Optical binding of magnetodielectric Rayleigh particles - Ecole Centrale de Marseille Accéder directement au contenu
Article Dans Une Revue Physical Review B: Condensed Matter and Materials Physics (1998-2015) Année : 2013

Optical binding of magnetodielectric Rayleigh particles

Patrick C. Chaumet
  • Fonction : Auteur
  • PersonId : 834133

Résumé

We present a theoretical and numerical study of the optical binding and optical torque between two Rayleigh particles with arbitrary, complex, scalar dielectric permittivity and magnetic permeability. We use a computational approach based on the discrete dipole approximation to derive the optical force and torque experienced by the particles when illuminated by a linearly or circularly polarized plane wave. We show that optical binding between magnetodielectic particles is qualitatively different from the traditional case involving dielectric particles only. In particular, we show that for certain configurations, the system of two magnetodielectric particles will experience a long-range optical torque whose amplitude envelope does not decay with the separation between the particles.

Dates et versions

hal-00932146 , version 1 (16-01-2014)

Identifiants

Citer

Patrick C. Chaumet, Adel Rahmani. Optical binding of magnetodielectric Rayleigh particles. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2013, 87, pp.195125. ⟨10.1103/PhysRevB.87.195125⟩. ⟨hal-00932146⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More