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Foreword: CERME10 in lovely Dublin

Susanne Prediger!, Viviane Durand-Guerrier?

"Dortmund, Germany, prediger@math.uni-dortmund.de

2Montpellier, France, viviane.durand-guerrier@univ-montp2.fr

Since its beginnings in 1998, ERME, the European Society for Research in Mathematics Education
was dedicated to supporting the so-called “three C’s”: communication, cooperation, and collaboration
among researchers in Europe and beyond. The major occasion for the ERME spirit to come to life is
the biannual congress, CERME. In this year, the 10" congress of ERME, CERME10, took place in
Dublin from February 1% to February 5", 2017.

The congress took place in Dublin in Croke Park, the stadium that is home of the Irish national sports
of Gaelic football and hurling. Although the conference was bigger than ever, the 774 participants
felt few compared to the 80 000 people who fit into the stadium on large sporting and other occasions.
However, our local chair, Théreése Dooley, her co-chair Maurice OReilly and all their colleagues did
a fantastic job in making us feel at home and not lost in the huge venue. Their hospitality and
engagement were praised by all participants.

The program of the congress was organized by the International Program Committee, chaired by
Ghislaine Gueudet and the vice-chair Andreas Eichler in a very well structured, transparent and highly
efficient way. Under their guidance, the IPC developed a substantial program with two very
interesting plenaries, one presented by Elena Nardi (entitled “From Advanced mathematical thinking
to university mathematics education: A story of emancipation and enrichment”) and the other by
Lieven Verschaffel (entitled “Towards a more comprehensive model of children’s number sense”).
In a panel on “Solid findings in mathematics education: What are they and what are they good for?”
this ‘hot’ topic was discussed from different perspectives. Marianna Bosch, Tommy Dreyfus,
Caterina Primi, and Gerry Shiel made up the panel. All of the plenary activities contributed
substantially to the success of the conference.

However, the core and the heart of each CERME are the seven sessions in the Thematic Working
Groups, which offer the main place for the spirit of inclusion realized in communication and
cooperation. The 23 Thematic Working Groups were organized by 84 group leaders, an impressive
number of people who invest their energy and time in the success of the congress. Several external
conference organizers expressed their surprise that during the sessions, nobody was wandering around
in the corridors. Of course not, we said, they are communicating and cooperating! And we become
aware again that this intensity of work is specific, and perhaps even unique, to CERME.

Most of the CERME group leaders have taken this responsibility for several years and have
established a long-term collaboration with substantial academic outcomes. This group of people
engaged in the enormous effort of managing the process of quality development for 474 submitted
papers and 94 posters, numbers much larger than ever before.

CERME is not only getter larger from congress to congress, but also increasingly international. The
774 participants came from 29 Europeans countries and 23 Non-European countries. The top ten
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countries in terms of numbers of participants were Germany (127), United Kingdom (60), Norway
(55), France (47), Italy (47), Ireland (41), Spain (39), Sweden (38), Israel (32), and the US (30).
Austria, Belgium, Croatia, Cyprus, Czech Republic, Denmark, Faroe Islands, Finland, Greece,
Hungary, Iceland, Kosovo, Malta, Netherlands, Poland, Portugal, Russia, Slovakia, Switzerland,
Turkey, and Ukraine were included in the European countries. Among the non-European countries
were Algeria, Argentina, Australia, Bangladesh, Brazil, Cameroon, Canada, Chile, Hong Kong,
Kenya, Iran, Japan, Lebanon, Malawi, Mexico, New Zealand, Nigeria, Singapore, South Africa,
Thailand, and Tunisia. It must be the specific style of the congress and the ERME spirit which attracts
so many people from all over the world!

With the increasing numbers and diversity, the challenge of compiling proceedings is getting more
and more complex. We thank the chairs who served as editors for this complex process and for
finalizing it so quickly.

Such a huge and complex congress as CERME could not be conducted without the engagement of
more than 15% of all participants (including TWG leaders, IPC members, LOC members and ERME
board members). We thank everybody who has contributed to the ongoing work behind the scenes
which allowed the congress to be a real success. Specific thanks go to Ghislaine Gueudet, Andreas
Eichler, Thérese Dooley and Maurice OReilly for their hard work with a wonderful outcome.

We encourage interested researchers to meet us at the next CERME that will take place from February
5% to February 10" 2019, in Utrecht (the Netherlands).

Susanne Prediger, ERME President since February 2017
Viviane Durand-Guerrier, ERME President until February 2017
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Introduction to the Proceedings of the Tenth Congress of the
European Society for Research in Mathematics Education
(CERME10)

Thérése Dooley!, Ghislaine Gueudet?

! Dublin, Ireland, therese.dooley@dcu.ie

2 Rennes, France, ghislaine.gueudet@espe-bretagne. fr

About CERME10

The Tenth Congress of European Research in Mathematics Education (CERME 10) took place in
Dublin (Ireland) from 1% to 5™ February 2017. Ghislaine Gueudet (France) was the chair of the
International Programme Committee (IPC) which comprised Thérese Dooley (Ireland, chair of the
local Programme Committee), Andreas Eichler (Germany, co-chair), Marianna Bosch (Spain),
Markku Hannula (Finland), Jeremy Hodgen (UK), Konrad Krainer (Austria), Despina Potari
(Greece), Kirsti Ra (Norway), Cristina Sabena (Italy), Michiel Veldhuis (Netherland), Nad’a
Vondrova (Czech Republic). Thérése Dooley and Maurice OReilly were chair and co-chair
respectively of the Local Organizing Committee (LOC).

CERMEI10 hosted 23 Thematic Working Groups, listed in the table below. The TWGs 21, 22, 23 and
24 were new groups, created following a call launched just after CERMED9, and a selection process
involving the CERMEI10 IPC and the ERME board. They all have been very successful, and will be
part of CERME11 in February 2019. TWG7 (Mathematical potential, creativity and talent) has
unfortunately been cancelled, due to a lack of contributions; while TWG14 has been split in two for
the conference, because of the large number of papers received.

TWG Leader

TWG1: Argumentation and proof Gabriel Stylianides (UK)

TWG2: Arithmetic and number systems Elisabeth Rathgeb-Schnierer (Germany)
TWG3: Algebraic thinking Reinhard Oldenburg (Germany)
TWG4: Geometry Joris Mithalal (France)

TWGS: Probability and statistics education Corinne Hahn (France)

TWG6: Applications and modelling Susana Carreira (Portugal)
TWGS: Affect and mathematical thinking Pietro Di Martino (Italy)

TWG9: Mathematics and language Nuria Planas (Spain)

TWGI10: Diversity and mathematics education: Social, . i

cultural and political challenges Lisa Bjorklund Boistrup (Sweden)
TWG11: Comparative studies in mathematics education | Paul Andrews (Sweden)

TWGI12: History in mathematics education Renaud Chorlay (France )

Proceedings of CERME10 3



Introduction

TWG13: Early years mathematics

Ingvald Erfjord (Norway)

TWG14a: University mathematics education

Alejandro Gonzalez Martin (Canada)

TWG 14b: University mathematics education

Irene Biza (United Kingdom)

TWG15: Teaching mathematics with resources and
technology

Alison Clark-Wilson (UK)

TWG16: Students’ learning mathematics with resources
and technology

Hans-Georg Weigand (Germany)

TWGI17: Theoretical perspectives and approaches in
mathematics education research

Angelika Bikner Ahsbahs (Germany)

TWG18:
professional development

Mathematics  teacher education and

Stefan Zehetmeier (Austria)

TWG19: Mathematics teacher and classroom practices

Charalampos Sakonidis (Greece)

TWG20: Mathematics teacher knowledge, beliefs and
identity

Miguel Ribeiro

TWG21: Assessment in mathematics education

Paola Iannone (UK)

TWG22: Curricular resources and task design in
mathematics education

Birgit Pepin (The Netherlands)

TWG23:

mathematics education

Implementation of research findings in

Uffe Thomas Jankvist (Denmark)

TWG24: Representations in mathematics teaching and ) )
Elisabetta Robotti (Italy)

learning

Editorial information

These proceedings are available as a complete volume online on the ERME website and each
individual text is also available on the HAL open archive, where it can be found through keywords,
title or author name. This has been the practice since CERMEDY, to increase the visibility of the huge
work done in CERME conferences.

