ‘13’ Mrs S wrote ‘= 10 + 3’. Other learners were asked to break each 

number down similarly until ‘93 = 90 + 3’ was written on the board.  
 

Mrs S: 

  

Very interesting, eh? 
 

Class: 
 

(chorus) Yes. 
 

Mrs S: 
 

This number [Pointing to ‘13’.] is now ten plus three [Moves her hand, tracing 

under ‘= 10 + 3’ written on the board.] And this? [Pointing under ‘19’.]? 
 

Class: 
 

Ten plus nine. [T moves hand under ‘= 10 + 9’ along with the chorus.] 
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Mrs S: Now here? [Sliding her hand down to under ‘27’.] 
 

Class: Twenty plus seven [T continues to run her hand down to the next numeral, and 

along underneath the expanded notation in time with the class chorusing the 

expansion.] 
 

Mrs S: Now there is something happening here. Look here [gestures down the column 

of tens]. Now we have two digits this side, now the remainder is one [gestures 

down the column of ones]. These are tens [points to column of tens] and here 

we have? [Points to the ones, questioning intonation] 
 

Class: Units 
 

Here the teacher explicitly drew attention to a set of connections that are both 

‘horizontal’ and ‘vertical’ (Watson & Mason, 2006) through talk and gestures drawing 

attention to the horizontal expansion of the notation and to the vertical commonalities 

across the examples. The teacher then picked up a stick of ten interlocking cubes, 

joined to make a ‘ten-stick’ and attached one stick to the board, close to the left of the 

‘10’ in ‘13 = 10 + 3’ 
 

Mrs S: 

  

And here [pointing to the ‘3’] we need? 
 

Class: 
 

Three ones. 
 

Mrs S: 
 

Okay, three, am I okay? [Holding three ten sticks up next to the digit ‘3’] 
 

Class: 
 

Noooo. 
 

Mrs S: 
 

So what can I use? 
 

Class: 
 

[Some say ‘three ones’, some ‘three units’] 
 

Mrs S: 
 

So where are the ones? [Child comes to teachers’ desk and hands over three 

single cubes.] I thought these [holding up the three ten-sticks] were the ones 

because this [holding up a single ten stick] is one. Okay, the small ones. Why? 

Because ten of them will make one ten. I must put how many? 
 

Class: 
 

Three 
 

Mrs S: 
 

Three of them [Attaches three single cubes to the board, to the right of and 

close to the digit 3 in ‘13= 10 + 3’] 
 

Here the teacher explicitly addressed two foci. First, her actions and talk raised the 

issue of the possible confusion between referring to a ten-stick as ‘one ten’ and needing 

three ‘ones’: her playing at getting it wrong drew attention to the need to be clear about 

the different referents of ‘three’ in the talk. Second, the careful positioning of the 

artefacts near the symbols, the literal proximity of the concrete and symbolic, 

reinforced the connection between these two representations, and the underlying 

mathematical structure. The artefact-based mediation here thus goes beyond the use of 

materials in a localized fashion as was seen in the 2011 lesson. 
 

The lesson continued similarly for the other numbers, with each number treated as an 

opportunity to check and extend understanding. For example in partitioning 19, when  
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the nine single cubes had been established, the teacher asked what would happen if one 

more cube were added to the nine, the ensuing conversation focusing on it becoming 

ten and the change from 19 to 20. The teacher thus used the example to check the 

learners’ understanding: in questioning what would happen in an imagined example 

she went beyond the ‘immediate answer’ for the ‘immediate example’. 
 

Once all the numbers had been partitioned the teacher continued: 
 

Mrs S: Now we are going to do a similar activity using the same numbers. I just want 

to see whether you have observed something. I will underline the number and 

then you will tell me the value, what does it stand for? Don't tell me that it’s 

tens or units or ones, here I want the value, how many. [Makes a circular 

cupping motion with hands]. Okay? 
 

Mrs S mediation here drew attention to the fact that what was coming up was not 

completely new but connected to prior learning, that there is something common across 

the examples. Learners were expected to have agency in appropriating what the teacher 

is working on – to note patterns they may have observed not simply remembered. 

Another distinction was marked through the emphasis on saying the value designated 

not simply which place a digit is in. 
 

Mrs S: What is the value of that one? [Underlining ‘1’ in ‘13’.] The answer is there 

already. In breaking down we show the value in another way. Okay? Now I 

want you to tell me the value of that one [in ‘13’.] 
 

Learner 1: Ten. 
 

Mrs S: It’s a ten, that's (unclear) isn't it? So the value of that number is ten. [Writes ‘10’ 

to the right of the equation.] What is the value of nine in that number? 

[Underlines ‘9’ in ‘19’.] A? 
 

Learner 2: Nineteen. 
 

Mrs S: She is saying nineteen. Is she correct? 
 

Class: No. 
 

Mrs S: Can somebody come here and explain? 
 

Learner 3: Nine. 
 

Mrs S: Nine. Why is it nine? 
 

Learner 3: ‘cos it’s in the unit. 
 

Mrs S: Just as a reminder, remember (learner 2), it is like this, tens, units. [Writes T U 

above each number.] So nine is under the units, under the ones [pointing to the 

position of ‘9’ relative to the label ‘T U’] so the value of this number [circling 

the ‘9’ in ‘19’] is only nine [writes ‘9’ to the right]. There it is (learner 2). 

[Underlines the ‘9’ in ‘10 + 9’] Okay? There, okay? There it is. Nine, so the 

value of this number [Circling gesture around the ‘9’ in ’19’] is nine [writes 

over the ‘9’ to the side again.] 
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Here we see human mediation connecting together the different representations, and 

extending the range of representations. The teacher directed attention to another 

connection - ‘the answer is there already’ – and by reframing ‘showing the value’ as 

associated with ‘breaking down’ not only were two potentially discrete ideas (breaking 

down a number into its place value partitions, and identifying the values associated 

with digits) connected, but also learners were encouraged to connect with what they 

already knew. Multiple links between place value features are again made explicit. As 

the lesson continued the connection with breaking numbers down was repeatedly 

reiterated with the teacher drawing attention to learners connecting what they already 

know and the connections between representations. 
 

DISCUSSION 
 

The teacher’s mediational moves employed in the 2014 lesson stand in marked contrast 

to the 2011 lesson. In the earlier lesson one idea was focused upon (repeated 

subtraction) but only one task type was engaged in–finding the answer to a calculation–

and whilst the numbers used in each example were varied, each example was treated 

in a localized fashion. The potential for mediation that attended to the connections 

within and across the examples and to the already appropriated act of forward and 

backward counting was not realised, and hence the treatment of mathematics as 

‘scientific’ (in the Vygotskian sense) limited: a sequential working with individual 

examples dominated the 2011 lesson. 
 

In 2014, in contrast, a rich and connected experience of place value and how to work 

with it was woven through the range of tasks, many of which kept coming back to the 

same example space, enabling Mrs S to repeatedly and explicitly draw attention to a 

set of connections that were both ‘horizontal’ and ‘vertical’ (Watson & Mason, 2006) 

in that her mediating talk and gestures drew attention to the horizontal expansion of the 

notation and to the vertical commonalities across the examples. Mediation that draws 

on learner misconceptions as a way of engaging with learner understanding is rare in 

the classrooms we have studied but here we see the teacher effectively anticipating a 

misconception (her ‘error’ in distinguishing ‘three tens’ from ‘three units’) and 

working with that. 
 

CONCLUSION 
 

The differences noted across the two lessons of Mrs S are typical of differences 

observed in the broader data set. The evidence from Mrs S, and other teachers, shows 

that it is possible for rich, connected teaching to be enacted in classes with large 

numbers of pupils and limited resources. Furthermore mediation focused on 

connections can be established without disrupting the culturally dominant practice of 

whole class, teacher-centred, pedagogies. Given the evidence for differences the 

research team is developing a framework for describing and interpreting different 

levels of empirical phenomena related to mediation - the Mathematical Discourse of 

Instruction - Primary framework – that will enable analysis of the full data set, which, 

if revealing of changes across the years to mediation more focused on structure and 
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generality, will enable the exploration of the data with respect to the professional 

development activities that the teachers engaged in in the intervening years. 
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In this paper we address the issue of teacher professional development, with reference 

to how to support teachers in activating effective and aware approaches to be adopted 

during the lessons to foster the students’ use of algebra as a thinking tool. We 

hypothesize that the didactician, intervening during class activities, could act as a role 

model for the teacher. We analyse a teaching episode, by means of a combined 

theoretical framework, to highlight, on one side, the way the didactician acts as a 

model and, on the other side, moments of achieved harmony between the didactician’s 

and the teacher’s interventions. 
 

INTRODUCTION 
 

Since the nineties, research studies have pointed out that algebraic language should be 

presented and treated in classroom as a tool for representing, exploring relationships, 

interpreting and developing reasoning (see, as paradigmatic example, Arcavi, 1994). 

In tune with these research studies, both the authors have investigated the design and 

implementation of activities of proof construction through algebraic language (Cusi & 

Malara, 2009; Morselli & Boero, 2011) aimed at promoting algebra as a tool for 

thinking (Arzarello, Bazzini & Chiappini, 2001). 
 

Few studies have focused on the role played by teacher’s actions and interventions in 
fostering an effective and aware development of reasoning by algebraic language and 
on the interrelations between these roles and the thinking processes developed by the 

students. In (Cusi & Morselli, 2016) we addressed this issue, combining two theoretical 
lenses - the construct of “Model of aware and effective attitudes and behaviours” 

(MAEAB) and Habermas’ construct of rational behaviour - in the analysis of a class 

discussion from a teaching experiment. The analysis showed that the teacher is crucial 
in catching and deepening occasions of meta reflection, so that students may become 
aware of their rational behaviour and share it with their mates. 
 

Aware of the complexity connected to the teacher’s task of acting as a model in the 

effective use of algebra as a thinking tool and in promoting students’ rational 

behaviour, we turned our reflection to possible ways to promote the teacher’s 

development on this issue and we focused on situations where teacher and didactician 

(we use this term in the sense of Jaworski, 2012) collaborate in all phases of the 

teaching and learning process, from the planning to the implementation and analysis of 

teaching sequences. Our methodology of working with teachers involves an active role 

of the didacticians in fostering teachers’ analysis of their practice and the use of specific 

theoretical constructs as tools to support this joint analysis and the 
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communication between teachers and didacticians (Cusi & Malara 2016). In this paper 

we focus on another important moment in which the teachers and the didacticians 

interact, that is when the didactician participates to classroom activities. In particular, 

we are interested in studying the ways in which the didactician could behave, during 

classroom activities, to foster the teacher’s aware activation of the roles that could be 

played to support students in the use of algebra as a thinking tool. 
 

In the following, we organize our theoretical framework in two sections: at first we 

illustrate relevant references on the relationship between theory and practice and the 

possible collaboration between teachers and didacticians to frame our methodology of 

work with teachers; afterwards we present the theoretical tools we combine to study 

the actions and interventions of the didactician and the influence of the didactician’s 

actions and interventions in terms of teacher’s activation of the different roles that 

could be played to support students in the use of algebra as a thinking tool.  

 

TEACHERS AND DIDACTICIANS WORKING IN COLLABORATION: THE 

INTERPLAY BETWEEN THEORY AND PRACTICE 
 

In the last years there has been an increasing interest towards the crucial role played by 

collaborative ways of working with teachers within teacher education processes. The 

model of collaboration to which we refer is the one introduced by Jaworski (2003), 

who has stressed the value of, on one side, fostering teachers’ critical reflection about 

their practice, and, on the other side, sharing these reflections between didacticians and 

teachers within a community of inquiry. She stresses that this kind of research 

programs foster the co-learning for all the participants: “in co-learning, the learning of 

one is dependent on the participation and learning of others: mathematics teachers and 

educators learn together with different roles, goals and learning outcomes, while 

engaged in common activity for mutual benefit” (Wagner, 1997, quoted in Jaworski, 

2003, p. 250). We put ourselves in a perspective of co-learning, since, in this work, we, 

as didacticians, are reflecting on our roles of teacher educators within the teacher 

education program in which we are involved. 
 

Jaworski (2012) suggests that, in order to reflect elements of learning and development 

for teachers and didacticians, the usual didactic triangle (teacher-student-mathematics) 

should be extended to a didactic tetrahedron (the didacticians representing the fourth 

vertex), the expanded didactic triangle. The expanded didactic triangle enables to focus 

both on: (a) the traditional didactic triangle, which characterises elements of the 

relationships involved within a community of teachers, their students and mathematics; 

(b) a meta-level triangle, which highlights the developmental processes that involve 

teachers and didacticians. In this paper we will adopt the model of the didactic 

tetrahedron to describe the focus of our research. 
 

As stated above, we are interested in studying how the actions and interventions of the 

didactician during classroom activities may influence the teacher’s activation of 

different roles to support the use of algebra as a thinking tool in their students. In 

particular, we claim that the didactician’s interventions during teaching experiments  
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could represent a fundamental way of supporting teachers in activating effective and 

aware approaches to be adopted during the lessons. This perspective is in tune with 

Mason’s (2008) stress on the teacher educators’ role in directing teachers’ attention 

toward constructs, theories, and practices that can inform and guide their future 

choices, in order to lead them to become aware “not simply of the fact of different ways 

of intervening, but of the fact of subtle sensitivities that guide or determine choices 

between types and timings of interventions” (2008, p. 49). In tune with Mason’s 

description of what happens to a student who internalizes the stimuli received by 

his/her teacher, we claim that, in the same way, the interventions of the didactician 

during the teaching experiments could foster shifts of attention for teachers and their 

internalization of the received stimuli, so that the activity of reflection moves from a 

process “in themselves” to a process “for themselves”. 
 

THEORETICAL TOOLS FOR THE ANALYSIS OF THE ROLE PLAYED BY 

THE TEACHER WITHIN CLASSROOM ACTIVITIES 

The MAEAB construct is the result of a study aimed at highlighting the delicate role 

played by the teacher in effectively guiding his/her students to the construction of 

reasoning through algebraic language. A set of roles (summarised in the following 

table) have been identified (Cusi & Malara, 2009, 2016) to outline the approach of a 

teacher who consciously behave constantly aiming at “making thinking visible” 

(Collins et al., 1989), in order to make his/her students focus not only on syntactical or 

interpretative aspects, but also on the effective strategies adopted during the activity 

and on the meta-reflections on the actions that are performed. 
 
 

A first group of roles are 

those performed when 

the teacher tries to carry 

out the class activities 

posing him/herself not as 

a “mere expert” who 

proposes effective 

approaches, but as a 

learner who faces 

problems with the main 

aim of making the 

hidden thinking visible, 

highlighting the 

objectives, the meaning 

of the strategies and the 

interpretation of results. 

