New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes - Archive ouverte HAL Access content directly
Reports (Research Report) Year : 2002

New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes

(1) , (2) , (3) , (1) , (1)
1
2
3

Abstract

In this paper we introduce an extension of Van Leer's slope limiter for two-dimensional Discontinuous Galerkin (DG) methods on arbitrary unstructured quadrangular or triangular grids. The aim is to construct a non-oscillatory shock capturing DG method for the approximation of hyperbolic conservative laws without adding excessive numerical dispersion. Unlike some splitting techniques that are limited to linear approximations on rectangular grids, in this work, the solution is approximated by means of piecewise quadratic functions. The main idea of this new reconstructing and limiting technique follows a well-known approach where local maximum principle regions are defined by enforcing some constraints on the reconstruction of the solution. Numerical comparisons with some existing slope limiters on structured as well as on unstructured meshes show a superior accuracy of the proposed slope limiters.
Fichier principal
Vignette du fichier
RR-4491.pdf (1.95 Mo) Télécharger le fichier
Loading...

Dates and versions

inria-00072097 , version 1 (23-05-2006)

Identifiers

  • HAL Id : inria-00072097 , version 1

Cite

Hussein Hoteit, Philippe Ackerer, Robert Mosé, Jocelyne Erhel, Bernard Philippe. New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. [Research Report] RR-4491, INRIA. 2002. ⟨inria-00072097⟩
230 View
958 Download

Share

Gmail Facebook Twitter LinkedIn More