This volume begins with texts corresponding to the three plenary activities of CERMEIOQ: the
presentation by Elena Nardi on University Mathematics Education; that by Lieven Verschaffel on
Early Mathematics; and the panel on Solid Findings in Mathematics Education, chaired by Marianna
Bosch and involving Tommy Dreyfus, Catarina Primi and Gerry Shiel.

After the plenaries, the reader will find 23 chapters corresponding to the work done in the TWGs of
CERMEI10 (we remind the reader that TWG7 has been cancelled; moreover, TWG14 was split in two
for the conference, but all the papers are in the same section in these proceedings).

These chapters follow a similar structure: they start with an introduction; then the long contributions
(8-page papers) are presented — in alphabetical order by first author’s name — and finally the short
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contributions (2 pages). However, TWG17 has chosen a different order, corresponding to subthemes
in the group.

There are two kinds of introductions to the TWGs, according to the team’s choice: short introductions
(4 pages) presenting the contributions; or long introductions (8 pages), which propose, in addition, an
analysis of the current research on the theme of the TWG, and perspectives for the future. TWGs 6,
14, 15, 16, 17, 19 and 23 have chosen this form of long introduction.

The publication of these proceedings is the result of a collaborative work, involving CERME10 IPC,
the TWG leaders and co-leaders, and the LOC co-chair. We warmly thank all these people for their
involvement, and hope that this volume will contribute to the development of mathematics education
research in Europe and beyond.
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Statistical overview of CERME1(
Maurice OReilly

Dublin, Ireland, maurice.oreilly@dcu.ie

CERME evolves over time, and so it is of interest to gather and present some quantitative data on the
number of participants and on the scientific output at CERME10. The table opposite shows the
number of submissions to these proceedings (excluding the TWG introductions and the plenary
papers) along with other submissions that were made online by December 2016 but were not included
here. The numbers of long and short contributions are noted. Of course, each TWG had more
participants than the number of submissions, since (i) many papers had several authors and (ii) there
were other participants who did not submit. The entries in the table are explained in its footnotes.

The data for the table comes from two sources: the submissions made online (to the CERME10
website) by mid-December 2016, and the registration and attendance database for the congress. The
final column shows the 768 (distinct) participants at CERME10, allocating each to exactly one TWG.
Although over 80 participants were active in more than one TWG, care was taken to ensure that no
participant was included more than once (by fine-tuning the ‘Additional authors’ column
appropriately). This was facilitated by taking into account the TWG explicitly chosen by each
participant at registration. The foreword states that there were 774 participants; this figure includes
the six presenters at the plenary sessions.

Of the 565 submissions made in advance of CERME — comprising 466 (long) papers and 99 posters
(or short contributions) — the attrition by the time these proceedings have been edited was only
20 (about 3.5%). This low figure underscores the observation mentioned in the foreword that
“nobody was wandering in the corridors”. Contributions to the proceedings as a proportion of the
total number of participants was 0.71 (= 545/768), this figure varying from 0.56 (for TWG2) to 0.82
(for TWG16). Another indicator of the intensity of the work at CERME is the low number of
participants (84) who did not contribute papers — although they did contribute to the lively
discussion! This was 10.9% of the total number of participants, with extremes ranging from
3.0% (for TWGI10) to 20.0% (for TWG24). Yet another perspective on the hard work
undertaken in the context of the congress is illustrated by the number (453) of ‘long’ papers as a
proportion of all contributions: 83% overall, with a minimum of 71% (for TWG14) and an
impressive maximum of 100% (for TWG2).

It has already been noted (in the foreword) that participants at CERME10 were drawn from
52 countries. It is part of the ‘CERME spirit’ to support academics who would normally have
limited access to CERME (either from underrepresented or economically weak countries). This
is made possible through the Graham Littler Fund which draws from those who can afford, in
support of those who cannot. For CERMEI10, 46 participants were awarded grants totaling €21
100 (€12 300 for registration and €8 800 for travel and accommodation).

It is hoped that the data provided on these two pages helps quantify important aspects of CERME10,
putting the scientific output in perspective.
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TWG Submissions Contributions to the Proceedings Additional Additional Total number of
to Proceedings Online only Long Short authors participants participants in each TWG

1 28 0 27 1 12 6 46
2 14 2 14 0 5 4 25
3 19 2 16 3 2 5 28
4 20 0 15 5 4 2 26
5 25 1 21 4 3 2 31
6 22 2 18 4 6 5 35
8 25 1 23 2 3 3 32
9 26 1 22 4 6 2 35
10 26 1 19 7 5 1 33
11 13 0 10 3 4 1 18
12 18 0 16 2 5 2 25
13 20 0 15 5 7 3 30
14 58 5 41 17 13 11 87
15 25 0 19 6 6 4 35
16 27 0 20 7 1 5 33
17 16 2 12 4 2 3 23
18 31 0 28 3 4 5 40
19 23 0 22 1 5 5 33
20 28 2 25 3 8 3 41
21 25 1 23 2 7 3 36
047 23 0 17 6 7 2 32
23 15 0 14 1 2 2 19
24 18 0 16 2 2 5 25

Total 545 20 453 92 119 84 768

Submissions were made online by mid-December 2016, most of which are published in these proceedings (as either long or short contributions).

In each TWG, the number of submissions is augmented by ‘Additional authors’ indicating the number of participants at CERME10 who contributed to (long or
short) papers. The ‘Additional participants’ attended CERME10 but were not authors of these papers.

The ‘Total number of participants in each TWG’ is then the sum of all the submissions along with the additional authors and participants.
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Plenary Lecture

From advanced mathematical thinking to university mathematics
education: A story of emancipation and enrichment

Elena Nardi
University of East Anglia, UK, e.nardi@uea.ac.uk

Between CERME1 and CERME?Y there have been approximately two hundred and fifty papers with
their focus directly, or a little less so, on the teaching and learning of mathematics at university
level, starting from about a dozen in CERMEI and rising to several dozens in CERME9. ERME
recognised the increasing significance of this emerging field with the launch of Working Group 14
(Advanced Mathematical Thinking) in CERME4 in 2005 which evolved into Thematic Working
Group 14 (University Mathematics Education) in CERME7 in 2011. In this lecture, I draw on my
experience as researcher in this field, and as participant in both groups (and inaugural leader of
the latter), to identify epistemological — theoretical, substantive and methodological — trends in the
transition from the one to the other. I aim that the story I tell is one of gradual emancipation from a
relatively limited initial focus on cognitive aspects of the student learning experience in university
mathematics to the grander vista of issues — also inclusive of pedagogical, institutional, affective
and social issues — that studies presented at CERME nowadays address. I also aim that the story I
tell is one of enrichment as the depth and diversity of said vista has been accomplished also through
thoughtful appropriation of results from those earlier studies.

Keywords: University mathematics education, developmental / cognitive and sociocultural
approaches to the teaching and learning of mathematics.

Introduction

In tandem with ERME, the area of research that is the focus of this plenary, University Mathematics
Education research, has also been evolving rapidly in the last twenty years or so. Here I focus on
some of the milestones of this evolutionary journey, with the particular emphasis that I promised in
the above title and abstract. Before proceeding to these though, here is a bit of a pre-amble: Figure 1
presents a still from a scene in the film 4 Serious Man (2009) directed by Ethan and Joel Coen.

Fig.1. Still taken from A4 Serious Man (2009): https:// www.youtube.com/watch?v=7iggyFPls4w
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This is a typical imagining in popular culture of how mathematics teaching looks like at university. I
will not go much further with a discourse analysis of what the still (or the scene, or the film itself)
may convey. In what I see as some contrast, Figure 2 presents a sequence of images, taken from the
publicity materials of my own institution’s department of mathematics.