 
 

Investigating subject and constituent part of the class in the research 

work being activated: when the teacher asks students to give suggestions 

about how to go on with the activity, intervening with the aim of making 

them feel involved in the activity as a group; 
 

Practical/ Strategic guide: when the teacher poses herself, in front of the 

problem, as an inquirer who aims at sharing the thinking processes and 

discussing the possible strategies to be activated; 
 

“Activator” of interpretative processes: when the teacher makes the 

students activated proper conceptual frames (Arzarello, Bazzini & 

Chiappini, 2001) to interpret the different algebraic expressions 

constructed when solving a problem; 
 

“Activator” of anticipating thoughts (Boero, 2001): when the teacher 

makes the objectives of the manipulation of algebraic expressions 

explicit and recall them during the discussion, in order to enable the 

students to share these objectives, monitor and control the activated 

strategies; 
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The second group of 

 
roles refers to the phases 

during which the teacher 

becomes also a point of 

reference for students, to 

help them clarify salient 
 
aspects at different levels, 

with an explicit 

connection to the 

knowledge they have 

already developed. 

 
Guide in fostering a harmonized balance between the syntactical and the 

semantic level: when the teacher makes the students focus on the 

importance of controlling both syntactical and interpretative aspects and 

she discusses possible problems arisen when the syntactical or the 

interpretative level is not controlled; 
  

Reflective guide: when, in front of a student who proposes an effective 

approach to the resolution of a problem, the teacher asks him/her to make 

his/her thinking processes explicit, or she repeats what has been said by 

the student stressing on the reasons subtended to his/her approach, or she 

asks to other students to interpret what he/she said; 
 

“Activator” of reflective attitudes: when the teacher poses meta-level 

questions aimed at making the students evaluate the effectiveness of a 

strategy and reflect on the effects of a choice that was made during the 

resolution process. 
 

Table 1: Characterisation of the roles played by a teacher as a MAEAB 
 

The second theoretical tool to which we will refer in our analysis is Habermas’ 

construct of rationality. Drawing from this construct, Morselli & Boero (2011) propose 

that the discursive practice of proving encompasses: an epistemic aspect (conscious 

validation of statements according to shared premises and legitimate ways of 

reasoning); a teleological aspect (conscious choices to be made in order to obtain the 

aimed product); a communicative aspect (conscious adhering to rules that ensure both 

the possibility of communicating steps of reasoning, and the conformity of the products 

(proofs) to standards in a given mathematical culture). When proving through algebraic 

language, epistemic rationality consists of modeling requirements, inherent in the 

correctness of algebraic formalizations and interpretation of algebraic expressions, and 

systemic requirements, inherent in the correct application of syntactic rules of 

transformation; teleological rationality consists of the conscious choice and 

management of algebraic formalizations, transformations and interpretations that are 

useful to the aims of the activity; communicative rationality consists of the adherence 

to the community norms concerning standard notations, but also criteria for easy 

reading and manipulation of algebraic expressions. The student must combine the 

adherence to syntactical rules on one side, and the goal-oriented management of the 

processes of formalization, transformation and interpretation, on the other. Still related 

to teleological rationality, the student must be aware of the fact that proving by 

algebraic language means deriving from algebraic manipulation a new algebraic 

expression, whose interpretation gives new information concerning the truth of the 

statement. 
 

RESEARCH QUESTIONS AND RESEARCH METHODOLOGY 
 

The aforementioned theoretical tools were already used to analyse the teacher’s 

complex role as a model for fostering students’ rational behaviour when dealing with  
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algebra as a thinking tool (Cusi & Morselli, 2016). We plan to analyse the didactician-

teacher interaction and the teacher professional development throughout a 10 years 

process. The objective of this long-term study will be to analyse the teacher’s 

development, highlighting the ways in which the didactician, collaborating with the 

teacher, may promote the teacher’s awareness of her role in the classroom and, more 

in general, her professional development. 
 

In this paper we start this analysis, focusing on the didactician-teacher-students (D-T- 
 

S) interaction during classroom activites. The model of the didactic tetrahedron 
(Jaworski, 2012) is helpful in describing the focus of our research. In particular, it 
enables to describe the complexity of the interactions that our methodology of work 
with teachers involves. In addition to the traditional didactic triangle (T-S-M) and the 
meta-level triangle (D-T-M), in fact, the other facets of the tetrahedron introduce new 
levels at which our analysis can be performed: the triangles D-S-M and D-T-S, in fact, 
highlight the levels of the interaction between the didactician, the teacher and the 
students during classroom activities. In this work, our aim is to investigate the ways in 
which the dynamics that can be analysed looking at the triangles D-S-M and D-T-S 
may influence, on one side, the interaction between the teacher and her students 
(triangle T-S-M) and, on the other side, the developmental processes highlighted 
through the meta-level triangle. For this reason, we will use our theoretical tools for a 
double aim: studying the way the didactician acts as model for the students, and 
studying the way teacher is influenced buy the model of the didactician. We use the 
construct of rational behaviour to discuss the rational behaviour in using algebra as a 

thinking tool during the activity, and the MAEAB to analyse the role of the didactician 

as a model for the students. More specifically we focus on moments during which the 

didactician, thanks to the activation of specific roles connected to the MAEAB 

construct, fosters the shift of attention in the teacher, who, consequently, tries to 
activate the same roles. It is a preliminary analysis, mainly aimed at investigating the 
use how our theoretical tools to highlight these dynamics. We, in particular, focus on 
an episode during which the didactician and the teacher orchestrate collaboratively a 
mathematical discussion. Data at disposal are video recordings of the classroom 
discussion, pictures of the whiteboard, students’ written productions. 
 

ANALYSIS OF AN EPISODE 
 

The context we refer is that of the long-term project “Language and argumentation” 

(Morselli, 2013), aimed at designing and experimenting task sequences with a special 

focus on argumentation and proof. Within the project, the didactician and the team of 

teachers collaborate in task design and process analysis. The didactician takes part to 

all the class sessions, co-conducting the lesson with the teacher. After each lesson there 

is a brief meeting between the teacher and the didactician, so as to comment the session 

and plan possible variations for the subsequent session. Regular meetings with all the 

team of teachers are organized, so as to analyse the processes and compare the teaching 

experiments in the different classes. 
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The episode comes from a teaching experiment performed in grade 7. The teacher, who 

holds a university degree in Chemistry, had more than 10 years of experience in 

teaching mathematics at lower secondary school level. She was at her fifth year of 

collaboration with the didactician within the project. She had already taken part to the 

design and implementation of task sequences for the first approach to algebraic 

language as a proving tool, but she was at her first experience with the task at issue. 

The students already had performed some activities on argumentation and first 

approach to algebra as a proving tool. 
 

Students worked in group on the following task: “What can you tell about the sum of 

three consecutive numbers?”. In the subsequent class discussion, the groups shared 

their answers and explanations with all the class. Only one group (Edel, Sonia and 

Giulia) attempted an argumentation with letters, proposing two different algebraic 

representations (the second being an amendment of the first one): n+n+n=n/3; 

n1+n2+n3=n/3. Next to the two expressions, the group proposed a verbal explanation: 

“Three consecutive numbers can be added and the result is multiple of 3. The sum of 

these numbers is divisible by 3 because the added numbers are 3. The middle number 

is given by the division of the sum of the three numbers”. The following excerpt refers 

to the discussion on their solution, with a specific focus on the algebraic 

representations. This solution was presented after another group expressed its 

conjecture (the sum is always divisible by 3) and proposed a pragmatic explanation, 

made up of numerical examples. 
 

The discussion starts with Edel, one of the elements of the group that proposed the 

algebraic expressions, writing at the blackboard the expression n+n+n=n/3 . 

1 Edel: I do number plus number plus number, equal n divided by 3. 
 

Bos raises his hand and starts criticizing, but the teacher stops him. 
 

4 D (didactician): I ask you a question: this thing that you wrote … did you write it to 

express the property or to justify, to motivate it?  

5 Edel: To try and explain what we did, to try and explain the way three consecutive 

numbers can be summed up and give a number that is divisible by 3. To try to explain 
what we did before, that is the three numbers, the numbers are three and then this is 
why they are divisible by 3.  

6 D: Ok. After, we will reason on her representation. In the meanwhile, what can we find 

of really different from what we wrote before? (R is referring to the pragmatic 

explanation proposed by the previous group) …That she does not use…  

D, referring to the activities performed during the previous school year, guides the students 

highlighting that the use of letters enables to reason in general terms. 

13 Edel: At first we had written number plus number plus number, without 1,2,3, but after 

one had to add 1,2,3 in order to show that they are consecutive.  

14 D: Ok, in order to show that they are different and you say, if we call them n1, n2, n3 I 

give the idea that they are three consecutive numbers. Ok.  

Another student, Alb, proposes to use the two expressions n⋅2+ n⋅2+1+ n⋅2 and n⋅2+1+ 

n⋅2+ n⋅2+1, which are written on the whiteboard. 
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18 T (teacher): Ok, this is when we start with an even number, the other one when we start 

with an odd number.  

19 D: What do you think about this proposal, in comparison with the former one? 
 

D guides Alb in making the meaning of the two expressions explicit. Alb, helped also by T, 

stresses that the two expressions represent two different cases: when the first number is 

even and when it is odd.  

24 D: What do you think of this representation? Do you find it convincing? 
 

25 Vic: It doesn’t specify that they are consecutive. 
 

26 D: It does not specify that they are consecutive, that is to say if I get into the room right 

now and I see the sum written on the whiteboard, do I understand that it is the sum 

of three consecutive numbers?  

27 Vic: It is the sum of an even number plus an odd number or an odd number plus an even 

number.  

28 Alb: You can write first, second and third. As we said before. 
 

29 T: In this way? (T adds Roman numbers on the top)… Does this help to understand that 

they are consecutive? 

30 Voices: no. 
 

The students, supported by D who suggests to substitute specific values to n, are able to 
highlight that the representations proposed by Alb are characterised by the fact that the 
first and the third numbers are the same, therefore they do not represent three consecutive 
numbers. Moreover, the expression n1+n2+n3, proposed by Edel’s group, are too general 
because they only represent the sum of three numbers.  

42 Pir: I can write n and after I change the letter. Different letters. 
 

43 D: But it is the same objection I did for n1, n2, n3… how can I know they are 

consecutive numbers?  

45 Vic: We can write… in the first case n·2, after n·2+1, after n·2+3.  
46 T: Plus?  
47 Vic: +2. 
 

T writes on the whiteboard the expression n·2+ n·2+1+ n·2+2. 

48 D: Did you understand what is it? Vic, could you explain it? 

49 Vic: n·2 is an even number, n·2+1 is the consecutive…  
50 D: Let’s try and give some numeric values. 
 

Vic proposes to substitute n=3 in the expression. Other students declare that Vic’s 

expression is right. 

55 D: Is this ok? This is a way of writing three generic consecutive numbers, isn’t it? 
 

Other students agree with Vic’s proposal. D asks whether 5+6+7 can be written in that 

way and Bes proposes to change the representation into n+n+1+n+2. 

64 T: Here, let’s check whether we can write also an odd number. 
 

65 Bes: n=5, you can do n=5, n+1=6 and n+2=7. 
 

66 Vic: Or you can modify the above case, the second case says that… 
 

D promotes a comparison between Vic’s idea of representing two cases and Bes’ idea of 

creating a more general representation and asks to the class whether it is necessary, to the 

aim of proving the divisibility by 3, to distinguish the two cases.  

68 Voices: No. 
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69 D: Then, we can write only one, that will be for instance n+n+1+n+2. By now what 
did we do? We just represented the sum of three consecutive numbers… By now 
we just wrote the sum of three consecutive numbers. What do we do with that 
writing? Now we can go on and write n/3 or something similar, but… I let you 
think in which way, using this writing, we can go on with the justification.  

70 T: Why does writing it in this way is useful for us?  
71 Vic: Because modifying we would get number + number + number +1+2 and 

then… T writes at the whiteboard  
72 Vic: Summing up we would get number +number + number +3.  
73 D: And n+n+n, how can we write it?  
74 Voices: n·3.  
75 D: And at this point do I see that is a number divisible by 3?  
76 Voices: yes. 

 

If we focus on D’s interventions, we can observe that, from the very beginning of the 

discussion (4), she often poses herself at a meta-level, acting as an activator of 

reflective attitudes, bringing to the fore the teleological dimension. Specifically, in line 

4, D wants to elicit the aim of writing the algebraic expression (communicating or 

proving) because her objective is to intervene at two different levels: at epistemic level, 

enabling the students to realise that the representations are not correct; at teleological 

level, enabling them to highlight that the algebraic representation should not contain 

also the “resulting property” (divisibility by 3), that should be derived from the 

transformation of the algebraic expression “sum of three consecutive numbers”. When 

she asks to the students to compare Edel’s group’s approach with the approach analysed 

previously (6), she also acts as a reflective guide, fostering the comparison between 

two different ways of facing the activity. This role is activated by D also when she asks 

the students to compare Alb’s proposal to Edel’s (19). 
 

During the discussion, D often acts also as an activator of interpretative processes, 

trying to support the students in highlighting the meaning of the algebraic 

representations they propose (14, 24, 43, 55). At the same time, D acts as a reflective 

guide and as an activator of reflective attitudes because her aim is to make the students 

catch if the different representations are really correct or not. In this part of the 

discussion, therefore, D focuses on the epistemic aspects, disentangling them with the 

communicative and teleologic ones: the algebraic representation must be correct, not 

only easy to understand, and “transformable”. The effectiveness of this approach is 

evident when Vic is able to highlight a problem connected to the expressions proposed 

by Alb (25), to make the meaning of these expressions explicit (27) and to propose a 

possible modification of these expressions to represent consecutive numbers (45). D 

acts as a reflective guide also in helping Vic express the meaning of his proposal to the 

classmates (48, 50). 
 

The influence of D’s approach on T’s activation of roles that should be played is 

evident when, instead of commenting on Alb’s proposal of distinguishing the three 

numbers simply writing “first, second and third” (28), T re-launches this suggestion 
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to the whole class (29), acting as an activator of both reflective attitudes and 

interpretative processes with the aim of making the students identify the problem. 

Starting from this moment, it is possible to highlight what we call “achieved harmony” 

between T’s and D’s interventions, that is an evidence of T’s intention of supporting 

D’s approach through her interventions. When, for example, Bes, referring to Vic’s 

observations, correctly suggests to write a more general expression that really 

represents the sum of three generic consecutive numbers, T supports Bes in checking 

the correctness of her algebraic expression and in explaining the effectiveness of her 

proposal (60-62-64). 
 

After having acted again as a reflective guide, making the meaning of Vic’s and Bes’ 

suggestions more explicit (67), D shifts students’ attention on the effectiveness of the 

last expression (n+n+1+n+2) in supporting the construction of a mathematical 

justification of the fact that this sum is always divisible by 3 (69). In particular, focusing 

on this objective, D is acting as an activator of anticipating thoughts because she wants 

the students to transform this expression with the aim of highlighting the observed 

property. Here again we can observe an achieved harmony between T’s and D’s 

interventions, because T acts to make the teleological level arise, re-launching D’s 

question to the class (70). In this way she enables the students to highlight how to 

transform the expression n+n+1+n+2 to show that it always represents a number that 

is divisible by 3. 
 

COMMENTS AND CONCLUSIONS 
 

Our working hypothesis was that the didactician, by her interventions during class 
discussions, may help the teacher carry out efficient ways to promote the student’s 
rational behaviour in the use of algebra as a thinking tool. To test this hypothesis, we 
analysed a teaching episode, showing that the teacher, while working with the 

didactician acting as a MAEAB for the students, gradually activated specific roles in 

tune with the MAEAB construct. In particular, we introduced the idea of “growing 

harmony” to indicate those moments when the teacher starts proposing interventions, 
attitudes and behaviours in tune with the didactician’s approach. In our opinion this 
“growing harmony” could represent an indicator of a deeper teacher’s awareness about 
the ways in which she should behave to foster students’ aware and effective use of 
algebraic language as a thinking tool. 
 