Fig. 2. Still taken from UEA promotional video: https://www.youtube.com/watch?v=gRzVX8c1be4

The students and the lecturer in these images work together, they are not physically too far from
each other and there is a range of resources — from chalk to digital — present. The sequence
illustrates how institutions may wish to present the kind of learning experience that potential
incomers into a department of mathematics are likely to be offered.

To me, there is a clear contrast between the movie still from 4 Serious Man and these two images
from the UEA promotional video. It is a contrast between a widespread perception of university
mathematics lectures as the ultimate form of transmissive pedagogies — with all the repercussions of
alienation and distancing these pedagogies may entail — and the aspiration (institutional but not
only) for a more approachable, more inclusive and more engaging learning experience in university
mathematics that is tailored to individual student needs.

As university lecturers today — in mathematics and in other disciplines — we lecture. But we also do
much more: we coordinate seminars, we conduct individual or small group tutorials, we run
workshops and drop-in clinics, we supervise dissertations, we advise students on academic and on
pastoral matters and we assess students in a variety of ways (all the way from closed-book
examinations to mini-projects and oral presentations). Our professional worlds are far from
monotonous. In fact, they require us to be quite versatile.

I see as of little surprise, and rather pleasing, that the
versatility of our jobs is being reflected in the diversity
of University Mathematics Education research that is
now presented at CERME. This diversity of focus —
but also theoretical perspective and methodology — is
to me a sign of richness. In fact, here I have taken the
liberty of endorsing a metaphor, which originates in
currently dominant theories of evolution and
conservation (Figure 3). These theories equate species

Fig. 3. Image from:
diversity with resilience. The story I tell here relies y¢oq.//conservationbytes.com/2014/01/08/m

somewhat on whether this is a convincing metaphor. ore-species-more-resilience/
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I tell this story in five parts: The “early years”, CERME 1, 2, 3; The AMT years, CERME 4, 5, 6;
The UME years, CERME 7, 8, 9; CERMEI0, the splitl ..., and, Taking stock / What next / Coming
soon... Before starting, I need to post a health warning though: that a lecture of this kind errs on the
side of being impressionistic — and of course quite personal® too. I thank you in advance for your
tolerance.

My own trajectory in CERME — and outside — mirrors some of the milestones and trends that this
plenary aims to map out. I was present in 1999 at CERMEI, in Osnabrueck, assisting with the
coordination of Group 5, Mathematical thinking and learning as cognitive processes. To those more
familiar with the increasingly sociocultural and discursive take that my work has been taking over
the years, this commitment to Group 5 may sound a little surprising. It is not. I start Part I with an
anecdote on exactly this.

Part I: The “early years”, CERME 1, 2, 3; UME research evidenced in several
TWG groups

My 1996 doctorate’s title (Nardi, 1996) is The novice mathematician’s encounter with mathematical
abstraction: Tensions in concept image construction and formalization. The statement of intentions
in this doctorate are clear:

Mathematics is defined as an abstract way of thinking. Abstraction ranks among the least
accessible mental activities. In [the UK educational context where the study took place], the
encounter with mathematical abstraction is the crucial step of the transition from informal
school mathematics to the formalism of university mathematics. This transition is
characterised by cognitive tensions. This study aimed at the identification and exploration of
the tensions in the novice mathematician's encounter with mathematical abstraction. (Nardi,

1996: Abstract)

However, the study’s stated theoretical perspective is a little more perplexing. It is declared as
“consisting of cognitive and sociocultural theories on learning”. And, the two key parts of findings
in the final chapter promise an account of the novice mathematician's encounter with mathematical
abstraction “as a personal meaning-construction process and as an enculturation process” (ibid.).

It is quite easy, in hindsight, to be skeptical about the risky eclecticism of the approach — some may
see this as standing on a fence, or, even, as pick-and-mix nonsense. But, I keep reminding myself
that the study started in 1992 and was completed in 1996. It was therefore conducted at a time when

! Continuing with the biology inspired metaphors, 1 use the word “split” deliberately. Cell splitting is the process of
subdividing a congested cell into smaller cells. Cell splitting or division is associated with reproduction and the creation
of an entire new organism. This process is typically seen as increasing many of the capacities of a cellular system. In
fact, in Parts III and IV, I aim to show the inevitability of cell splitting, emanating from the substantive, theoretical, and
methodological diversity of UME research presented in CERME these days. It is in these parts that the main point of
this lecture, signposted in the abstract by the words emancipation and enrichment, will, I hope, come through.

2 1 also need to thank at this juncture two overlapping groups of colleagues: my CERME 7, 8 and 9 TWG14 co-leaders
and my co-authors of the 20-year anniversary ERME book in which UME research has been allocated a chapter
(Winslew et al., in press). Since 2010, when the UME TWG group was formed — for its first appearance in CERME7, in
2011 — these colleagues, have become what I like to call my academic family of friends.
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the various shades of constructivism that form its theoretical backbones were then taking shape
themselves. To signpost this a little more emphatically, allow me the gentle reminder that the
seminal paper Constructivist, emergent and sociocultural perspectives in the context of
developmental research (Cobb & Yackel, 1996) — a paper and a programme more broadly that
impacted upon our debate around the co-determinants of mathematical learning in immense ways —
appeared in Educational Psychologist in 1996, the year that my doctorate was completed. I often use
this excuse when the slightly embarrassing thought comes to me that my study wanted to have its
cake and eat it too!

So, here are some recollections from the early years, and, to start with, CERME], that I see as
pertinent for today: UME papers can be found in several groups but mostly in TWGI1 (Nature and
content of mathematics and its relation to teaching and learning) and TWGS (Mathematical
thinking and learning as cognitive processes). There is a pronounced epistemological focus on
several papers — Grenier and Payan (1999) is one example — and there is a strong tendency in the
few papers present to give a prominent position to the mathematical context and content of, for
example, proposed course designs. Belousova and Byelyavtseva’s (1999) paper on course design in
Numerical Methods comes to mind; as do the Cabri designs for Linear Algebra put forward by
Tommy Dreyfus, Joel Hillel and Anna Sierpinska (1999). There is also a tendency to consider this
mathematical content regardless of whether this is present in school or university mathematics: there
are, for example, propositions in this first CERME about using CAS (Computer Algebra Systems)
for teaching functions; or, courseware for the teaching of Geometry from across school to
university, and all the way to Differential Geometry.

There are two contributions to CERME1 though which, for me, stand out even more than those I
sampled in my last comments. Both pre-empt the publication of two volumes that proved influential
in the following years, in different, yet distinct ways. One is Leone Burton’s (1999) preliminary
analyses of interviewed mathematicians’ epistemological perspectives which culminated in her
monograph (Burton, 2004), Mathematicians as Enquirers. The other is Jean-Luc Dorier’s paper
(with Aline Robert, Jacqueline Robinet and Marc Rogalski, 1999) that sets the scene for the volume
On the teaching of linear algebra (Dorier et al., 2000).

Both papers foreshadow — and I daresay contributed towards shaping — trends in UME research that
became prominent in the years that followed. Burton’s work signals a broadening of the UME
church to include in its focus the university teacher (most other work at the time concerns the
student or the mathematics alone). Dorier’s work, and that of his colleagues, signals the still then
not so imminent end of what I see as a shortcoming of UME research that is still present today,
albeit to a lesser extent: the perception of research into university mathematics teaching practice as
an a-theoretical aside of well-intended practitioners who are unaware of the epistemological and
methodological underpinnings of mathematics education as an academic discipline. This work is
distinct for its robust theoretical grounds and for its keen eye for intervention design, trial and
evaluation — in a nutshell, for its systematic character. In this sense, of scope and ambition, it shares
some common ground with another, powerful at the time — and still today —programme: that of
APOS which originated in the USA and which was at the time also pushing the boundaries of work
in UME beyond elementary Calculus and into Abstract Algebra.
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Continuing with my observing trends that were to become influential in later years, within TWGS5
(Mathematical thinking and learning as cognitive processes), which I mentioned earlier and which I
assisted coordinating under the leadership of Inge Schwank, there are two themes that made an
appearance — timidly and managing to occupy a small portion of the discussions only: the role of
motivation in cognition (I see here inklings of evidence on the burgeoning importance of research
on affect) and the emerging importance of theories of situated cognition.& An observation that
stands out from these discussions was made in the paper by Pier Luigi Ferrari (1999): in advanced
mathematical thinking, wrote Pier Luigi at the time, some learner behaviours cannot be accounted
for simply in terms of semantics. His paper presented an argument that brings the role of language —
ordinary and mathematical — and of communicational structures to the fore.

CERME2 and CERME3 are the two CERMEs that I missed. Nonetheless, returning to the
proceedings after all these years, there are several papers presented in CERME2 and a couple of
dozen papers in CERME3 that can be found across several Working Groups and contain implicit
references to advanced mathematics, often as extensions of what is typically found in the school
syllabus that each paper revolves around.

In CERME?2 these papers are mostly found in Working Group 5 (Mathematical thinking and
learning as cognitive processes) and Working Group 1 (Creating experience for structural
thinking). Mathematical thinking (including a growing focus on proof and proving) is at the heart of
these papers which are only implicitly and only occasionally concerned with the institutional,
curricular and pedagogical context of university level Mathematics Education. There is concern in
these papers with internal mental structures. Nad’a Stehlikovéa and Darina Jirotkova’s paper (2001)
is a good example: it focuses explicitly on processes of building an inner mathematical structure,
which the authors abbreviate as IMS and which they acknowledge as hard to observe. They then
resort to introspective, self-reporting accounts of mathematical thinking. John Mason’s (1998)
“researching from the inside” features largely as a theoretical influence on the paper. Nada
Stehlikova will carry on in this strand of work also in CERME3.

These works concern the learning of mathematics often at the cusp of the transition from school to
(what is in many places) university mathematics. One example of this trend is Bettina Pedemonte’s
(2001) study of cognitive unity, or break, in the context of constructing mathematical arguments and
proofs. Another is the paper by Baruch Schwarz, Rina Hershkowitz, and Tommy Dreyfus (2001)
which presents a perspective on abstraction as always occurring in context and which focuses on
three epistemic actions (Recognising, Building-With and Constructing, RBC). Its theoretical close
relatives are an eclectic mix and include elements of Activity Theory (Alexei Nikolaevich Leontiev)
and the construct of situated abstraction per Richard Noss and Celia Hoyles (1996).

In tandem with abstraction, there are two studies of mathematical intuition that I would like to close
my reference to CERME2 with. One (Tsamir, 2001) regards infinite sets and another (Chartier,
2001) regards geometrical intuition as a stepping stone to the study of Linear Algebra. Both refer
extensively — and in some sense stand on the solid shoulders of — the essential work on
mathematical intuition by Ephraim Fischbein. The analysis in (Chartier, 2001) is also embedded in
curricular and pedagogical aspects of the experiences of the post-graduate students who are its focus
and draws out of the students’ responses the kinds of geometrical intuition — helpful and less helpful
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— they bring into their practice of Linear Algebra. Those links between mathematical encounters of
the students in earlier and later phases of their studies will be a focus for Ghislaine Gueudet (then
Chartier) also in CERME3.

Transitions, for example from Algebra to Analysis — as in the work also in CERME2 by Michela
Maschietto (2001), even though technically concerning secondary school — is a theme that features
strongly in CERME ever after. I note though that both Gueudet and Maschietto had their CERME2
work presented in Working Group 7 (Metaphors and Images) and that Maschietto’s paper has an
explicit focus on the concept of limit. This is a mathematical topic which, to this day, is a flagship
topic for much UME research. In CERMES3, for example, there are five papers with this focus, with
three of the studies carried out in a computational environment. Again, UME research can be found
interspersed in five (on my count) Working Groups: 1. Metaphors and images (including embodied
cognition); 3. Building structures in mathematical knowledge; 4. Argumentation and proof; 6.
Algebraic thinking; 7. Geometrical thinking. Colleagues such as Uri Leron, Ted Eisenberg, Cécile
Ouvrier-Buffet contribute investigations that can be seen as closely relevant to those of us doing
research in a university mathematics education context. However, these are works pitched beyond
the context of the investigations at their heart. Participants are often called “subjects” and it is
sometimes several pages into the papers that the reader learns whether these participants are school
pupils, university undergraduates or pre-service teachers. This is a particularly evident tendency in
the more explicitly psychologically-oriented works in Working Group 3 (Building structures in
mathematical knowledge) and a little less pronounced in those in the rapidly growing Working
Group 4 (Argumentation and proof) which had more than a dozen papers in it.

A clear exception to this rule is a paper that was not presented in any of the working groups I listed
above: it was presented and discussed in Thematic Group 8 (Social interactions in mathematical
learning situations) and, to me, it has an incredibly modern, up to date feel to it. It embodies several
of the characteristics that were to become more salient in much later CERMEs. The paper is by
Andreas Andersson (2003, later Ryve) and it involves observations of engineering students as they
interact during mathematical activity. It also deploys the then just-emerging tools from the work of
Anna Sfard and her colleagues (e.g. 2002). The tools are used to record patterns in participants’
communication (preoccupational analysis for social aspects of the communication and focal
analysis for patterns in the mathematical content of the communication). Both the explicit focus on
a group of university students (and actually non-mathematics specialists) and the discursive tools
deployed in the data analysis render the paper — retrospectively — a solid foreshadower of things to
come, in CERME and elsewhere.

Part II: The AMT years, CERME 4, 5, 6

The quality and quantity of work I sampled so far from the first three CERMEs resulted in the
recognition by ERME of the increasing significance of research in this area. Group 14 (Advanced
Mathematical Thinking) was launched in CERME4 in 2005 with Joanna Mamona-Downs, Maria
Meehan and John Monaghan as its inaugural leaders and attracted twelve papers.

There is a clear trend emerging from the bulk of these twelve papers: many of these works focus
squarely on the students and their habits or preferences in mathematical thinking. The perspective is
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largely developmental and dualist. Several papers explore perceived differences between the
intuitive and the abstract, the procedural and the conceptual, processes and objects. The prevailing
theoretical constructs are Richard Skemp’s instrumental and relational understanding (1976),
Shlomo Vinner and David Tall’s concept image — concept definition (1981), Eddie Gray and David
Tall’s procepts (1994), APOS theory (Dubinsky, 1991) and Anna Sfard’s theory of reification and
process — object duality (1991).

These dualities prevail in the analysis in many of the papers — especially in studies that concern the
mathematical topics of Calculus and Analysis, and proof and proving. Matthew Inglis and Adrian
Simpson (2005) capture this well in their paper about dual process theory: intuition,
formalism/abstraction. Students in these analyses — which have a strong developmental / cognitive
flavour — appear frequently not at ease with the latter (formalism) and uncertain about the validity of
the former (intuition). But, we are now well into the 2000s and the broader field is moving briskly
towards what Steve Lerman (2000) had labelled a “social turn”. (A note here: I find myself agreeing
more though with the later labelling, by Eva Jablonka and Christer Bergsten (2010), of “social
brand”, and Lerman’s own acknowledgment in the same volume that plurality is not a problem per
se in mathematics education.) While attending CERME4, 1 was also preparing a review (Nardi,
2005) of Carolyn Kieran’s, Ellice Forman’s and Anna Sfard’s 2002 volume Learning Discourse:
discursive approaches to research in mathematics education. There was a palpable sense in the
CERMEA4 sessions that this extended and accentuated tendency to use developmental/cognitive
frameworks, rather than exploring connections between students’ learning behaviours and the
institutional, pedagogical and curricular context in which these behaviours manifest themselves,
was leaving much more to desire from the presented analyses.