In order to test this hypothesis, we will compare this discussion with other subsequent 
discussions carried out by the didactician and the teacher and by other teachers 
involved in the project. Moreover, we will interview the teachers to collect their 
narratives about their professional development path and, in tune with the methodology 
proposed by Cusi and Malara (2016), we will make the teachers refer to specific 

theoretical lenses (in particular the M-AEAB construct and Habermas’ levels of 

rationality) in their a-posteriori reflections on the written transcripts of class 
discussions. In this way, it will be possible to highlight the teacher’s growing 
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awareness about both the meaning of the researcher’s interventions and the crucial 

roles that should be played. 
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This paper focuses on 3 cases of mathematics teachers' attempts to integrate the 

workplace into their teaching while participating in a professional development (PD) 

program. We draw on the work of 5 groups of mathematics and science teachers who 

collaborated for a school year to design and implement tasks related to workplace non- 

routine situations. Teachers’ activities are analysed under an Activity Theory (AT) 

perspective. The results indicate different forms of interaction between the activity 

system of workplace and the one of mathematics teaching. 
 

Keywords: Workplace, teachers' goals and actions, Activity Theory. 
 

INTRODUCTION 
 

There is a great deal of research supporting claims that workplace settings may offer 

pedagogical opportunities for teachers to introduce authentic situations into their 

school classrooms activities (e.g., Nicol, 2002; Wake, 2014). These pedagogical 

opportunities refer to making mathematics meaningful to students by preparing them 

to explore open and unstructured problems that connect mathematical knowledge as 

taught at school and as used out-of-school. Our understandings of the nature of 

mathematical activity in workplace are informed by a number of research studies (e.g., 

Hoyles & Noss, 2001). These studies indicate that mathematical notions underlying 

professionals' practices in workplace settings are mostly hidden and embedded in the 

particulars of the situations. This makes any attempt to connect workplace and 

mathematics teaching highly demanding. A challenge for a teacher, in this case, is to 

connect situations, symbol systems, technological and workplace tools, contextual 

constraints/rules and personal and professional knowledge to help students make sense 

of work processes. 
 

How teachers can use the workplace as a context for designing and using lesson 

activities in the classroom remains an open question that has only received partial 

answers from small scale studies mostly on prospective teachers. For instance, Nicol 

(2002) found that a teacher education program including visits to workplace sites 

helped prospective teachers to keep the mathematics contextualized when designing 

activities for their students. Frykholm and Glasson (2005) suggested that teacher 

education courses involving collaboration between science and mathematics 

prospective teachers provide a fertile ground for them to develop interdisciplinary units 

connecting both topics. In this direction, Potari et al. (2016) argue that 
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workplace seems to provide a context for collaborative work of mathematics and 

science practicing teachers that helps them to connect meaningfully the two subjects. 
 

The study reported in this paper took place in the context of a European project, mascil 

(see: www.mascil-project.eu), aiming to integrate workplace in the teaching and 

learning of mathematics and science through implementation of inquiry-based tasks in 

classrooms. Thirteen partner countries participated in the project and developed a body 

of exemplary classroom and teacher education materials as a basis for the organisation 

of PD activities and classroom implementations. Our aim is to examine how practicing 

mathematics teachers integrate workplace tools and practices when designing and 

implementing problem-solving classroom activities and what factors facilitate or 

constrain this integration. We adopt an AT perspective to focus on how workplace 

situations – considered as activity systems - interact with the mathematics teaching 

activity in the context of mascil. 
 

THEORETICAL FRAMEWORK 
 

Thinking beyond dichotomies such as school versus work, Bakker (2014) argues on 

the importance of developing research-informed understanding of what happens at the 

boundaries of schools and workplaces settings. However, the task of building 

connections between the two is rather demanding from an epistemological and 

didactical point of view. From an epistemological point of view, a number of studies 

emphasize the extent and depth of mathematical concepts and sophisticated 

mathematical skills encountered in the workplace. However, the conventional 

epistemological view of mathematics fails to capture this richness (Hoyles & Noss, 

2001; Triantafillou & Potari, 2010). At the level of teaching, viewing the workplace 

context as non-mathematical might eliminate teachers’ opportunities to explore its 

pedagogical potential. Wake (2015) argues that modelling the structure of a contextual 

situation could provide teachers an opportunity to create a nexus of mathematics and 

reality. 
 

We adopt Engeström’s (2001) approach to investigate mathematics teachers’ activity 

when they are challenged to integrate workplace into their teaching. We consider two 

activity systems: the system of workplace and the system of mathematics teaching in 

which the teachers have been engaged to study the interaction between the two. The 

“activity system” is a basic concept of AT that is collective, tool-mediated and needs a 

motive and an object. Individual and group actions are studied and interpreted against 

the background of entire activity systems. Activity systems are transformed over 

lengthy periods of time when the object and the motive of the activity are 

reconceptualized to embrace a radically wider horizon of possibilities than in the 

previous mode of the activity. Central to the process of transformation are 

contradictions within and between activity systems emerging when a new element 

comes from the outside. Figure 1 shows a representation of two interacting activity 

systems under Engeström's (2001) perspective. The two triangles represent the two 

activity systems considered in the present study. 

 
 
 
 
 
 

299 

http://www.mascil-project.eu/


 Each  system involves the basic   
 

 dimensions of AT with elements the 
 

 subject and the object of the activity 
 

 (object 1) that is constructed through 
 

 the mediation of tools and it is framed 
 

 by  the community  in which the 
 

 

subject participates, its rules and the 
 

Fig.   1.   Interacting   activity   systems 
 

(Engeström 2001, p. 136) 
division of labor. In the interaction of 

 

the two systems object 1 moves from 
 

 
  

an un-reflected and situationally given goal to a collectively meaningful object 

constructed by the activity system (object 2) and to a potentially shared or jointly 

constructed object (object 3). 
 

In this study, we analyze teachers’ goals and actions when acting as subjects into the 

activity systems of workplace and mathematics teaching. Our aim is to explore the role 

of tools (workplace artefacts, teaching resources) and the specificities of the workplace 

and classroom contexts (rules and division of labour) in the formulation of a new object 

incorporating elements of both activity systems. 

 

METHODOLOGY 
 

The context of the study 
 

In mascil implementation in Greece, thirteen groups of practicing secondary teachers 

(about 10 in each group) from mathematics, science and technology have been 

established to work in the spirit of lesson study (Hart, Alston & Murata, 2011). In each 

group, teachers collaborated with the support of a teacher educator for a school year to 

design and implement inquiry-based tasks related to workplace non-routine situations 

and reflect on their teaching. Before and after each implementation of the designed 

lessons PD meetings took place. In the initial PD meetings, the teacher educator 

informed teachers about the rationale of the project and introduced them to the main 

principles of inquiry-based tasks and to the nature of workplace mathematics. In the 

subsequent meetings, teachers were asked to collaborate in transforming the exemplary 

mascil tasks or designing new ones in the same spirit, share their experiences from the 

implementations and discuss emerging issues. In the highly centralized Greek 

educational system, mathematics teaching in secondary school is rather traditional with 

a strong emphasis on mathematical content without connections to real life contexts. 

Moreover, PD activities are often limited to lectures and short term courses of a top 

down philosophy. Thus mascil was a rather innovative project both in terms of its 

teaching objectives and its PD approach. 
 

Participants 
 

In this paper, we focus on five groups of practicing teachers (22 mathematics teachers, 

14 science and 9 technology). Teachers in these groups worked in upper or lower 

secondary schools and they had long teaching experience (more than ten 
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years). We analyze the work of the mathematics teachers in these groups who 

collaborated together and/or with science and technology teachers. Participation in 

mascil was on a voluntary basis and most of the teachers had qualifications beyond 

those required by their profession (e.g., master or PhD degrees in mathematics, science 

or technology education). 
 

Data collection and analysis 
 

The data collected from the five teacher groups included: audio and/or video recordings 

of the PD meetings (7 two- hour meetings per group – 35 in total) and classroom 

implementations (71 in total, 2 teaching hours each); teachers’ portfolios (tasks, 

worksheets, written accounts/journals, power -point presentations, digital materials, 

students’ work, students’ evaluation reports) and selected interviews with teachers and 

teacher educators. 
 

In this paper, under a grounded theory approach (Charmaz, 2006) we analyse the 

discussions in the PD meetings and teachers’ portfolios. Initially, we identified parts 

of the data concerning the activity of mathematics teaching and the activity of 

workplace. Then we analysed teachers’ goals and actions looking for possible 

intersections between the objects of the two activity systems identifying emerging 

contradictions and convergences in relation to: (a) the origins of their ideas for tasks 

(e.g., personal experiences); (b) the tasks and resources by which they targeted 

students’ familiarisation with workplace (role playing, workplace tools, 

representations used); (c) the links they made between workplace and mathematics;  

(d) the supportive factors and/or constraints in the process of integration; and (e) the 

teachers’ reflections on the contribution of workplace in improving their teaching. The 

rationale of the goals and actions was analyzed by taking into account the bottom 

elements of the extended mediational triangles of the activity systems (community, 

rules, division of labor). 
 

RESULTS 
 

In this section, we present the case studies of three teachers from different groups 

indicating three emerging ways of interaction among the elements of the activity 

systems. In case 1, the workplace context is mostly used for motivating students to see 

the applications of mathematics while the teaching goals are not linked to the 

workplace activity. In case 2, the workplace context is smoothly integrated into the 

classroom teaching through a modelling process linking the workplace activity with 

problem solving in the classroom. In case 3, a simulation of the workplace activity in 

the classroom facilitated a strong integration of workplace into mathematics teaching.  
 

Case 1 
 

The teacher studied in this case, James, is a mathematics teacher with more than 20 

years of teaching experience who participated in one PD group consisted of four 

mathematics, one technology and four science teachers. 
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The initial idea of his design was based on a contextual textbook task: “Two villages 

are situated on the opposite sides of a river and their distances from the sides are 

unequal. In which place do we have to construct a bridge perpendicular to the sides of 

the river so that the two villages to have the same distance from the bridge”. His 

proposal was negotiated in the group and he was challenged to make more explicit the 

workplace connection. The mathematics teachers invited a landscape engineer to 

inform them about the design of a bridge and the main issues involved in it. The 

engineer pointed out that at his workplace context the main goal was to reduce the cost 

of the bridge construction. The cost was related to the width of the river and that the 

distance from the villages did not matter. The science teachers started to propose non 

mathematical parameters from the realistic situation to take into account in the task 

design such as “rivers with varying width” or “rocky landscape”. After this exchange 

of ideas, James did not feel happy with this workplace complexity: “it would be better 

not to have all these factors interfering”. 
 

James reformulated the problem of the design of the bridge by referring to a specific 

very old bridge that it had been awarded a prize for its original construction. The 

students were asked to find the parabolic curve given the length and the height of the 

bridge that a technician could use to build it. This task was an extension of a similar 

textbook problem. In the group discussion conflicts emerged as the other teachers and 

the teacher educator could not see any connection with the workplace. James presented 

to the group a technical method that he had found in the internet about the construction 

of this bridge. 
 

In the classroom implementation (11
th

 grade students, 17-year -olds), James took the 

following teaching actions: (a) familiarized the students by asking them to read 
information about the history of the bridge; (b) engaged them is solving a textbook task 

(drawing the graph of y=-x
2
+6x and find its maximum value); (c) asked them to find 

the formula of a parabola when they knew that it passed through three points; and (d) 
explained on the board the technical process of joining together different parts of a 
bridge. He closed the lesson by asking the students “What would you recommend to 
the constructor of the bridge?” 
 

James based his task design on a familiar to him tool, the school textbook. In the 

collective process of transforming this task the inputs from the science teachers in the 

PD group brought realistic factors that he could possibly include into his design. 

However, for him it was not easy to take these factors into the account in his 

implementation. Although, he tried to be familiarized with the specific workplace 

context and tools (talking with the professional, finding relevant information about 

different techniques of bridge construction) the gap between his teaching goals and the 

workplace goals still remained. This can also be explained by the fact that mathematics 

teaching practice in upper secondary education in Greece is characterized by norms 

and rules targeting students' conceptualization of abstract mathematical ideas while 

connections with contextual situations are rather limited. 
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Nevertheless, James made an attempt to introduce a contextual task into his teaching 

but did not succeed in overcoming norms and rules established in his professional 

community. 
 

Case 2 
 

The mathematics teacher, Elena, had 15 years of teaching experience. In mascil she 

participated in a group of five mathematics, three science and two technology teachers. 

She chose to use a task (the Solar Cells) that was included in the exemplary mascil 

materials (www. mascil-project.eu). The task concerned the installation of solar panels 

on a house rooftop. In this task, the students had to decide whether a specific 

installation of solar panels on a house rooftop was a profitable choice for a family in 

relation to the cost of electrical supply provided by the National Electricity Company. 

In this process, students had to explore how to place the panels on the roof in order to 

maximize their number by studying their projections. In terms of mathematics, the 

problem required students to visualize relations between the three-dimensional context 

of the task and its two-dimensional representation. 
 

Elena collaborated with the science teachers during and between the PD meetings in 

order to be familiarized with the scientific context of the task. Also she discussed 

specificities of panel installation with a professional working in a solar panel company. 

In her design, she used resources provided in the initial version of the task (e.g., actual 

panel dimensions, panel inclinations, video from the workplace). Furthermore, she 

adapted the problem to be closer to reality on the basis of the information that the 

professional provided to her (e.g., the distance between horizontal rows of panels). 
 

During classroom implementation (8th grade students, 14- year-olds), Elena supported 

students' familiarization with the scientific aspects of the problem by asking them to 
interpret authentic representations. For example, she provided the representation (Fig.  

2) of sun's positions during the spring and the winter equinox and asked students "what 

case we could consider as important in order to decide about the shadow effect on the 

panels’ installation?" Furthermore, she challenged them to consider the advantages of 

using solar energy as power supply for houses: "why making your house energy 

sustainable is a profitable investment?" 
 

The main part of students' activity concerned the modelling of the problem through the 

development of different strategies such as: defining the rooftop area dimensions to be 

covered; translating the problem in the three-dimensional space by utilizing the 

projections of the panels on the rooftop through the use of trigonometric ratios; and 

examining alternative ways to place the panels and comparing the expenses in each 

case. 
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Fig. 2: Diagram of sun's route  

 

In her reflection, Elena realized that the 

modelling process revealed unexpected 

students' weaknesses and strengths that 

she had not noticed in her day-to-day 

mathematics teaching. 
 

Elena's willingness to integrate the 

workplace of solar cells in her teaching 

was followed by a number of actions such 

as her own familiarization with the 

workplace context (i.e. discussion with  

science teachers in the group and one professional) and students' familiarization with 

this context by emphasizing situational aspects of it (e.g., technicians' installation 

practices, how panels' energy capacity is related to sun's position). The emerging rich 

interaction between the two activity systems was unfolded as a multifaceted modelling 

process involving the use of workplace tools, scientific representations, mathematical 

concepts, strategies and inquiry processes. 
 