The paper by Erhan Bingolbali and John Monaghan (2005) on the impact of departmental settings
for engineering and mathematics undergraduates’ engagement with the notion of derivative,
expressed this desire very well. The paper had a good go at exploring the dialectic between
departmental setting, lecturers’ teaching and student ‘positioning’. Even better was the 2008 ESM
paper by these authors, poignantly entitled Concept image revisited.

The paper that Paola lannone and I presented at CERME4 (2005) also expresses, in a rudimentary
form, this desire for more substantial exploration of the dialectic relationship between lecturers’ and
students’ ways of communicating mathematically in writing and in speaking. We used the term
“genre speech” (Bakhtin, 1986). The paper draws on the larger data pool that three years later
became Amongst Mathematicians (Nardi, 2008) and has — a little over-ambitiously I admit — a
multiple purpose. To explore the “genre speeches” of university mathematics is one. The other one
is to bring to the fore an example of a “co-learning partnership” between university mathematics
lecturers and mathematics education researchers. I note that “co-learning partnership” is a term that
I had become familiar with from the work of my doctoral supervisor and research collaborator
Barbara Jaworski (2003), who is also to be credited for introducing me to CERME in the first place!
The rapprochement between the communities of university mathematicians and mathematics
education researchers became a staple theme in much of the work that I became involved with in the
years that followed — and it is one of the defining characteristics of the work that the UME group
has showcased and also nurtured. More on this follows later.
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Joanna Mamona-Downs continued to lead the AMT group in CERMES too and the group grew
bigger — about 50% bigger! But was it also healthier? I recall vividly the vibrancy of the sessions
and also the fact that substantial findings were shared. Two strands made an impression on me at the
time: the emerging strand of studies on students' generation of examples, non-examples and counter
examples — for example by Maria Meehan (2007) — also emerging out of the then freshly published
work in this area by Anne Watson and John Mason (2005). I also recall an emerging focus on
studies that explore the easing of the transition from school to university — for example, in terms of
the mathematical reasoning required. Matthew Inglis and Adrian Simpson (2007) at the time
brought to our attention differences between 'vernacular logic' and 'mathematical logic' and belief
biases in reasoning.

Closer to the focus that my work was gearing towards at the time, I also recall Winslew and Meller
Madsen’s (2007) adaptation of ATD, the anthropological theory of the didactic, and their
examination of the relationship between mathematicians' research activities and their teaching
practices. Paola lannone and I (2007) continued to report analyses from our interview study with
university mathematicians: this time we chose to report a slice of our data that concerned the
interplay between syntactic and semantic knowledge in proof production (Weber & Alcock, 2004).

With Lara Alcock, and also Matthew Inglis and Rina Zazkis, I was delighted to act as helper to
Joanna Mamona-Downs and to observe the many elements of continuity from CERME4 — but also
the elements of what I, to this day, see as evidence of healthy controversy. Mamona-Downs (2007),
in her synopsis of the group’s work captures this well. Here she lists the pertinent questions we were
asked to engage with:

(1) Is the perceived discontinuity between secondary and tertiary mathematics due to institutional
and pedagogical practices, or is it caused by factors concerning the character of University
Mathematics that demand new habits of behavior in reasoning? (2) What ways are there to ease the
transition? (3) If AMT is taken as thinking skills needed for Advanced Mathematics, how are they
beyond those required at school? (4) What commonalties or differences in mental processes are
there in the two levels? (p.2228)

She then notes that our group discussion was:

“rather diffused and mostly sidestepped the questions despite their fundamental significance. It was
dominated by the view of some that the research field of AMT has largely changed its main focus
from cognitive-based studies starting in the early nineteen eighties, to the tendencies found
nowadays based more on societal and affect factors that make the long established work 'obsolete'.
Others countered strongly this position on the basis of the existence of different scientific
'paradigms', in the sense of Kuhn, and on much of the actual output of recent educational research.
Opinions were often put in a partisan spirit. [...] A discussion was raised concerning the possibility
that some tasks accessible to school students might pose the same kinds of problems in their
resolution for undergraduates, and so it could be claimed that these tasks might be considered within
the scope of AMT.” (p.2228)

No consensus was found possible in the group at CERMES as this quotation from Mamona-Downs
suggests:
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“Several participants declared that the two interpretations are complementary and that there was no
compelling reason not to retain the traditional name 'Advanced Mathematical Thinking' as an
umbrella term [while there were] a few participants who felt that the themes stated in the program
were mostly steered towards cognitive factors.” (p.2228-9)

And, I recall, for example, the paper from Corine Castela (2007) offering evidence and taking a
clear stance that this persistent focus on cognitive approaches may not be the most inclusive — or
fertile — way forward for the group.

This tendency to question whether UME research was appropriately congregating under the AMT
umbrella continued in CERMEG6. The AMT group maintained its size and also, as the group leaders
(Roza Leikin, Claire Cazes, Joanna Mamona-Dawns, Paul Vanderlind) observe in their notes on the
proceedings (2009), attracted papers firmly focused on the latter of the two ways of interpreting
AMT (advanced thinking in mathematics, A-MT or thinking about advanced mathematics, AM-T).
As I was reporting a study about prospective and practising teachers’ perspectives on proof, I
attended the proof group on that occasion. So I missed the wealth of findings in the CERME6 AMT
papers on conceptual attainment, approaches to proof and proving, problem solving, instructional
approaches and processes of abstraction. It is fair to say though that UME research was gaining even
more critical mass with about twenty five papers across six groups!

One of these is Barbara Jaworski’s (2009) paper which proposes the exploration of university
mathematics teaching practice through a sociocultural perspective that embroiders elements of
Activity Theory and the Communities of Practice Theory. There will be a stream of papers thereafter
in CERME with a focus on the practices and perspectives of the university mathematics teacher.

My own work in this period, a part of it also with Barbara Jaworski, illustrates this focus rather
emphatically. In a nutshell, I would describe my research programme dating from 1990s to the mid-
2000s as as shifting from studies of university mathematics students’ learning of particular
mathematical topics (as outlined earlier: Nardi, 1996; 2000) to a progressively growing focus on
university mathematics teachers’ perspectives/practices in mathematics and mathematics
teaching (Nardi, Jaworski & Hegedus 2005; Nardi, 2008). These two sets of work illustrate the shift
of my focus progressively towards university mathematics teachers’ pedagogical and
epistemological perspectives. UMTP (University Mathermatics Teaching Project) resulted in the 4-
level Spectrum of Pedagogical Awareness (Nardi et al., 2005). Amongst Mathematicians: Teaching
and learning mathematics at University Level (Nardi, 2008) was published in 2008, following a
gestation period of several years that had started also in CERME with the presentations, with Paola
Iannone, that I mentioned earlier.

Amongst Mathematicians (Nardi, 2008) tells the story of a co-learning partnership that illustrated
research between mathematics educators and mathematicians with these five key characteristics:
collaborative, mathematically focussed, context-specific, non-prescriptive and non-deficit as
possible. In addition to reporting university mathematicians’ pedagogical and epistemological
perspectives, the book served a broader purpose too. It is written in the rather unconventional format
of a dialogue between two fictional, yet data grounded characters — M, mathematician, and RME,
researcher in mathematics education — and is intended as reflection on the perceived benefits,
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obstacles and desires of the relationship between the two. Such conversations were of course not
new. For example, Anna Sfard (1998) reported her discussion with Shimshon A. Amitsur, in the
form of a dialogue and a range of authors from a variety of national and institutional contexts,
including Mich¢le Artigue and Gerry Goldin, were writing at the time about this relationship. A
common observation in these accounts was about its fragility. Research which consolidates and
propels the rapprochement between the communities of mathematicians and mathematics educators
remains a focus of my work today (e.g. Nardi, 2016) and it is fair to say that CERME, in the mid-
2000s provided one of the first fora for kickstarting this work.

Let me conclude my reflections on what I labelled as “the AMT” years with a brief reference to a set
of works that somehow foreshadow developments within the UME community in CERME: in the
Modelling TWG, Berta Barquero, Marianna Bosch and Josep Gascon (2009) offered an ATD
account of the institutional constraints hampering the teaching of mathematical modelling at
university level. They coin the term “applicationism”, an epistemological perspective which
proposes a strict separation between mathematics and other disciplines (especially the natural
sciences) and sees mathematical tools as built to be applied to solve problems in other disciplines —
with this application not causing any change in the discipline of mathematics or for the discipline in
which the application is made. As UME research is rapidly growing in the area of teaching
mathematics to non-mathematicians, works such as this, in CERME6 and earlier, now acquire
added significance.

Part III: The UME years, CERME 7, 8, 9

The proposal to the ERME board for the launch of TWG14: University Mathematics Education was
born out of two main sources. First was my reading and writing at the time: While writing Amongst
Mathematicians, my search across the literature was broad. In fact, as Mich¢le Artigue (2016) has
noted in her INDRUM?2016 plenary, there is a synthesis feel to the book. A more explicit, deliberate
synthesis of hitherto developments in research into the teaching and learning of university
mathematics that was the chapter that Artigue (Artigue, Batanero & Kent, 2007) co-authored with
Carmen Batanero and Philip Kent for the second NCTM Handbook. Secondly, at PME, in Morelia
(Nardi & Iannone, 2008) and in Thessaloniki (Nardi et al,, 2009) , two Working Sessions /
Discussion Groups that I had co-ordinated with colleagues many of whom ended up co-leading the
UME TWG in CERME, had attracted many colleagues and had generated vital, urgent discussions.

I recall that this sensation of vibrancy and urgency was not universally shared outside the bubble of
researchers in this area. I recall that when we proposed the launch of the group, we were gently
reminded by members of the board that we would need to attract at least eight papers to make the
new group viable! I recall that we — the inaugural co-leaders of TWG14 — were nudging each other
that, if each one of us submitted a paper, we would only need to find three more to be able to launch
the group! We were of course wrong.

I need to make two brief notes at this juncture: first, that the account of the group’s work since 2011
borrows heavily from the collectively authored texts in the CERME?7, 8 and 9 proceedings (Nardi et
al., 2011; 2013; 2015); second, that, given the volume of work presented at these conferences, I will
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from now on stay largely away from extensive exemplification from specific papers. I will instead
focus on the themes that mark the “emancipation” and “enrichment” themes promised in the title.

Our rationale for a UME TWG ((Nardi et al., 2011) was in a nutshell as follows.

Research on university level mathematics education is a relatively young field, which embraces an
increasingly wider range of theoretical approaches (e.g. cognitive/developmental, socio-cultural,
anthropological and discursive) and methods/methodologies (e.g. quantitative, qualitative and
narrative). Variation also characterises research in this area with regard to at least two further issues:

e the role of the participants, students and university teachers, in the research — from ‘just’
subjects of the research to fully-fledged co-researchers; and,

o the degree of intervention involved in the research — from external, non-interventionist
research, to developmental/action research in which researchers identify problems and
devise, implement and evaluate reforms of practice (Artigue et al, 2007).

2011 marked the 20™ anniversary of the publication of Advanced Mathematical Thinking edited by
David Tall (1991). This is a volume that is often heralded as a first signal of the emergence of this
new area of research. A few years later, a second signal was given by the 1998 ICMI study that
resulted in The teaching and learning of mathematics at university level, edited by Derek Holton
(2001). In the meantime, Advanced Mathematical Thinking (AMT) groups ran both in previous
CERME and PME conferences; sessions exclusively on university mathematics education have
been part of the EMF ('Espace Mathématique Francophone) conferences since 2006; the RUME,
UMT and Delta conferences emerged in the USA, the UK and South Africa respectively; the
International Conferences on the Teaching of Mathematics at University Level were launched in
1998; etc. The UME TWG emerged out of the above developments and out of the realisation that
this is a distinct area of mathematics education research.

The distinctiveness of UME research can be attributed to several characteristics.

Firstly, the classic distinction between ‘teacher’ and ‘researcher’ does not always apply in UME as
researchers in mathematics education in this area are often university-level teachers of mathematics
themselves. In particular, there is a growing group of mathematicians specializing in research on
mathematics education at university level, where expertise and experience in advanced mathematics
is really an asset (if not a necessity). Secondly, mathematics education theories and research
methods find new uses, and adaptations, at the university level. These adaptations are often quite
radical as the post-compulsory educational context is different in many ways — including the
voluntary presence of students, the important role of mathematics as a service subject, the
predominance of lecturing to large numbers of students, the absence of national programmes for
university education, the required shift to the distinctly different practices of university
mathematics, to mention but a few. In this sense, UME is a distinct area of mathematics education
research, not merely a mirror of mathematics education research at a more advanced educational
level. Finally, in recent years, research in this area has been growing in different parts of the world.
TWG14 is one forum where evidence of this growing research activity from Europe and beyond has
been accumulating.

Proceedings of CERME10 19



Plenary Lecture

Across CERME7, 8 and 9, the WG14 Calls for Papers invited contributions from as wide a range of
research topics as possible. Here is, for example, the list from CERMED9: the teaching and learning
of advanced topics; mathematical reasoning and proof; transition issues “at the entrance” to
university mathematics, or beyond; challenges for, and novel approaches to, teaching (including the
teaching of students in non-mathematics degrees); the role of ICT tools (e.g. CAS) and other
resources (e.g. textbooks, books and other materials); assessment; the preparation and training of
university mathematics teachers; collaborative research between university mathematics teachers
and researchers in mathematics education; and, theoretical approaches to UME research.

We opted for widening participation as much as possible, both in terms of the substantive,
methodological and theoretical takes of the proposed papers but also in terms of the disciplinary
background and experience of the proposers. The 21, 29 and 45 (31 long 14 short) papers accepted
for publication in the respective proceedings met those terms.

Across the WG14 discussions, certain themes and questions emerged as crucial. These included:
exploring whether UME needs to generate new theories or adapt already existing ones; attending to
issues of both theory and practice; acknowledging that research on teaching and learning in higher
education develops also outside mathematics education, and benefiting from these developments;
working towards the generation of new theories while valuing already accumulated knowledge in
the field; etc. One oft-repeated observation was that, beyond staple references to classic constructs
from the AMT years, several works presented in TWG14 employ (often in tandem with the above)
approaches such as the Anthropological Theory of the Didactic (Chevallard, 1999) and discursive
approaches, such as Anna Sfard’s (2008) theory of commognition.

In CERME7 (Nardi, et al., 2011), we noted that an area of growth has certainly been studies that
examine the different role of mathematics in courses towards a mathematics degree, courses for pre-
service teachers, as a ‘service’ subject (physics, biology, economics etc.). While a substantial
number of papers remains in the increasingly well-trodden area of students’ perceptions of specific
mathematical concepts (again calculus prevails in these), a focus on university teachers and teaching
is also emerging, if often a little timidly, and diplomatically, resulting in descriptive, openly non-
judgemental studies. In conjunction with those studies, a genre of collaborative studies, with
mathematicians engaged as co-researchers, also seems to be on the rise. We signal the emerging
trends in the CERMET7 papers as: Transitions; Affect; Teacher practices; Mathematical topics.

In CERMES (Nardi et al., 2013), we noted the appearance of new mathematical topics: infinite
series and abstract algebra. We also noted that some of these papers are written by research
mathematicians, using a mathematical, epistemological, or historical analysis, and drawing on their
teaching experience. Others present research that makes use of different theoretical frameworks, and
methodological tools, to analyse students’ difficulties with these specific topics, to better understand
the teaching of a specific topic and the consequences of this teaching, or to formulate propositions
for the design of teaching to overcome these difficulties. The range of approaches vary from
developmental ones (such as concept image — concept definition), to models for abstraction (such as
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the RBC model), to analysis of discourse (theory of commognition) and the consideration of
institutional matters (anthropological theory of the didactic)’.