Case 3 
 

This case refers to a mathematics teacher, Katerina, who had about 10 years of teaching 

experience. She participated in a mascil group with thirteen members (eight 

mathematics, one technology and four science teachers). Katerina developed a task 

entitled Seismologists for One Day where the students had the role of a seismologist 

responsible to study main features of a specific earthquake (e.g., the epicentre).  
 

The initial idea of the task was provided by a group member whose specialization was 

geology. The teacher educator had suggested collaboration between mathematics and 

science teachers as a way to help them integrate workplace context into their classroom 

teaching. The geology teacher designed and implemented a similar task in his 

classroom and shared his materials (e.g., description of the main features of 

earthquakes and how they are studied by specialists) with the PD group. Katerina was 

teaching mathematics and geography in the 7
th

 grade (13 -year-old students) in her 

school, so she found as a challenge to develop a task for integrating the context of 

seismologists into her teaching by combining mathematics and geography. Her 

familiarization with the context of earthquakes in the PD meetings allowed her to use 

it as a context for designing a task for her students. 
 

In classroom implementation, Katerina presented and discussed scientific aspects of 
the earthquakes based on her knowledge from physics and geography and provided 
students with authentic data from the National Institute of Geodynamics. The data 

included: (a) the velocity of p (V P) and s (VS) waves and the exact time these waves 

were recorded in specific seismic stations; (b) the mathematical formula D = t 
.
 (VP  

.VS) / (VP – V S) (1) where D is the distance (in Km) of the epicentre from the seismic 

station and t the difference of the time arrivals of the waves; (c) a geographical map 

indicating all the seismic stations in the country with the corresponding codes (e.g., 
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LKD2 for the seismic station in Lefkada island); and (d) the specific measures 

recorded in the seismographs of six stations in western Greece (see Fig. 3). 
 

   

   

 Fig. 3: Data sheet from Fig.  4:  Students'  actions  as 

 seismic stations seismologists 
 

  

In terms of  

mathematics, the 

students had to identify 

that the epicentre of the 

earthquake was the 

common point of three  

intersecting circles 

whose centers were 

situated on three 

seismic stations (Fig. 

4). In particular, they  

had to: substitute given quantities into the formula (1) to calculate the distance of the 

epicentre from the different stations; model the situation through the use of map scales; 

conceptualize the calculated distances as radii of different circles; and design them with 

the use of ruler and compass. 
 

Katerina’s attempt to integrate the workplace of seismology into her teaching was 

followed by a number of actions such as: her own familiarization with the workplace 

context through discussions with the geology teacher in the PD group and her 

involvement in teaching mathematics and geography in the same classes; her decision 

to connect the topic of earthquakes included in geography curriculum with aspects of 

the mathematics curriculum (e.g., scales, properties of geometrical figures); the use of 

authentic workplace worksheets and tools; and the assignment of the role of 

seismologist to the students simulating the actual workplace practice. 
 

In the case of Katerina, we see that the two activity systems are strongly connected and a 

new object started to be formulated in the intersection of the two systems. In this case, 

sharing of artefacts, goals and actions between mathematics teaching and workplace 

emerged through the simulation of the workplace activity in the classroom. 
 

DISCUSSION 
 

Our study builds upon existing research indicating that integrating workplace situations 

in mathematics teaching is pedagogically sound in two ways: mathematics can be 

helpful to broaden students' understanding of a situation and conversely, the out-of-

school situations provide students the opportunity to deepen their mathematical 

knowledge. Through the above case studies we explore how the three teachers 

attempted to integrate workplace in their teaching and what factors facilitated or 

constrained this integration. 
 

Our results indicate different forms of interaction between the activity system of 

workplace and the one of mathematics teaching. We address here these forms of 

interaction by focusing on two dimensions: the process by which the teachers 
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attempted to integrate workplace into their teaching and the factors that supported or 

hindered this integration. 
 

As regards the process of integration, teachers' goals and actions included their 

familiarization with the workplace context, students’ engagement in modelling 

activities, students’ familiarization professional contexts and their attribution of a 

professional role. Modelling was a process that triggered all teachers' interest and, as 

Wake (2015) argues, it operated as a means of building connections between 

mathematics teaching and workplace. This process was adopted by Elena and Katerina 

who engaged students in mathematizing workplace situations such as panels' 

installation and identifying geographical maps' scaling. James, on the other hand, 

considered the modelling of the bridge construction as an application of mathematics 

by engaging his students in working in a ready- made model. Modelling in Elena’s case 

was primarily based on a problem solving activity. In Katerina’s case it was embedded 

in a process of simulating authentic workplace practice in the classroom while in 

James’ case modelling remained bounded in the context of school mathematics. 

Teachers' attempts to familiarize themselves with workplace practices were carried out 

through either their personal communication with professionals or through their 

cooperation with science teachers in their PD groups. Familiarization of students with 

workplace was carried out in the following ways: engaging them in working with 

authentic contextual or scientific representations such as photos of bridges or diagrams 

of sun's route or geographical maps; and including in the task aspects of the broader 

scientific context (e.g. the solar energy). Finally, only one teacher (Elena) assigned her 

students a professional role (i.e. seismologist) and a task (i.e. to find the epicentre of 

an earthquake) strongly related to the workplace practice. 
 

The analysis brings to the fore the following categories of supportive factors and 

constraints that facilitated and/or hindered the interaction between workplace and 

mathematics teaching: the collaboration between teachers from different disciplines in 

the PD groups in co -designing a task; the use of exemplary resources and materials 

provided by mascil; teachers' experiences in teaching subjects related to the workplace 

broader scientific context; and the rules underlying mathematics teaching. The 

collaboration between mathematics and science teachers supported the integration in 

the cases of Elena and Katerina since they co- designed the task with science teachers 

from their PD groups. This supports recent research findings that acknowledge 

workplace as a fertile ground for science and mathematics teachers' collaboration 

(Potari et al., 2016). In case 1, however, James and physics teachers in PD group did 

not find a ground for co-designing a task. The use of exemplary mascil materials 

favoured Elena's attempt to integrate workplace in her teaching. Katerina's teaching 

experiences of geography supported the smooth integration of the workplace practice 

of a seismologist in her classroom teaching of mathematics. Finally, the established 

rules of mathematics teaching in upper secondary level, as in the case of James, 

provided barriers to the integration of workplace in his teaching. 
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This paper presents findings from a qualitative case study of a secondary mathematics 

teacher’s work of teaching geometric proof. Data analysed in the paper was collected 

by interviewing the teacher about the lesson plan and observing the lessons. The results 

of our analysis of lesson observations as well as interview data indicate that the work 

of teaching proof construction includes the tasks of 1) initiating, supporting and 

emphasising common steps in geometric proof construction, 2) selecting, using and 

involving students in discussions of appropriate examples, 3) exposing student 

misconceptions in order to facilitate learning, and 4) initiating discussions in order to 

let students identify errors and mistakes in proofs. 
 

Keywords: work of teaching mathematics, geometric proof, secondary school. 

INTRODUCTION 
 

Despite a continually rising interest in research on the mathematical knowledge that is 

specific to teaching mathematics, Hoover, Mosvold, Ball and Lai (2016) argue – based 

on their review of literature in the field – that “mathematical knowledge for teaching 

needs to be elaborated – for specific mathematical topics and tasks of teaching, across 

educational levels” (p. 18). Scheiner (2015) also argues that investigation of teachers’ 

knowledge at the level of specific concepts is an important issue that needs more 

attention in the recent literature on teachers’ knowledge. The present study aims at 

contributing to this field of research by investigating the instructional tasks involved in 

the work of teaching geometric proof. 
 

Euclidean geometry is justified as a part of the high school curriculum in many 

countries on the basis that it provides many opportunities for proving (Herbst, 2002). 

A standard geometry proof question is of the form ‘Given X, show that Y’ with a figure, 

so to prove means to construct a sequence of argumentation from X to Y with 

supportive reasons (Cheng and Lin, 2009). According to Cheng and Lin (2009), the 

crucial point is to decide a theorem or geometric property that links X and Y in logical 

order and to justify every claim. 
 

Previous research has investigated various aspects concerning mathematical 

knowledge for teaching proof. For instance, Stylianides and Ball (2008), in their 

investigation of mathematics teaching in an elementary school in the USA, argue for 

the importance of knowledge of different kinds of mathematical tasks that involve 

proving as well as knowledge of the connection between such tasks and proving 

activity. As another example, Herbst and Kosko (2012) draw upon investigations of 

classroom instruction and analyses thereof, in their attempt to develop instruments to 

measure mathematical knowledge for teaching high school geometry. Their measures 
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involve, but do not have an exclusive focus on, knowledge related to proofs and 

proving. Herbst (2002) describes a scenario in which a teacher and her students 

together undertook a proof of a claim about angles but later on the teacher took over to 

provide a formal proof. Herbst (2002) argues that the teacher decided to take over 

because of her conception of proof as a two-column proving. The conception implies 

division of labour where the teacher’s responsibility is to provide the question and a 

diagram and to make sure that students produce proofs by the end of the lesson. In 

another study, Herbst and Brach (2006) argued that the teacher’s personal choices of 

tasks and diagrams depend on their conception that they are responsible for students’ 

learning of proof. These authors focus on proofs and proving in USA high school 

geometry, and they ask what is going on for the students. In this study, we investigate 

proving in a Malawian secondary school and ask what is going on for the teacher. In 

Malawi, secondary school students struggle with constructing geometric proofs. Lack 

of teacher knowledge is considered to be the main contributing factor to students’ 

failure to construct geometric proofs in Malawi (Malawi National Examinations Board 

[MANEB], 2013). The present study thus has a local relevance, but we also aim at 

contributing to the international literature in the field by approaching the following 

research question: What instructional tasks are involved in the work of teaching 

geometric proof at secondary school level? In our attempt to respond to this research 

question, we consider data from a case study of a particularly good secondary school 

mathematics teacher in Malawi. Before elaborating more on the methodological 

considerations in our study, however, we provide some information about the 

theoretical framework for the study. 
 

THEORETICAL FRAMEWORK 
 

Numerous frameworks have been developed in order to describe important aspects of 

the professional knowledge needed for teaching mathematics (e.g., Hoover et al., 

2016), and most of these frameworks refer to the work of Lee Shulman. Shulman 

(1986) proposed that teacher effectiveness can be viewed as a combination of content 

knowledge and pedagogical knowledge. He developed a general framework for 

understanding teacher knowledge that categorised the combination into subject matter 

content knowledge, pedagogical knowledge, pedagogical content knowledge and 

curricular knowledge. 
 

Ball, Thames and Phelps (2008) draw upon the work of Shulman in their practice-based 

theory of mathematical knowledge for teaching (MKT), and we adhere to this 

framework in the present study. Ball and colleagues focus on two core concepts: 1) the 

work of teaching mathematics, and 2) the tasks of teaching involved in this work. In 

fact, their definition states that MKT is “the knowledge needed to carry out the work 

of teaching mathematics” (Ball et al., 2008, p. 395). When investigating the work of 

teaching mathematics, they focus in particular on the mathematical tasks of teaching – 

referring to core instructional tasks that the teacher is recurrently faced with in the work 

of teaching. These mathematical tasks of teaching constitute the work of teaching 

mathematics. Examples of such tasks of teaching include giving or 
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evaluating mathematical explanations, and asking productive mathematical questions. 

In their efforts to design measures of mathematical knowledge for teaching high school 

geometry, Herbst and Kosko (2012) used the list of generic tasks of teaching from Ball 

et al. (2008) and developed a list of mathematical tasks of teaching, specifically related 

to the work of teaching high school geometry. For instance, Herbst and Kosko (2012) 

discussed the task of selecting appropriate examples for the geometric concepts taught, 

as well as the task of being attentive to students’ misconceptions concerning 

mathematical practices specific to geometry. Our analysis of the work of teaching 

geometric proof draws upon these ideas and include attempts to investigate tasks of 

teaching geometric proof and the knowledge required to carry out such tasks. 
 

METHODOLOGY 
 

This study is part of a larger study on knowledge for teaching geometric proof. In this 

paper, we report from a qualitative case study. Ritchie, Spencer and O’Connor (2004) 

explain that the primary defining features of a case study are that it is rooted in a 

specific context, and it draws from multiple perspectives through either single or 

multiple data collection methods. 
 

This paper focuses on two lessons presented by a Malawian secondary school teacher 

called Kim (a pseudonym). Kim is regarded as one of the best teachers in his school, 

because of his long teaching experience and because his students perform well at 

national examinations. The two lessons were considered for analysis because they 

illustrate the work of teaching mathematical proof. The lessons were observed and 

video recorded on two consecutive days. The duration of the first lesson was 80 minutes 

while the second lesson was 40 minutes. The teacher shared his overview of the first 

lesson after teaching the lesson because he was engaged in other duties before the 

lesson time. On the second lesson, the teacher was able to share his lesson plan before 

going to the class. These included reflections about the theorem to be proved, how he 

was going to prove the theorem with students and how he was going to assess students’ 

understanding. The duration of these brief interviews were from five to ten minutes, 

and each briefing was recorded and transcribed by the first author. Both types of data 

were analysed separately using thematic analysis as the aim of the study was to capture 

and interpret sense and substantive meanings in the data (Ritchie et al., 2004). During 

interview analysis, thematic analysis involved reading transcribed data several times to 

make sense of it and identifying main points. These points were used as a structure or 

predetermined framework for deductive thematic analysis of the transcribed video data 

(Ritchie et al., 2004). The data material was also read several times to determine 

categories in which every portion could be coded. Although data analysed for the study 

is only from two lessons and lesson plans, we consider it sufficient for illustrative 

purposes and for proposing certain analytical generalisations. The data for the study 

was generated from real-life context, hence considered as rich data (Yin, 2009). As Yin 

(2009) argues, the goal of 
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case studies is to expand understanding of social issues in their context and generate or 

generalise theories rather than recording frequencies. 
 

 

RESULTS AND DISCUSSION 
 

Lesson 1 
 

The aim of the first lesson was to prove a theorem which states that an angle subtended 

by an arc at the centre is twice an angle subtended by the same arc at the circumference. 

Kim gave the students a diagram and a statement (see table 1), then asked them to go 

into their groups to draw similar diagrams and discuss how to come up with the proof. 
  

Given: a circle with centre O, with arc AB subtending angle 

AOB at the centre and angle AMB at the circumference. Prove 

that the angle at the centre is twice the angle at the 

circumference. 
 