After CERMES, the team — in collaboration with TWG14 participants and others — worked towards
a Research in Mathematics Education Special Issue on Institutional, sociocultural and discursive
approaches to research in university mathematics education which focused on research that is
conducted in the spirit of the following theoretical frameworks: Anthropological Theory of the
Didactic, Theory of Didactic Situations, Instrumental and Documentational Approaches,
Communities of Practice and Inquiry and Theory of Commognition. As we noted in the Editorial of
the RME Special Issue (Nardi et al., 2014), there is a clear surge of sociocultural and discursive
approaches — and the number of papers using ATD and TDS is also remarkable. An emerging focus
seems to be also on systematic investigations of innovative course design and implementation and
there is certainly a rise in the number of studies that examine the teaching and learning of
mathematics in the context of disciplines other than mathematics, such as engineering and
economics. Furthermore, this time we welcomed more colleagues from outside Europe and also
noted the rise in the number of papers on assessment and examination®.

In CERME9 (Nardi et al., 2015), there was a notable shift in terms of numbers of papers (two to
one) in favour of the second of our two umbrella themes: Teaching and learning of specific topics in
university mathematics; Teachers’ and students’ practices at university level. The breadth of topics
covered especially in the latter is also telling: curriculum and assessment; innovative course design
in UME; student approaches to study; relating research mathematicians’ practices to student
practices; views and practices of mathematics lecturers; and, methodological and theoretical
contributions to UME research.

In CERME9 we also observed the further strengthening, maturity and increasingly more robust
theorizing of studies into teaching practices. And, we also noticed in several papers the establishing
of promising liaisons across different theoretical perspectives such as a discursive take on
mathematical knowledge for teaching or an anthropological take on documentational approaches.

The critical — and growing — mass and quality of the work presented at CERME9 TWG14 led to the
launch of an ERME Topic Conference, INDRUM?2016, a conference of the newly established
International Network for Didactic Research in University Mathematics (Montpellier, March 31 —
April 2, 2016)°. The conference attracted more than 80 submissions and more than 100 participants.
INDRUM2018 is currently in preparation.

3 By the way, we closed our CERMES text for the proceedings with a Concluding note on rigour and quality of UME
research. While there is no space here to elaborate, I invite the reader to what I see as pertinent observations from the
TWG14 team about these issues in CERME at large.

4 In CERMEI10 there is a new TWG on assessment that spans across educational levels led by former TWG14 co-leader
Paola Iannone.

5 1 chaired this conference with the tireless Carl Winslew. Its launch and its 2016 success (Montpellier, France) relied
heavily on the sterling work of ERME president Viviane Durand-Guerrier and the commitment of Thomas Hausberger.
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Part IV: CERME10, the split...

There were 47 UME papers and 16 UME posters accepted for presentation and discussion in
CERMEIOQ. Their presentation and discussion was in two isomorphic groups: TWGI14A and
TWG14B. From CERMEI1, it is expected that papers may be invited for two, also thematically
distinct, groups — and the debate on possible configurations for this dominated some of the
discussions at the conference. One way forward that I personally favour is for a grouping by the
following distinction: studies that concern the transition to university studies of mathematics and
the transition from university studies into the (various forms of) workplace; and, studies that
concern the teaching and learning of mathematics while at university. The challenge of debating the
numerous configurations of how the (new) group(s) can be (re)defined is certainly non-negligible.
Isn’t this a most wonderful place to find ourselves though, having to manage the now critical mass
and quality of UME research present in CERME?

Part V: Taking stock / What next / Coming soon...

As I am drawing to a close, I would like to ask the question: what did we want to achieve with the
establishment of TWG14? Have we achieved these objectives? Are we going to? For example: did
we manage to encourage fledgling topics in UME research? Have we planted the seed for new ones?

In the sprawling vista of works that I aimed to sample in this lecture — and I am fully aware of the
wafer thin way in which I have done so — I have aimed to identify trends in UME research (overall,
in CERME, in my own work) that signify the benefits (the richness!) of opening up, of widening
our substantive, theoretical and methodological horizons (the what, the how and the why of our
research). Most of my examples have aimed to illustrate the benefits that emancipation from an
individualistic, narrowly psychological, cognitive perspective has brought to UME research.

There are still though foci that have not yet merited our sufficient attention. One such research focus
that seems to me to be not within the radar of current works is UME research is on more advanced
topics in mathematics — and by that, I mean mathematics that is typically taught beyond the first two
years of university studies.

On a less deficit tone, [ am generally satisfied that we have come a long way but I also acknowledge
that there is an even longer way to go. It is fair to say that, within the various UME communities
around the world, we have gone (or are still going) through what I would like to label as a
dismissive phase: that all so-called traditional pedagogies are “bad”, lecturing in particular. I am
observing — but I am also asking that we do so even better — that we become more nuanced and
embracing of possibility. We are starting, for example, to recognise that lecturing can serve some
purposes rather well; that it can be complemented by formats more tailored to the serving of
students’ individual needs; that there are interactive lecture formats that give participants the buzz
of community belonging and building and prepare students for the less cocooned, less protected
world of work where interaction, team work and communication are key. We are finding out that
not all interaction and all the time is good per se and that there are particular types of communal
engagement with mathematics that work better than others. TWG14 papers have been offering the
evidence base for these claims, steadily and cumulatively. In a way, I find the choice made by the
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mathematics department in my institution (see earlier snip in Figure 2) to include in its promotional
materials  images of lectures and also to close its  promotional  video
(https://www.voutube.com/watch?v=gRzVX8c1be4) with a close-up of white chalk on a blackboard
(Figure 4) somewhat refreshing. We are perhaps starting after all to embrace diversity in the ways
that the students need to experience mathematics!

I believe the answers to the questions with which I started this section are reservedly optimistic and
affirmative. In Part II, I showed an outline of my own research programme over the years and I am
pleased to be able to say that most of the items there — and what followed these — have emerged out
of collaborations with colleagues in CERME, including research plans for the immediate future.

CERME has indeed been a platform where I am trialling new topics for research. My CERMES
paper (Nardi, 2013) offers analyses of the challenges of teaching a graduate course on mathematics
education to students with a variety of backgrounds, including bachelor degrees in pure
mathematics, and native languages other than the language of instruction. The paper also outlines
key didactic techniques and principles to cope with these challenges. It finally morphed into the
more substantial analyses present in a paper included in the inaugural issue of JIRUME (Nardi,
2015) which examined ways to facilitating paradigm shifts in the supervision of mathematics
graduates upon entry into mathematics education.

CERME has also been a platform where I have trialled new approaches to analysing data. In fact, |
credit CERME for allowing me the creative space to have a go — and converse about — discursive,
particularly commognitive, approaches to the analyses of my data. My CERME7 paper (Nardi,
2011) outlined interviewed mathematicians’ perspectives on their newly arriving students’
verbalisation skills; and, observed that discourse on verbalisation in mathematics tends to be risk-
averse and not as explicit in teaching as necessary. At CERMEY, Bill Barton and I (Nardi & Barton,
2015) presented a commognitive analysis of a “low lecture” episode (student-led inquiry oriented
discussion on open-ended problems) to illustrate crucial steps of student enculturation into
mathematical ways of acting and communicating, including a shift away from the lecturer’s
‘ultimate substantiator’ role. Finally, both the papers I am involved in as co-author in CERME10
(Virman & Nardi, 2017; Thoma & Nardi, 2017) present commognitive analyses in contexts that said
analyses are now just about starting to appear (teaching mathematics to non-mathematicians;
analyses of closed-book examination tasks and student/lecturers’ assessment discourses).