 
 
 
 
 
 

 

Table 1: Diagram and task given to students for a proving activity 
 

After about ten minutes of group discussions, Kim moved around to check the students’ 

progress. He found that some students were considering the reflex angle instead of the 

obtuse angle at the centre of the circle for their proofs. As a result, they were using 

wrong theorems, some groups proved for congruency while others proved for similarity 

theorem which made them get stuck. When Kim realised that the students were stuck 

because they were considering a wrong angle at the centre of the circle, he suspended 

the proving activity and asked the students to measure the two angles at the centre and 

the angle AMB at the circumference of the circle. When Kim asked the students to 

report their findings, it was noticed that the students in all groups had agreed that the 

angle at the centre was the obtuse angle. Students said that they reached this agreement 

upon finding that it was the value of the obtuse angle which was twice the value of the 

angle at the circumference. Then Kim asked the students to resume their discussion 

about proof construction for 15 minutes. During this time, students were able to 

construct the proof for the theorem using correct constructions and theorem. All groups 

joined MO and produced it to some point and then used a property of the theorem, 

which states that exterior angle of triangle equals sum of opposite interior angles to 

construct the proof. During lesson consolidation, Kim emphasised that there are three 

crucial points in proof construction: 1) analyse the given angles and see how they can 

be connected to the conclusion, 2) know the type of construction that will make the 

required proof to be possible, 3) justify every 
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claim and link the claims to the required conclusion. The emphasis made by Kim 

mainly focused on geometric proof construction in general (Cheng & Lin, 2009). Later 

on, Kim and his students discussed how to solve two examples using the theorem that 

they had proved. The first example involved finding the angle at the centre when given 

the angle at the circumference, while the second involved finding the angle at the 

circumference when given the angle at the centre. The circle diagrams in both examples 

involved a minor arc and an obtuse angle at the centre. Towards the end of the lesson, 

Kim gave the students the following homework question as part of assessing their 

understanding of the theorem and its application: calculate the sizes of the marked 

angles (see figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Calculating sizes of marked angles. 
 

After the lesson, Kim reflected about the lesson and the students. He said that the lesson 

was successful, and he was confident that the students had understood the theorem and 

the proof. The following extract presents some of Kim’s reflections about the students 

and how they learn geometric proofs. 
 

Kim: 

  

If you just start proving without engaging students in an activity like 

measuring or discussions on how to prove, they just memorise the proof. So 

to avoid memorisation, I involved the students in discussions. When I found 

that they were referring to a wrong angle at the centre I did not tell them the 

angle, I wanted them to find out on their own by measuring the angles. 

Activities like measuring make the theorem to be established in their brain 

because they provide tangible evidence that the theorem is true. Apart from 

measuring I also ask them to prove on their own with my assistance of course, 

this helps to develop independent thinking, because if I do it for them and 

they memorise, then the moment the same question comes in a different 

situation they get confused. 
 

The extract indicates that Kim was conscious about some instructional tasks involved 

in the work of teaching geometric proofs. We highlight some elements from the 

teacher’s reflections that relate to tasks involved in the work of teaching. First, students 

can easily get confused if a teacher only tells them how to prove a theorem without 

involving them in a proving activity or group discussions. The teacher is then faced 

with a task of asking some productive questions that redirect the students’ attention in 

the right direction. Second, when students construct their own proofs, they understand 

the theorem and can be able to apply it to any situation. In relation to 
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this, Kim gave the students a statement and diagram and asked them to discuss and 

construct their own proofs. This involves a task of initiating discussion and reflection 

in order to help the students become independent thinkers. So, when students were able 

to come up with proofs, Kim assumed that the students have understood the theorem. 

When asked why he did not only give the students a statement and let them explore the 

diagram to be used before they construct the proof, Kim said that the focus of the lesson 

was on proof construction and not diagram construction. Giving students only a 

statement would make them spend more time on discussing how to draw the diagram 

and limit their discussion of how to construct the proof. This indicates that Kim gave 

the diagram because he wanted to fulfil his obligation of making sure that students 

construct a proof by the end of the lesson (Herbst, 2002). 
 

Lesson 2 
 

The following day before the lesson, Kim said that he was going to make some 

revisions because, when he was marking the students’ homework, he discovered that 

most of the students were unable to find values of marked angles in the second figure 

(see figure 1). When asked why the students were able to calculate value of angle in 

the first figure but unable to do so in the second figure, Kim responded: 
 

It was because they thought that angle at the centre can only come as an 

obtuse angle but now when it came as a reflex angle they got confused. The 

problem was that the students got used to the figures where the minor arc was 

subtending angles, now when I turned the figure upside down so that it should 

be the major arc subtending the angles students got confused. So in class I 

will let the students expose their errors by asking them to answer same 

question before I give them their exercise books. I believe that when an error 

has been made by a student and another student recognises and corrects it, 

then it means that other students who made similar errors will learn from that. 

After the presentation from the student, I will ask the whole class if they have 

any problem or have identified a mistake with the solution. This will make 

the students to analyse their friend’s work and find if there is something to 

correct. 
 

In the extract, Kim explains what he thought was the cause of students’ failure to 

answer the second question and how he was going to help students clarify their 

misconceptions. We make three observations from the extract. First, Kim thought that 

the students’ misconception is that the angle at the centre is always an obtuse angle and 

that is why they were confused with the second question. This refers to a task of 

identifying students’ misconceptions when failing to complete a proof. Second, Kim 

thought that it is necessary to let students expose their misconceptions. This relates to 

a task of letting a student expose his errors and having other students correct them. 

This, according to Kim, becomes a learning opportunity for students who made similar 

errors. The third observation relates to a task of initiating student discussion in order 

to let them identify errors and mistakes in a proof. 
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During the lesson, Kim began by writing the homework on the chalkboard. Then he 

asked for a volunteer to find the value of M for the first diagram. Many students raised 

their hands and the one who was nominated said that, “angle M = 70° because angle at 

the centre is twice angle at the circumference”. The rest of the students agreed that the 

answer was correct. Then Kim asked for volunteers to find angle X and Y in the second 

figure. Only two students raised their hands, and Kim asked both of them to write their 

solutions on the chalkboard. The table below presents what the students wrote on the 

chalkboard. 
 
 

 

 Student 3 

130° = X (opposite angles of a kite) 
 

X = 130° 
 

X + Y = 360° (angles at a point) 
 

Y = 360° – 130° 
 

Y = 230° 

 
 

 

 Student 4 

Y = 2 (130°) (angle at the centre is twice 

the angle at the circumference) 
 

Y = 260° 
 

X + Y = 360° (angles at a point) 
 

X = 360° – 260° 
 

X = 100° 

 
 

Table 2: proofs constructed by students 3 and 4. 
 

The following segment of a lesson episode presents a conversation between Kim and 

the students discussing the answers that were presented on the board. 
 

Kim: Let us start with the first one, is this correct? 
 

Students: Yes (some of them), no (others) 
 

Kim: Is there anywhere given that this (pointing at the quadrilateral in figure 1) is 
 

a kite? 
 

Students: No (chorus answer) 
 

Kim: So why are you indicating the property of a kite? 
 

Student 3: It’s because of the way it is drawn. 
 

Kim: Are you telling me that you just look at a diagram and judge that it is a kite? 
 

Students: No (chorus answer) 
 

Kim: You need to either use the information that you are given, or prove first and 
 

convince us that it is a kite. But here we are not told that this is a kite and  

you haven’t proved to convince us that this is a kite. Why did you not use  

yesterday’s theorem to find x and y? 
 

Student 3: There is no angle at the centre which is connected to the angle at the 
 

circumference. 
 

Kim: Class is it true that there is no angle at the centre in diagram 2? 
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Student 2: There is angle x and y at the centre 
 

Then Kim asked the students in the class to analyse solution 2 and say if it is correct. 

Only a few students said that it was correct; most students remained silent. The segment 

below presents Kim’s explanation in trying to help the students to understand the 

theorem and its application to the question. 
 

Kim: 

  

These two angles here (pointing at angle x and y) are at the centre. You 

needed not to be confused because this diagram (pointing at the second 

diagram) is the same as this diagram (pointing at first diagram). The only 

difference is that the radii in this diagram (pointing at second diagram) are 

facing upwards and that makes the angle at the centre to be bigger or to be a 

reflex angle while the radii in this diagram (pointing at first diagram) are 

facing downwards making the angle at the centre to be smaller or to be an 

obtuse angle. So you find the value of x the same way you found value of M 

and then proceed to finding x using property of angles at a point. Any 

questions? 
 

Student 5: 
 

Yes, what if somebody takes y as x? What I am trying to say is that if we 

compare the radii, the M angle in question 1 looks like the x angle in question. 

So since we take the one which is smaller, I am thinking of x as equal to 2 

times 130°. 
 

Kim: 
 

No we take the one which is facing the direction the angle at the 

circumference is facing. It can either be the obtuse angle or the reflex angle. 

Had it been that there was an angle down here (pointing at the bottom of the 

circle) facing x then we would say that x is 2 times that angle. 
 

In the segment of the lesson episode, student 3 thought that there is no angle at the 

centre that is connected to angle at the circumference. So the student decided to use the 

property of a kite. From the conversation between Kim and student 5, it is also noticed 

that the student appeared to have a misconception that when given two angles at the 

centre, they need to pick the one which is the smallest to be the angle at the centre. This 

agrees with the first point observed from interviews: the misconceptions displayed by 

the students seem to develop from the fact that they were only exposed to diagrams 

that contained an obtuse angle at the centre. The second point observed from interviews 

is that students expose their misconceptions when they explain their solutions. Kim 

asked student 3 to explain why he decided to use the properties of a kite. The student 

said that it is because of its appearance. This misconception might have developed 

because the student did not notice that they could apply the theorem learnt in the 

previous lesson. So Kim is pinpointing the main cause of the student’s mistake with an 

aim of making the student reveal his misconception. Kim appears to think that this 

might be a learning opportunity for other students. The third observation made from 

interview analysis is that students seem capable of analysing a solution and correcting 

mistakes. In the lesson segments, it has been noticed that students were able to analyse 

the solution to question 1 and comment that it was 
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correct. However, it is noticed that there were divisions among students concerning the 

solution given by student 3. When some students analysed the solution they said it was 

correct, while others argued that it was not correct. The students who responded that 

the solution was correct might have the same misconception as student 3. Kim clarified 

the misconception held by most of the students after student 4 explained his solution. 

Persistence of misconceptions was noticed even after Kim explained that an angle at 

the centre can be of any type and size. Student 5 revealed his misconception through a 

question which also centred on comparison of sizes of angles at the centre in the two 

figures. The misconception exposed by student 5 made Kim realise that the meaning 

of the theorem was missing in his explanations. He then clarified the misconception by 

emphasising the direction of the angles. What was missing in Kim’s emphasis is that 

the angles can be subtended by either the major arc or the minor arc. When the angles 

are subtended by a minor arc, the angle at the centre is small, but when the angles are 

subtended by a major arc, the angle at the centre is big. Although the teacher believed 

that students mainly reveal their misconceptions through their explanations, it was also 

noticed that there were some misconceptions that were revealed through the questions 

that they asked. 
 

CONCLUSION 
 

In our analysis of the work of teaching geometric proof in a Malawian secondary school 

classroom, we have identified several potential mathematical tasks of teaching. These 

are tasks that we have observed in the lessons, and the teacher himself reflects upon 

these tasks before or after the lesson. First, we observe that Kim’s work of teaching 

geometric proof involves the task of initiating, supporting and emphasising common 

steps in geometric proof construction – even by making these steps explicit to the 

students in his instruction. Second, we observe that the task of selecting appropriate 

examples that illustrate geometric concepts taught, identified by Herbst and Kosko 

(2012), also appears to include using the examples and involving students in discussing 

these examples. Third, Herbst and Kosko (2012) discussed the task of being attentive 

to student misconceptions. From our observations of Kim’s work of teaching, we 

suggest that this task can be extended to exposing student misconceptions in class in 

order to facilitate learning among other students with similar misconceptions. Fourth, 

we suggest that the work of teaching geometric proof involves the task of initiating 

discussions in order to let students identify errors and mistakes in a proof. Unlike 

Herbst and Kosko (2012), our analyses of the tasks involved in the work of teaching 

geometric proof have not been done in order to support development of measures of 

this particular aspect of MKT. Instead, we suggest that such analyses might 

productively inform a further development of an elaboration of the knowledge needed 

for teaching specific mathematical topics at different levels – as called for by Hoover 

et al. (2016). 
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The poster will present creation of Concept Cartoons as possible way to development 
and refinement of prospective primary teachers’ PCK and issues related to proper 
argumentation. 
 

Keywords: problem posing, Concept Cartoons, argumentation. 
 

BACKGROUND 
 

The poster is a follow up to a presentation on CERME 9 (Tichá & Hošpesová 2015), 

which discussed posing problems of a given structure as a way of enhancement the 

quality of prospective primary teachers´ content knowledge. We develop the idea of 

problem posing further and we work with the tool called “Concept Cartoons” (CCs). 

CCs are a special type of tasks in which alternative statements on situation and/or of a 

problem are given. Solver has to decide which statement is right/wrong and justify this 

decision. In primary school teacher education, we use this type of tasks to promote 

“teachers´” view on the problems and necessity to use valid arguments in its analysis. 

An example of CC created by the prospective teacher is in Fig. 1. The poster aims to 

answer the question: How prospective teachers´ PCK and their awareness of the need 

of proper argumentation occurs in their creation of CCs? 
 

METHODOLOGY OF THE STUDY 
 

In this study, 35 prospective teachers created the CCs and made their didactical analysis 

(what is the objective of solution of the task, estimation of the correct and incorrect 

(but plausible) solution of the problem). The CCs were presented and reflected in a 

group of students, that means: the prospective teacher presented his/her CCs, reacted 

on the comments, especially explained the uncertainties and formulated the task more 

preciously. Then we coded the created CCs in terms of use of argumentation, and 

characteristics of the task. 
 

SELECTED FINDINGS 
 

Initially, the prospective teachers created mostly the tasks with simple arithmetic 

content. During a joint reflection of created CCs they started to realize how important 

is to get in touch with various methods of argumentation and gradually changed the 

character of the created tasks: (a) from easily solvable tasks, “textbooks´” type, often 

incorrectly formulated; (b) to tasks that are challenging for pupils, not ordinary, of 

colorful settings (graphs, tables, ...), enable different solution methods, approaches, 

require explanation and further consideration (open problems). 
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Fig. 1: CC created by a prospective teacher  

In analyzing the PCK of participating prospective teachers we concentrated especially 

on (a) proper formulation of statements in bubbles, their correctness (for example in 

Fig. 1: does the statement “1 see-saw was occupied”, that there are 2 children on it?); 

(b) comments to statements in following joint reflection and awareness of their 

potential ambiguity. Our experience showed that prospective teachers are not aware of 

the weaknesses of CCs created by them and they realized only in the course of joint 

reflection, that the statements can be grasped differently. The student, who created CC 

in Fig. 1, for example wrote in her commentary: “If I were assigning the same problem 

in the second grade, I would simplify it for example in this way: There were four see-

saws in the playground. One quarter of them was used. How many children were there 

on the see-saws?” She did not see, that she revealed further misconceptions. That 

confirmed the diagnostic potential of CCs. 

 

Creation of CCs and especially joint reflection motivates prospective teachers to deeper 
thinking about mathematical content of primary mathematics. 
 

NOTES 

 

Acknowledgement: This research was supported by the Czech Science Foundation (project No. 14-01417S), and by 

RVO 67985840. 

 

REFERENCES 
 

Tichá, M. & Hošpesová, A. (2015) Word problems of a given structure in the 

perspective of teacher education. K. Krainer, N. Vondrová (Eds.) CERME9 

Congress of the European Society for Research in Mathematics Education. 

Praha: Charles University in Prague, Faculty of Education and ERME, 2916-

2922. Retrieved from: http://cerme9.webnode.cz/products/wg18/. 

 
 
 
 
 
 
 

 

320 



Design of Hypothetical Teacher Tasks (HTT) to Access Pre-service 

Elementary Teachers’ Knowledge on Rational Numbers 
 

Zetra Hainul Putra1,2 and Carl Winsløw1 1Department of Science Education, 

University of Copenhagen, Denmark 2Faculty of Teacher Training and Education, 

University of Riau, Indonesia 
 

zetra.putra@ind.ku.dk 
 

In this poster, we present the idea of the PhD-project of the first author: to use 

hypothetical teacher tasks (HTT), designed and analysed with the anthropological 

theory of the didactics (ATD) to study pre-service elementary teachers’ mathematical 

and didactical knowledge on rational numbers, with a comparative focus on Indonesia 

and Denmark. An example of a HTT is also included. 
 

Keywords: hypothetical teacher tasks (HTT), teachers’ knowledge, rational numbers 
 

Studies about pre-service and in-service teachers’ knowledge on rational numbers have 

been done by many researchers, with various approaches (Ma, 1999; Hourigan & 

O’Donoghue, 2013). Most of the studies focus on teachers’ mathematical subject 

matter knowledge (MSMK), content knowledge (CK) and pedagogical content 

knowledge (PCK) on rational numbers, based on cognitive paradigm - that is, focusing 

on individual knowledge. 
 

Meanwhile, our study takes a different approach, based on the anthropological theory of 

the didactic (ATD) introduced by Chevellard (1992). In this framework, knowledge is 

considered as institutionally situated, and is studied through praxeological reference 

models. We develop hypothetical teacher tasks (HTT) about rational numbers based on 

the ATD framework (Durand-Guerrier, Winsløw & Yoshida. 2010). The aim is to develop 

a framework to study pre-service elementary teachers’ mathematical and didactical 

knowledge on rational numbers. The framework will be applied to comparative pre-

service elementary teachers from Indonesia and Denmark. We choose both countries 

because Danish students performed significantly above the OECD average compare to 

Indonesian students who performed significantly below the average (see the result of PISA 

2012, OECD, 2014). We assume that the result has a link to teachers’ mathematical and 

didactical knowledge. The subjects for this study are pre-service elementary teachers from 

the University of Riau, Indonesia and from the Metropolitan University College, 

Denmark. The results of this study are expected to contribute to develop our knowledge 

about teaching rational number models to pre-service elementary teachers. 
 

HYPOTHETICAL TEACHER TASKS (HTT) 
 

Five hypothetical teacher tasks (HTT) are designed to access pre-service elementary 

teachers’ mathematical and didactical knowledge about rational numbers. The HTT are 

designed based on a praxeological reference model for the practical and theory blocks of 

both mathematical and didactical praxeologies. A practical block is formed by a type 
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of tasks (T) and corresponding techniques (τ), and the theory block consists of a 

technology (θ) and a theory (Θ). So, each of HTT can be described based on two kinds 

of four tuples (T, τ, θ, Θ). As an example, we outline one HTT about multiplication and 

division of decimals. The task is given to the pre-service elementary teachers as 

follows: 
As a teacher, you ask students to compute the following as homework: a) 0.25 ∙ 8 = ⋯,  
b) 8 ÷ 0.25 = ⋯ . At the next meeting in the class, a student notices that when he enters 0.25 ∙ 8 
into a calculator, the answer is smaller than 8, and when he enters 8 ÷ 0.25, the answer is bigger 
than 8. He is confused with this answer and thinks that the calculator must be broken. What can 
you do to help such students understand this result? (discuss in pairs in 8 minutes, use the space 
below if necessary, and write your ideas to support the discussion) 
 

From the task we can derive praxeological reference model for a mathematical task (T) 

and for a didactical task (T*) as follows: 
T = given a decimal number a and an integer b, calculate a ∙ b and b ÷ a.  
T* = given a type of task T (where 0<a<1, b>0) explain determine what to do as a teacher to make students understand why a ∙ b < and b ÷ a > b.  

and then a-priory analysis can also be described for both tasks contains techniques (τ), 

technologies (θ) and theories (Θ). 
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The poster shows how a role-play conducted by teachers can be developed through the 

methodology of educational design research. The role-play represents a classroom 

situation and is an instructional activity as part of a two-year long teacher professional 

development program. The implementation focuses on some of the features identified 

as important in an effective professional development. The aim of the role-play is to 

practice and deepen mathematics teachers’ knowledge and skills of stimulating 

mathematically gifted pupils higher order thinking. After the development of the role-

play, the study can move forward and include; teachers’ change in instruction and 

pupil learning in order to study the effectiveness of the role-play as a part of a 

professional development program. 
 

Keywords: Professional development, educational design research, mathematically 
gifted pupils. 
 

THEORY 
 

Regarding the effectiveness of teacher professional development (TPD) Garet, Porter, 

Desimone, Birman, and Yoon (2001) identified; duration, collective participation, 

content focusing, active learning, and coherence as important features. To study the 

effectiveness of a TPD-program, Desimone (2009) included the identified features in 

a conceptual framework. The framework includes a link between four elements; the 

TPD-program, teacher knowledge, teacher instruction, and pupil learning. The 

elements are embedded in a context, here TPD on education of mathematically gifted 

pupils, as an important mediator and moderator. This poster presents how a role-play, 

an instructional activity belonging to the first element, the TPD-program, can be 

developed and thereby most likely be effective. Educational Design Research (EDR) 

(Gravemeijer & Cobb, 2013) is used as methodology in the development process of the 

role-play. The development of the role-play focuses on some features identified as 

important for TPD (Garet et al., 2001). 
 

BACKGROUND AND AIM 
 

It is shown that teachers have little knowledge on how to support mathematically gifted 

pupils (e.g. Leikin & Stanger, 2011). Several researches recommend TPD on gifted 

pupils: on those pupils’ educational needs and on methods of how to develop their 

learning (e.g. Persson, 2015). Sheffield (2003) suggests special questions to ask 

mathematically gifted pupils to develop their higher order thinking. In the role-play 

some participants in the TPD-program present a mathematical task acting as teachers 

in a regular classroom, and the other participants act as pupils trying to solve the task. 

The aim of the role-play is to develop all participating teachers’ (n=17)  

1 
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knowledge and skills on how to develop higher order thinking of mathematically gifted 

pupils. The research question guiding this poster is: How can a role-play, in a TPD-

program, be developed to improve teachers’ knowledge and skills of using special 

questions to improve higher order thinking in mathematically gifted pupils? 

 

EXPECTED OUTCOME 
 

The use of EDR (Gravemeijer & Cobb, 2013) to develop the role-play means that the 

role-play is repeated in an iterative process, after each iteration retrospective analysis 

is performed. In this study the analysis focuses on the five features identified as 

important for an effective professional development (Garet et al., 2001). The result of 

the analysis is expected to guide the development of the role-play. 
 

The poster presents two iterations of the role-play and how the analysis has led to 

changes aimed to improve some of the features identified as important for professional 

development. Furthermore, the poster show how EDR might be used to develop, and 

thereby most likely improve, the effectiveness of the role-play as part of a TPD-

program. Data in this study are video recordings from the two iterations.  

 

REFERENCES 
 

Desimone, L. M. (2009). Improving impact studies of teachers’ professional 

development: Toward better conceptualizations and measures. Educational 

researcher, 38(3), 181-199. 
 

Garet, M. S., Porter, A. C., Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What 

makes professional development effective? Results from a national sample of 

teachers. American Educational Research Journal, 38(4), 915-945. 
 

Gravemeijer, K., & Cobb, P. (2013). Design research from the learning design 

perspective. In T. Plomp, & N. Nieveen (Eds.), Educational design research part  

A: An introduction (pp. 72-113). Enschede, The Netherlands: SLO. 
 

Leikin, R., & Stanger, O. (2011). Teachers’ images of gifted students and the roles 

assigned to them in heterogeneous mathematics classes. In B. Sriraman & K. Lee 

W. (Eds.), The elements of creativity and giftedness in mathematics (pp.103-118). 

Rotterdam, The Netherlands: Sense Publisher 
 

Persson, R. S. (2015). Tre korta texter om att förstå särskilt begåvade barn i den 

svenska skolan. [Three short texts on understanding highly able children in the 

Swedish school]. Jönköping, Sweden: Högskolan i Jönköping 
 

Sheffield, L. J. (2003). Extending the challenge in mathematics: Developing  

mathematical promise in K-8 students. Thousands Oaks, CA: Corwin Press. 
 
 
 
 

 

2 

 
 
 

 

324 



Glimpses of practice: pre-service teachers’ evaluation of students’ 

answers 
 

Alexandra Gomes 
 

CIEC/IE - University of Minho, Portugal, magomes@ie.uminho.pt 

 

 

In initial teacher training, the contact with teaching practice is scarce, fragmented and 

often disjointed. Therefore, the challenge is to build tasks that constitute approaches 

to practice and place pre-service teachers in situations similar to the ones they will 

have to deal within the future. One of the tasks teachers have to perform in their 

practice is the evaluation of answers given by students. In this context, we developed a 

study in which we analyse how pre-service teachers (PST) evaluate answers given by 

students in solving certain tasks. 
 

Keywords: mathematical teacher training, elementary mathematics, mathematical 

knowledge for teaching. 
 

BACKGROUND 
 

There are plenty of studies focusing on teacher's knowledge, trying to identify its 

components, analyse their characteristics and/or understand its complexity. One of the 

most influential works concerning teachers’ knowledge was developed by Shulman 

(1986). 
 

Much work has been done ever since (e.g., Ball, Hill & Bass, 2005; Gomes, 2003; Ma, 

1999). In one of those works, developed by Hill, Ball & Schilling (2008), the notion of 

“mathematical knowledge for teaching,” appeared. This conceptualization highlights 

the mathematical knowledge that teachers need to carry out their work as teachers and 

considers the specificity of specialized content knowledge. 
 

Despite evidence linking teacher knowledge with the mathematical performance of 

their students (e.g,, Baumert et al, 2010), there is still no consensus regarding the 

content, nature and type of such knowledge. Therefore, further research into how can 

teachers be helped in order to increase/develop their knowledge is still needed.  

 

 

METHODOLOGY 
 

This study aimed to analyse how pre-service teachers (PST) evaluate answers given by 

students in solving certain tasks. To this end we considered the following research 

questions: (1) How do PST assess students’ answers?; (2) What remediation strategies 

are suggested in case of wrong/inadequate answers? 
 

Given the nature of the study, a qualitative approach was adopted. The study was 

developed within a course of Didactics of Mathematics, taught by the researcher.  
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This course is part of a Masters Degree designed to prepare future elementary school 

teachers (children aged 6 to 12). 21 PST participated in the study. These PST were 

faced with tasks consisting of inadequate or wrong answers to certain questions. They 

were asked to comment on the answers and evaluate them. They were also asked to 

propose remediation strategies. 
 

Data was obtained through PST’s work and interviews with three PST after the end of 

the course. Data was coded with a specific coding schema. 
 

In this presentation we will focus on one task, related to the properties of rectangles 

and squares. 
 

 

SOME RESULTS 
 

Even though the data analysis is not yet complete, we can advance some results. These 

type of tasks were unfamiliar to PST. Generally, PST reveal major difficulties in 

assessing the answers given by students, being unable in many cases to identify the 

errors or argue about their possible causes. The type of arguments used to make the 

assessment was often common and had no mathematical nature. 
 

This study shows that it is essential to challenge PST with tasks related to their future 

practice. In particular, facing errors students make urges PST to develop their 

specialized knowledge for teaching (Hill, Ball & Schilling, 2008). 

 
 

 

REFERENCES 
 

Ball, D., Hill, H., & Bass, H. (2005). Knowing Mathematics for Teaching. Who knows 

Mathematics Well Enough To Teach Third Grade, and How Can We Decide? 

American Educator, 14-46. 
 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., 

Krauss, S., Neubrand, M., & Tsai, Y.-M. (2010). Teachers' mathematical 

knowledge, cognitive activation in the classroom, and student progress. American 

Educational Research Journal, 47(1), 133-180. 
 

Gomes, A. (2003). Um estudo sobre o conhecimento matemático de (futuros) 

professores de 1º ciclo. (unpublished doctoral thesis). Braga. 
 

Hill, H. C., Ball, D.L. & Schilling, S.G. (2008). Unpacking pedagogical content 

knowledge conceptualizing and measuring teacher's topic-specific knowledge of 

students. Journal for Research in Mathematics Education, Vol. 39, No. 4, 372-400. 
 

Ma, L. (1999). Knowing and Teaching Elementary Mathematics. New Jersey: 
 

Lawrence Erlbaum associates, Inc., Publishers. 
 

Shulman,  L.  S.  (1986).  Those  who  understand:  Knowledge  growth  in  teaching. 
 

Educational Researcher, 15 (2), 4-14. 
 
 
 
 
 
 

326 



A Malawian preservice secondary school teacher’s mathematical 

knowledge for teaching equations 
 

Florence Mamba
1
, Reidar Mosvold², and Raymond Bjuland² 

1
University of Malawi, Malawi, flothomo@gmail.com; ²University of Stavanger,  

Norway 
 

This qualitative study investigated a preservice secondary school teacher’s 

mathematical knowledge for teaching equations. Data were generated using video 

recorded interviews and analysed using thematic analysis. The preservice secondary 

school teacher – who was among the best in his class – showed evidence of 

mathematical knowledge for teaching, but his knowledge seemed limited to knowledge 

of facts and procedures. These findings may inform preservice teacher educators about 

the content of mathematics teacher preparation. 
 

Keywords: Mathematical knowledge for teaching, preservice teacher, secondary 

school, equations. 
 

A body of research indicates that mathematical knowledge for teaching influences the 

quality of teaching and student learning, but less is known about how this knowledge 

develops (Hoover, Mosvold, Ball, & Lai, 2016). Although there appears to be general 

consensus that mathematics teachers need to know the content in ways that surpass the 

knowledge of educated people outside the teaching profession (Ball, Thames, & 

Phelps, 2008), more research is needed in order to investigate the different types of 

knowledge needed for teaching particular mathematical topics at particular levels 

(Hoover et al., 2016). From her review of literature on teaching and learning of algebra, 

Kieran (2007) suggests that researchers have barely begun to investigate the knowledge 

needed for teaching algebra. In light of this, the present study investigates a Malawian 

preservice secondary school teacher’s mathematical knowledge for teaching algebra – 

and equation solving in particular – in a Malawian teacher education context. We 

approach the following research question: What mathematical knowledge for teaching 

is displayed by a Malawian preservice secondary school mathematics teacher? 

 

THE STUDY 
 

The purpose of this study was to explore a Malawian preservice teacher’s mathematical 

knowledge for teaching equations. Ball’s et. al. (2008) mathematical knowledge for 

teaching model and Kriegler’s (2007) algebraic thinking model informed the study. 

Data were generated from one preservice secondary school teacher, Dinga 

Pseudonym), using semi-structured task based interviews. Dinga was a Diploma in 

education student at a college of education. He was in his final year of study the time 

the data were being generated. He was a particularly bright student. The interview 

lasted for one and half hours. We analysed the data using thematic analysis (Powell, 

Francisco & Maher, 2003). Themes were developed a priori and a 
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posteriori. During the initial coding, some themes that were not in the theoretical 

framework were emerging from the data. Some of these themes were incorporated into 

the theoretical framework, while others were regarded as separate categories of the 

characteristics of Dinga’s mathematical knowledge for teaching equations. 

 

RESULTS AND DISCUSSION 
 

Dinga solved an equation using two approaches – by factor method and the quadratic 

formula – thus indicating common content knowledge. He also indicated some 

specialised content knowledge, but his knowledge seems to be mainly knowledge of 

facts and procedures. Knowledge of several solution methods is important, and this 

procedural knowledge is an important prerequisite for a mathematics teacher, but we 

suggest that Malawian teacher education could benefit from focusing more on 

developing deeper common content knowledge, stronger specialised content 

knowledge as well as problem solving skills among preservice secondary mathematics 

teachers. 
 

As far as pedagogical content knowledge is concerned, Dinga displayed some 

knowledge of analysing students’ errors and anticipating their possible 

misconceptions, but he appeared unprepared to apply such methods in his teaching of 

algebra. It appears to us that Malawian teacher education might benefit from focusing 

more on developing pedagogical content knowledge among preservice secondary 

teachers. 
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Preservice teachers’ ability to assess student thinking and learning 
 

Ann-Kathrin Beretz, Katja Lengnink and Claudia von Aufschnaiter Justus-Liebig-

University Gießen, Germany, Ann.K.Beretz@math.uni-giessen.de 
 

Successful teaching requires the ability to deal with various kinds of student hetero-

geneity. Therefore, assessing and promoting students’ learning should be a core as-

pect in teacher education. Video has been suggested as a means to promote (preserv-

ice) teachers’ abilities to assess student thinking and learning. In our project, video-

analysis of student learning activities (e.g., while solving tasks) was employed into a 

mathematics and physics teacher education course. Various data were gathered from 

preservice teachers (PSTs): Written analyses of transcripts, questionnaires on self-

concepts and experiences, videos of the PSTs working on assessment tasks and 

interview data. Data were used to investigate how the PSTs develop abilities to as-sess 

student thinking and learning as well as to analyse the impact of the courses. 
 

Keywords: assessment, professional vision, classroom videos, student heterogeneity, 
mathematics and physics teacher education. 
 

THEORETICAL FRAMEWORK 
 

Teachers’ ability to elicit and interpret student thinking is assumed to be a necessary 

prerequisite for adaptive instruction (e.g., Kang & Anderson, 2015) and has to be es-

tablished during teacher training. Video can serve as a tool to promote especially 

preservice teachers’ (PSTs’) ability to assess student thinking and learning (e.g., San-

tagata & Guarino, 2011), even though research results vary due to the different con-

ceptualisations and methodological approaches (e.g., Stahnke et al., 2016). In order to 

investigate how PSTs analyse different videos and how instruction on criteria to 

analyse student thinking is used, we utilised video ourselves as an assessment tool 

(similar approach conducted, for instance, by van Es & Sherin, 2008). With this de-

sign, we are able to pay specific attention to PSTs’ processes of noticing and reason-

ing and how these change during instruction. 
 

SETTING AND RESEARCH QUESTIONS 
 

The study, supported by the German Telekomstiftung, has been conducted in two 

educational courses for preservice mathematics and physics teachers in the mid-dle/end 

of their initial teacher training. These courses are aiming to promote PSTs to value a 

student perspective, to establish criteria with which student thinking and learning can 

be assessed and to theorise how assessment and adaptive instruction are linked. During 

the courses, videos of student learning activities (e.g., working on physics experiments 

or solving mathematical tasks) were analysed and discussed by PSTs in small groups 

and with the entire group of PSTs. For PSTs who study the combination of physics and 

mathematics, the two courses follow each other, starting with physics education. While 

both courses deal with video analysis, they differ in two aspects. 1 – Order: In 

mathematics, the PSTs start with the development of in- 
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struction and then focus on assessing student thinking, whereas in physics assess-ment 

is targeted first and then instruction is designed. 2 - Involvement in videos: In 

mathematics, the PSTs analyse instruction that they had developed and taught to small 

student groups whereas in physics the analysis neither involve the PSTs as teachers nor 

does it focus on teacher activity in general. 
 

We are aware that our research cannot be considered an intervention study. However, 

we expect that the similar general approach in the two courses (video as a tool to train 

PSTs) and the differences (order, involvement) help to explore the following research 

questions: (i) How do the PSTs approach videos under these different con-ditions? (ii) 

How do their approaches change while they learn? (iii) How do the PSTs employ 

criteria established for analysis within and across the courses? (iv) Which of the 

particular components of each course are experienced positively by PSTs, which are, 

to them, not contributing to their professional development? 

 

DATA, ANALYSIS AND FIRST RESULTS 

 

N=69 PSTs were enrolled in the first main study (45 in physics; 24 in mathematics, 

including 9 attending to both courses). Data gathered at different points of the cours-

es comprise PSTs’ written analysis of transcripts, questionnaires (e.g., self-concept, 

experiences), videos of the PSTs working in small groups on assessment-related tasks 

in about 30% of the courses and interview data. Qualitative data has been cod-ed with 

a specific coding schema, questionnaire data has been analysed with Rasch. 
 

Preliminary results from the PSTs’ pre-post-analysis indicate a shift from a focus on 

content and its accuracy and a more general pedagogical focus to using criteria close-

ly related to domain specific pedagogical knowledge (questions i/ii). Criteria intro-

duced within the courses were employed more frequently and also consistently across 

both courses but seem to narrow down the focus (question iii). The PSTs re-port that 

they have experienced the courses as relevant and feel more competent to assess student 

thinking and learning with a theoretical foundation (question iv). 
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Researching school development programs through classroom culture 
 

Richard Wester 
 

Lunds kommun, Sweden, riwe42@utb.lund.se 
 

 

Two rather similar ongoing large-scale projects are in this poster combined aiming to 
research possible tensions between them.Methodology for research are suggested. 
 

Keywords: Social norms, Socio-mathematical norms, Assessment for learning. 
 

BACKGROUND 
 

Assessment for learning (Sv: Bedömning för lärande) 
 

Since 2013 there has been a large-scale project initiated in Lunds kommun
1
 encouraged 

Dylan Wiliams approach assessment for learning (Wiliam, 2011). All teachers are 
through regular group discussions supposed to (1) gain professional development, (2) 
develop daily teaching practice and (3) through this contribute to higher student 
achievements. The process involves systematic reflection in groups, based on a clear 
structure, supported by discussion leaders. 
 

The Mathematics Boost (Sv: Matematiklyftet) 
 

Between 2013-2016 the Swedish National Agency for Education is launching a 649M 

Skr curriculum-based professional development project. The Mathematics Boost aims 
to improve mathematical classroom teaching at scale in all of Sweden. This project is 

also based on a clear structure supported by discussion leaders and a digital platform. 

In cycles teachers have (1) collective planning with colleagues, (2) individual 

classroom teaching and (3) collective reflects with colleagues upon the classroom 

instruction. In Lunds kommun almost 180 of the teachers in mathematics have 

participated. 
 

POSTER 
 

Both projects are rather similar in approach even if they originated from different 

policymakers. They need to be explicitly connected even though they both aims to develop 

teaching practice at schools. In this poster I want to show one way how they might be 

connected using Cobb and Yackels (1996) classrooms-norms. I am aiming for 

investigation of norms from a student perspective. What kind of tensions will there be 

between these two projects, from a student perspective, expressed through Cobb and 

Yackels classrooms-norms? When teachers are implementing new teaching inventions, 

there will be potential tensions between students´ view of norms and teacher´s intention 

of new supporting norms (Wester, 2015). To be aware of these potential tension will 
 
 
 
 

 
1 Lunds kommun is a municipality in southern Sweden with a population of 120 000. 
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makes it possible to explicit encourage developments of new suitable social and socio-
mathematical norms. 
 

THEORETICAL FRAMEWORK 
 

To be successful in school mathematics, it is not enough to know the mathematics. It is 

also necessary that students master the rules and values governing practice inside the 

mathematical classroom. If students do not share understanding of these, they likely not 

to be able to participate in the activities as intended. This will affects students’ opportunity 

for learning. Cobb and Yackel (1996) express these rules and values through classroom 

norms, divided into social- and socio-mathematical norms. Existing classroom norms are 

possible to be investigated through observations and interviews. 
 

I will mainly connect social norms to assessments for learning and socio-mathematical 

norms to the Mathematics boost. From there, they certainly have an influence on each 

other and also support each other in developing teaching practice. But there will 

probably also be tensions between them which will become hinders to successful 

development. 
 

METHODOLOGY 
 

Data are collected through videotaping 3 different cycles in Mathematics boost 
according to one participating teacher. Each cycle including recording teachers 

collective planning with colleagues, planned activity in classroom environment, and 

collective reflection of the outcome. Before and after each teaching activity, teacher 

will be shortly interviewed. Close to the teaching activity, some of the students are also 

interviewed in a focus group. 
 

This research will take its starting point from student interviews. Analyzing interviews 

through Cobb and Yackels framework, what kind of classroom norms do students 

express? How will these norms relate to their teacher´s intentions of supporting norms, 

expressed in interviews, observations, and teachers collective planning and reflections? 

From there, what kind of tensions will there be between these two kinds of development 

projects? 
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Tracing diagnostic strategies of teachers and pre-service teachers: 
 

an explorative study on interactive video-simulations 
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The main focus of the research presented with this poster is on specific diagnostic 

situations and on diagnostic processes of teachers and pre-service teachers. Following 

a process-oriented approach, we are about to develop an interactive video-simulation 

tool to identify diagnostic strategies and to track pre-service teachers’ development of 

their individual diagnostic strategies (e.g. in terms of attention and noticing, diagnostic 

sensitivity, and the ability to interrelate their general knowledge of content and 

students, KCS, to specific cases). 
 

THEORETICAL FRAMEWORK 
 

Following the competence model of Blömeke et al. (2015), situation-based diagnostic 

competence can be regarded as a continuum, including a performance dimension of 

teachers. The authors emphasize that competencies may be understood in the sense of 

observable behaviour. Furthermore, the dimension of performance is influenced by 

affect-motivational skills and cognitive ability as well as by situational-specific skills, 

such as perception, interpretation and decision making. 
 

Set in the project diagnose:pro and based on the works of Reinhold (2015), we chose  

a process-oriented approach towards pre-service teachers’ diagnostic competence 

instead of focussing on accuracy of teachers’ judgements. Previous research on micro-

processes and strategies in diagnostic processes used re-interviews with pre-service 

teachers about one-on-one diagnostic interviews they had conducted shortly before. 

Findings of these studies provided insight into individual approaches to diagnostic 

situations as they led to a model of strategic elements in pre-service teachers’ 

diagnostic proceeding and suggested types of diagnostic strategies (e.g. the strategy of 

a “concluding collector”, “descriptive collector” or a “branched interpretation”) (cf. 

Reinhold, 2015). 
 

The medium of video-vignettes seems appropriate for research concerning diagnostic 

processes in simulated (classroom-like) situations and provides interesting findings on 

diagnostic types (cf. Hoth et al., 2016). However, this methodological approach leaves 

the observer outside of the diagnostic situation. As a consequence, the aspect of 

interacting with and reacting on the child’s activities and his or her comments on verbal 

stimuli or hands-on- manipulatives is completely neglected. To do justice to this fact, 

an interactive component needs to be implemented to involve facets of situational 

steering of the situation – i.e. by inquiry or provision of visual aids. Therefore, we 

develop interactive video-simulations which enable to influence the course of the 

video. 
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RESEARCH QUESTIONS 
 

 To what extend can interactive video-simulation be an appropriate tool to trace 
individual micro-processes in diagnostic situations? Which constraints do we 
have to take into account?


 What kind of varieties concerning diagnostic strategies occur when pre-service 

teachers are engaged in the interactive-video simulation?


 How do the plots of several consecutive video-simulations differ when the pre-
service teachers take part in specific courses which aim at the development of 
their diagnostic competence?

 

METHOD 
 

In the explorative study, paths in interactive video-simulations are protocolled in the 

sense of plots and pop-up textboxes ask for arguments for the choices made by the 

diagnosing (pre-service) teacher. Furthermore a (final) statement, based on noticed 

incidents of various sources for interpretation is requested. Resulting data is analysed 

via qualitative analyses based on Grounded Theory methodology. 
 

For the purpose of the explorative study, the mask for the tool is filled with a fictive 

case example of a child that shows symptoms of problems in numeracy learning (e. g. 

missing insight into the place-value system). University students who solely participate 

in the Advanced Module: Primary Mathematics Education at the University of Leipzig 

and those who additionally participate in a specific program  

[1] are asked to engage in the interactive video-simulation. Excerpts from the results 

and the first findings will be presented during the conference. 
 

NOTES 

 
1. This project links theory and practice concerning early identification of children with specific difficulties in 

numeracy in an extended phase of grades 1 and 2. 
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Visualising connections 
 

Jonas Dahl1 and Anna Wernberg² 
 

1Malmo Stad, jonas.dahl@skola.malmo.se ²Malmo University 
 

The poster presents an idea of how Bernstein’s theory about horizontal and vertical 

discourses can be used with variation theory. In the long run, the goal is to develop 

mathematics education in Malmo taken teachers and students into account as well as 

to create a research based teacher development program. The starting point is that 

pedagogy need to be visible, meaning that the connection between what happens in the 

classroom and how mathematical knowledge is evaluated and graded is visible to the 

students. The purpose of the poster is to get feedback on the ideas and get ideas of how 

this issue can be dealt with. 
 

Keywords: vocational education, variation theory, visible pedagogy, action 

research. BACKGROUND 
 

In order to close the achievement gap when it comes to mathematics there is a need to 

make the pedagogy visible (Dahl, 2014). Visible pedagogy, drawing on Bernstein 

(2000), means that the connection between what happens in the classroom and what is 

evaluated and graded must be clear to the students. 
 

Mathematics education in upper secondary school in Sweden follows a national 

curriculum, launched in 2011 (Skolverket, 2011). Mathematics in this curriculum is 

divided into “core content” (what each course should cover) and “knowledge 

requirements” (what should be graded). Core content is for instance geometry and 

algebra while knowledge requirements are expressed as different competencies, for 

instance problem solving and conceptual understanding. 
 

Furthermore, upper secondary school in Sweden is divided in different programs, some 

preparing for further education and some preparing for a specific vocation, such as 

building and construction or nursing and caring. It is well known in Sweden that 

vocational programs attract students who come from lower socio-economic 

backgrounds and who is at risk of become low achievers in mathematics (Broady & 

Börjesson, 2005). For these different kinds of programs there are different mathematics 

courses with some similarities but also some crucial differences. For the vocational 

programs (but not for the other programs) it is stated under “core content” that most of 

the mathematics should cover relevant mathematics for the “subjects typical of a 

programme” (Skolverket, 2012 p. 4). But, there is nothing about this in the “knowledge 

requirements”. Because of the structure, there is a risk that the pedagogy becomes 

invisible to the students attending a vocational program. 
 

A way to deal with this risk, is to use a material for supporting evaluation and grading 

for the vocational programmes that is constructed by Skolverket (Swedish national 

agency for education). These are under construction and the idea is that it should be 
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optional for teachers to use them. Therefor we do not know to what extent they will be 

used or how this will affect the visibility of the pedagogy. 
 

Another way to deal with this issue is to connect the mathematics education for the 

vocational programmes more tightly to the subjects typical of a program. In an on-

going project in Malmö, the third largest city in Sweden, this is just the case. In this 

project, teachers in mathematics and teachers in building and construction work 

together and teach mathematics and construction simultaneously in the workshop.  
 

These two ways of dealing with the risk of invisibility, deal with two different aspects 

of the issue: the first one is about the connection between the “core content” and the 

“knowledge requirements”, while the second way deals with connection that students 

need to be able to make between the different aspects of mathematics, the “pure” 

mathematics in knowledge requirements and the “applied” mathematics in the core 

content for vocational programs. 
 

In previous research (Dahl, 2014) Bernstein’s division into horizontal and vertical 

discourse (Bernstein, 2000) were used in order to analyse the mathematics curriculum 

and the national tests in Sweden. In order to bring this research into the classroom, 

textbooks and teacher-made-tests will be analysed by as well as planning lessons with 

the teachers and classroom observations. In these analyses we will use both Bernstein’s 

division into horizontal and vertical discourse, as well as variation theory (Marton, 

2014). The aim is not to combine the two, rather to use different tools to unfold the 

students’ opportunities to learn. It has been argued that teachers need an explanatory 

framework that can shed light on how their actions in the classroom affect student 

learning and help them to discover the features that make a difference to student 

learning in the classroom (Wernberg, 2009) It is crucial that it is the students’ 

opportunities to experience the connection that needs to be in focus. 
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Previous studies have been approaching the relationship between a successful 

professional development and changes in the teaching of mathematics. This change is 

regarding the understanding, both in terms of the mathematics itself, but also the 

teaching of the subject. However, the potential resistance towards change hasn’t been 

discussed to the same extent. The purpose of this study was therefore to investigate in 

what way collegial discussions could contribute to a change. This study will illustrate 

how 61 preschool teachers’ understanding of mathematical activities constitutes in the 

preschool and preschool class during a professional development. 

 

 

Few studies have been done focusing on professional development courses for 

preschool teachers who are working with younger children within the research field of 

mathematical education (Tsamir, Tirosh & Levenson, 2011). Previous research has 

suggested that preschool teachers perceive mathematics only to be about counting and 

measuring (Clements & Sarama, 2007). More broadly there is an argument made in 

favour of encouraging preschool children to think and make many mental relationships 

rather than to teach them specific subject content. Counting, measuring, patterns and 

geometry are mathematical contents and do not necessarily include the expectation of 

mathematical thinking, such as Playing (Bishop, 1988). This is in contrast to the 

Swedish preschool curriculum, which emphasises mathematical thinking. In a 

background document to the curriculum, mathematics in preschool is discussed on the 

basis of Bishop’s (1988) six mathematical activities. Playing is the mathematical 

activity, which deals with aspects of mathematical thinking. Bishop (1988) considered 

Playing as characterized by three components, thinking hypothetically (imagining a 

potential action to take in the game and is the beginning to think abstractly), modelling 

(abstracting something for reality) and abstracting (identifying the relevant features to 

focus on within a situation), guessing, estimating, assuming or adopting. The role of 

playing in education is a major concern of early childhood educators and so even in 

Sweden. Playing has a long history in the preschool curriculum in Sweden, which could 

be the means of that the preschool teachers are unlikely to naturally connect it with 

mathematical thinking. There are traditions that suggest that when children play, they 

learn. As a result, it is possible that Swedish preschool teachers have difficulties 

understanding 
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Playing as a mathematical activity. However, teachers have different perceptions about 

their current teaching methods in different situations and therefore respond differently 

to a professional development. 
 

METHOD 
 

This study has, with inspiration from Engeströms (2014) Expanding theory, 

investigated to what extent resistance towards changes appeared, as well as how they, 

during collegial conversations, contributed to changing the views of preschool teachers 

on how mathematical activities are being constituted in the preschool. By using the 

tertiary contradiction of resistance, the empirical material consisted of the teachers 

completing written documentation were discussed. The question they wanted answered 

was what kind of resistance was evident during the changed understanding in that 

playing can be seen as a mathematical activity. 

 

RESULT 
 

Cultural and historical dimensions were, in combination with the perception that 

mathematical situations will occur as soon as children play, shown to be the main 

reason behind the resistance towards Playing. This result revealed itself in a way in 

which several documentations were done consisting of playing initiated by the children 

where the preschool teachers did not want to interfere. In other documentations it 

consisted of some playing initiated by children but including some material that was 

perceived as mathematical. The mathematical item did in turn encourage the children 

to count. 
 

DISCUSSION 
 

Despite the resistance in the beginning of the course, the teachers developed changes 

to perceive children play even as a mathematical learning situation. 
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This poster aims to present a theoretical framework that allows us to study how 

mathematics teachers adjust their teaching from the use of assessment for learning in 

the classroom. 
 

Keywords: Assessment for learning; Teaching learning; Assessment´ practices; 

Mathematics teachers; Reflection. 
 

Formative assessment encompasses all activities performed by teachers and/or their 

students, which provide information to be used as feedback to regulate the activity of 

teaching and to support learning (Black & Wiliam, 1998). Formative assessment has 

been a growing industry in recent years (Black, 2005) when the intention is to promote 

learning, but the teaching regulation has not received equal attention. It is therefore 

necessary to understand the way mathematics teachers seek to integrate the 

assessment´s practices to regulate teaching, an essential component of teaching 

learning (Ball & Even, 2009) 
 

According to Black and Wiliam (2009), the effectiveness of formative assessment 

depends on the learner´s ability (student and teacher) to answer the following 

questions: “Where the learner is going?”; “Where the learner is right now?”; and “How 

to get there?”. A formative assessment practice depends on the teachers’ involvement 

in an inquiry and construction of knowledge cycle in which they identify student 

learning, the knowledge and competencies of teachers as professionals, the needs of 

students and they improve their learning (Timperley, 2014). A central aspect is the 

teachers’ capacity to collect relevant information from the students and to be able to 

interpret it properly. Without this step, the success of the cycle is immediately 

threatened. It is also necessary to engage students in new learning experiences, assess 

the impact of these experiences and return again to the cycle. 
 

Reflection is considered as imperative for teachers’ learning (Ponte & Chapman, 

2016). In this study we will consider the following components: the reflexive posture, 

the reflect capacity and the nature of reflection (Jorro, 2006). The reflective posture 

can be containment, testimony and questioning. The capacity to reflect is distinguished 

at three levels: reproduction; interpretation; and critical. The nature of the reflection, 

according to Jorro (2006), should be retrospective on the developed activity and 

integrate also an assessment dimension. 
 

We adopted as theoretical framework a cycle that connects the questioning and the 

construction of teacher´s knowledge to engage students in formative assessment 

experiments, collect and analyze their productions, and reflect with colleagues and 

expert to regulate teaching. 
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Table 1: The regulation teaching cycle 
 

The next step of our study is to apply this theoretical framework to empirical data and 

to improve it from the results obtained 
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A combination of face-to-face and distance phases in longer lasting teacher trainings 

is said to foster professional development. Yet, little is known about ways to link these 

two phases effectively. The poster gives insights into the work of a professional 

learning community (PLG) of the German Center for Mathematics Teacher Education 

(DZLM) that investigates practical examples in this context. The aim is to identify and 

describe quality criteria for linking tasks. 
 

Keywords: continuing professional development, teacher training, design principles, 

sandwich-model, DZLM. 
 

The German Center for Mathematics Teacher Education (DZLM) is an organization 

providing teacher training in mathematics. Among others, special Continuing 

Professional Development (CPD) courses for multipliers and in-service teachers are 

offered. These are based on six design principles identified as relevant for effective 

CPD (cf. Barzel & Selter 2015). The favored structural framework for these courses is 

the sandwich-model which combines alternating input with practical try-outs and 

reflection phases throughout the whole course (cf. Rösken-Winter et al. 2015). This 

type of training combines at least a sequence of two face-to-face sessions and an 

intermediate distance phase (see Fig. 1.). 
  

 Presence Distance Presence 
 
 
 
 
 
 
 

 

enacting 

 

½  to 1 day 

 
 
 
 
 
 
 
 

 

deepening/  
testing  

about 6 weeks 

 
 
 
 
 
 
 
 

 

reflecting 

 

½  to 1 day  

Figure 1: Sandwich-model of two face- to-face sessions and an intermediate distance 

phase (cf. DZLM 2015b, p. 4, translated by the authors) 
 

Compared to one-day courses with only one face-to-face session, it can be expected 

that teacher training courses lasting several days could in general have positive effects 

on the level of acceptance as well as on the level of knowledge and beliefs (cf. Lipowski 

2011). Thus, the altering between presence and distance phases can be identified as an 

essential aspect for the quality of teacher training (cf. DZLM 2015). 
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With regard to the conception and implementation of teacher trainings it can be noted 

that an effective link between face-to-face input and practical try-outs in the distance 

phases can be particularly challenging. Due to a lack of research in this field, a 

professional learning community (PLG) has been established to work on this topic in 

the context of the DZLM. The aim is on the one hand to investigate exemplary linking 

tasks connecting face-to-face and distance phases, on the other hand quality criteria of 

these linking-tasks shall be derived. With these aims in mind the following questions 

will guide an exploratory research: 
 

- Which characteristics should linking tasks have?  
- How should linking tasks be introduced in order to motivate participants? 
- How could the participants’ experiences with linking tasks be reflected and 

how could these experiences be integrated in the whole training course? 
 

For this purpose, different methodological approaches were pursued: Linking tasks 

were analyzed, teacher trainings were observed and a questionnaire was developed and 

as well used. 
 

The poster will present guiding questions, the research concept and the developed 

methods. Based on that, first key findings are presented and design ideas for further 

research will be discussed. 
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The poster will be showing first ideas regarding the professional development 
of mathematics pre-service primary teachers. In order to adapt university 

courses in a way that they support a thorough development of school-related 
content knowledge relevant for future primary school teachers, specific 

mathematical contents and their levels need to be defined. On the basis of an 
interdisciplinary literature review and in line with various interviews among 

experts related to teacher training (professors, school teachers and mentors) 
and corresponding curriculum analyses, beneficial structures and contents of 

a lecture “Introduction to Arithmetic” are being determined. 

 

 

Keywords: pre- service primary teacher education, professional development, 

school-related content knowledge, Arithmetic, PSI. 

 

 

OVERALL OUTLINE OF THE PROJECT 
 

Research in teacher professional development has shown that content knowledge 

cannot always be linked to its didactics or general pedagogical knowledge, which 

could eventually result in inadequate teaching practices (Wahl, 2006). Especially in 

Germany, this lack of coherence is particularly promoted by a strict division of 

university courses into exclusively content related lectures and rather detached 

didactical courses (Blömeke et al., 2004). For mathematics, the relevance of 

combining both kinds of knowledge required for teaching has been shown empirically 

(Blömeke et al., 2008), with COACTIV emphasizing the special role of content 

knowledge for the teaching of mathematics (Kunter et al., 2011). 
 

Studies focusing on the dimensions of professional knowledge in school and 

university settings (e.g., COACTIV, KiL, TEDS-M, LMT) have shown that teachers’ 

professional knowledge can be divided into different types of content knowledge 

(knowledge of the curriculum in school, content knowledge at university level and 

school-related content knowledge). However, they fail to address what specific 

mathematical contents are required for teaching mathematics successfully. 
 

The quality initiative project at the university of Potsdam (PSI) tries to close this gap 

in research, focusing on desired contents and levels of mathematical content 

knowledge in the course “Introduction to Arithmetic” for primary teachers from two 
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perspectives: A curriculum analysis of school curricula as well as university curricula 

serves as a descriptive instrument. In a complementary normative approach, experts in 

teacher education are being interviewed. From that, the overall concept of which 

adaptations are necessary in teacher training courses at university is derived. 
 

In the semester to come, the current lecture “Introduction to Arithmetic” will be 

adapted to implement the findings of the previous interviews and analyses. 

Afterwards, a thorough evaluation will show which further adaptions are 

necessary. The lecture will then again be redesigned. 
 

The poster will show the underlying concepts of a suitable school-related content 

knowledge concept and will introduce first ideas of which mathematical contents 

and actions can lead to a better development of such. It is also meant to serve as 

a prompt for discussions and will ideally help to acquire even more experts in the 

field of primary teacher education in mathematics. 
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This poster deals with lesson study in pre -service teacher education. In particular how 

to prepare, carry out, and reflect upon observations of pupil learning. Observation is 

of crucial importance to the lesson study process, and here we present a study of 

observation features which enable or hinder fruitful lesson study. 
 

Keywords: Lesson study, observation techniques, pre-service education. 
 

BACKGROUND 
 

A key element of lesson study is the joint observation of a lesson, and the entire lesson 

study process will not work as a means to improve teaching if the participants are 

unable to extract relevant information from the research lesson. Although the issue of 

performing structured observation to some extent is dealt with in many guidebooks for 

lesson study, e.g. Lewis and Hurd (2011); Stepanek, Appel, Leong, Mangan, and 

Mitchell (2006), it continues to be a pitfall of lesson study (Chokshi & Fernandez, 

2004), something which is particularly evident in relation to pre-service teacher 

education (Bjuland & Mosvold, 2015), which will be our focus here. The basis for 

obtaining useful evidence from a research lesson begins with the lesson plan, and it is 

by no means a trivial matter to prepare a plan which enables pupil learning to be 

observed. Indeed to do so, the pre-service teacher requires knowledge about 

observational techniques (Artzt, Armour-Thomas, Curcio, & Gurl, 2015; Star & 

Strickland, 2007) as well as awareness and noticing (Mason, 2002; Mason & Davis, 

2013; Scherer & Steinbring, 2006). While substantial research has been carried out in 

the general field of observing pupils’ learning processes and teachers’ pedagogical 

practice, little is known about this in the particular setting of lesson study 

 

 

RESEARCH QUESTIONS 
 

How do pre-service teachers observe didactic and pedagogical practice during research 

lessons and how do they look for specific qualities in this practice? Are certain 

observational methods recommendable for lesson study in mathematics with pre-

service teachers? 

 

CONTEXT 
 

The research questions were investigated through the design, implementation and 

evaluation of a course for 20 pre-service elementary and lower secondary teachers in 

Copenhagen labelled: “Developing the didactics of mathematics using observational 

tools and techniques”. The course consisted of a mix of lectures and lesson studies 
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enacted in teams of the participants, whose findings were communicated in a final 

written report. 
 

METHODS AND THEORETICAL FRAME 
 

Data was obtained in the form of audio-recordings from the lectures and lesson study 

processes, which together with the written reports forms the basis for an analysis of 

elements which either furthers or hinders good research lesson observation practice. 

Criteria are developed both from existing theoretical and experimental literature (cf. 

Background section above) as well as more inductively from the data itself.  

 

FINDINGS 
 

We present salient observational techniques which have special characteristics when 

utilized in research lesson observation, and which are suitable to act as shared focal 

points of the corresponding reflection session. The poster will exemplify the findings 

by juxtaposing two of the pre-service teacher lesson study teams, whereby highlighting 

the particular conditions for an observational technique to be successful in the study of 

mathematical learning. 
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