Returning to the anecdote that I started with, a somewhat self-deprecating recollection of the
theoretical ambivalence of my doctoral work, I see my own research programme as an illustration of
the richness emanating from the emancipation, from what I now see as a narrow, individualistic
perspective in my earlier work. To me there is nothing vacantly rhetorical about the three Cs in the
CERME spirit: COMMUNICATION, COOPERATION, COLLABORATION. The growth of my
research programme through each one of these is to me unshakeable evidence of the pragmatic
strength of these three words. In TWG14 these words have taken shape as specific actions. Here are
two: (1) Certainly, we have assisted with the arrival of several new researchers in this field, some of
whom are currently co-leaders; many have used the reviewing process as a stepping stone for their
writing (from poster to conference paper then to completing theses and journal papers). (2) We have
engaged practitioners of university mathematics teaching who now see themselves also as UME
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researchers. To do so, we deploy the reviewing process and the discussions at the conference to
convey the rigour that is required for UME research (in terms of engaging with theory, prior
research and methodology) and to bridge the epistemological differences between the academic
disciplines of mathematics and education.

I invite the reader to the collections of papers published in the TWG14 sections of the Proceedings,
the 2014 Research in Mathematics Education Special Issue that followed CERMES, the
proceedings of the 2016 INDRUM conference and the imminent (publication expected in 2018)
International Journal for Research in Undergraduate Mathematics Education Special Issue that is
following INDRUM2016 as testimonials of the growth and diversity I have tried to map here. And
there is more to come: INDRUM2018 will be hosted by MatRIC at the University of Agder
(Kristiansand, Norway) in April 2018 and its Scientific Committee aims to follow it up with a state-
of-the-art volume soon after. And, of course, there is the UME chapter (Winslew et al., in press) in
the ERME 20" Anniversary Book that we aim to celebrate in CERME11, in 2019. The promise of
UME research on the global scene is further corroborated by the healthy growth of the RUME and
DELTA conferences, and the respective group within EMF. In closing, I return to the words of
Michéle Artigue whose thoughtful INDRUM?2016 plenary (Artigue, 2016) triggered the focus of the
synthesis and analysis presented here:

“The emergence of the [UME] field was [...] characterized by the domination of cognitive
and constructivist perspectives. I consider as a strength of our field the fact that we have
succeeded in emancipating ourselves from these perspectives, whose limitations are evident,
but also the fact evidenced by the consideration of most research publications, that this
emancipation went along a reconstruction of their main outcomes, thus making possible
some form of incorporation of these outcomes in the new paradigms.”

Michele Artigue, from Mathematics education research at university level: Achievements and
challenges, INDRUM2016 plenary lecture (p.19)
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Young children’s early mathematical competencies: Analysis and
stimulation

Lieven Verschaffel, Joke Torbeyns, and Bert De Smedt
University of Leuven, Belgium, lieven.verschaffel@kuleuven.be

In this paper we take a critical look at the state-of-the-art in the research domain of early
mathematical development and education. We start with a brief review of the influential and
successful (neuro)cognitive research in this domain - which is heavily focused on the development
and teaching of children’s (non-symbolic and symbolic) magnitude representation and strongly
dominated by the theory of an approximate number system (ANS). We confront and complement this
(neuro)cognitive approach with various other lines of research that may help to provide a more
comprehensive picture of the development and stimulation of children’s early mathematical
competence and how it relates to their later mathematical proficiency at school.

Keywords: Early mathematics, approximate number system, number concepts, mathematical
patterns and structures, preschool education.

Introduction

The past 10-15 years have witnessed the emergence of a remarkably productive and highly
influential line of research on children’s early numerical magnitude representation, its development,
its relation to school mathematics, and its assessment and stimulation (Torbeyns, Gilmore &
Verschaffel,, 2015).

The starting point of this line of research - which has its origins in cognitive (neuro)psychology -, is
the idea that young children, like many other species, are equipped with some foundational innate
core systems to process quantities. This “starter’s kit” is thought to involve (a) an “object tracking
system” that has a limit of three or four objects and is thought to underlie “subitizing” (= to
immediate and accurate estimate of one to four objects without serial enumeration), and (b) an
“analogue number system” — for the internal representation of numerical magnitudes as Gaussian
distributions of activation on a “mental number line” with increasingly imprecise representations for
increasing magnitudes (Dehaene, 2011) - allowing them to compare non-symbolic quantities that
are too numerous to enumerate exactly or to perform some very basic approximate arithmetic on
these quantities (Andrews & Sayers, 2015; Butterworth, 2015).

With these foundational core number sense systems, these magnitudes are represented non-verbally
and non-symbolically, but, over development and through early (mathematics) education, verbal and
symbolic representations are gradually mapped onto these foundational representations, to evolve
into a more elaborated system for number sense (Torbeyns et al., 2015).

People’s numerical magnitude representations are commonly assessed via magnitude comparison
and/or number line estimation tasks, of which there exist both non-symbolic and symbolic versions
(Butterworth, 2015; Andrews & Sayers, 2015; Torbeyns et al., 2015). Examples are shown in Figure
1.
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Figure 1: Example of a non-symbolic magnitude comparison and a symbolic number line estimation
task

During the past decade, several research teams have set up correlational, cross-sectional and
longitudinal studies to determine the contribution of children’s numerical magnitude understanding
- sometimes in combination with other specific early numerical competencies (such as subitizing,
counting or numeral recognition) - to their concurrent and/or later overall mathematical
achievement or to specific parts of it such as mental arithmetic or algebra (see, e.g., Bailey, Geary,
& Siegler, 2014; De Smedt, Verschaffel, & Ghesquicre, 2009; Jordan, Glutting, & Ramineni, 2010;
Nguyen, Watts, Duncan, Clements, et al., 2016; Reeve, Reynolds, Humberstone, & Butterworth,
2012). These studies have demonstrated that children’s numerical magnitude understanding is
positively related to their concurrent and future mathematics achievement in general or in particular
subdomains of mathematics.

Two recent meta-analyses have yielded a good overview of the outcomes of this research on the
association between various measures of children’s numerical magnitude understanding and their
concurrent and future mathematics achievement. Schneider, Beeres, Coban, Merz, et al. (2017)
performed a meta-analysis on the research about the association between performance on the
magnitude comparison task and measures of mathematical competence. Their literature search
yielded 45 articles reporting 284 effect sizes found with 17,201 participants. The results support the
view that magnitude processing is reliably associated with mathematical competence as measured at
least up to the end of the elementary-school years and by a wide range of mathematical tasks,
measures and subdomains. Furthermore, the effect size was significantly higher for the symbolic
than for the non-symbolic magnitude comparison task and decreased very slightly with age. So - the
authors conclude - symbolic magnitude processing might be a more eligible candidate than non-
symbolic magnitude processing to be targeted by diagnostic screening instruments and interventions
for school-aged children and for adults. The association was also higher for mathematical
competences that rely more heavily on the processing of magnitudes (i.e., early mathematical
abilities and mental arithmetic ) than for others (i.e., more general curriculum-based tests).

Schneider, Merz, Stricke, De Smedt, et al. (submitted) performed a similar meta-analysis for the
association between people’s score on the other main task to assess numerical magnitude processing
skills, namely the number line estimation task, and mathematical competence. Using exactly the

Proceedings of CERME10 32



Plenary Lecture

same analytic procedure, and working with a set of 37 studies, they found that the correlations with
mathematic competence - both in general and for particular parts of the curriculum - were
significantly higher for number line estimation than for symbolic magnitude comparison or for non-
symbolic magnitude comparison. Whereas the correlations did not substantially increase with age
for comparison, an increase with age was found for number line estimation, which suggests that
different underlying cognitive systems and processes are involved in magnitude comparison vs.
number line estimation.

Furthermore, researchers working within this research tradition have tried to stimulate children’s
mathematical skills with (game-based) intervention programs that were (primarily or exclusively)
aimed at enhancing their numerical magnitude understanding before or at the beginning of formal
instruction in number and arithmetic in elementary school. While some intervention studies have
resulted in positive effects (e.g., Kucian, Grond, Rotzer, Henzi, et al., 2011; Ramani & Siegler,
2011; Wilson, Dehaene, Dubois, & Fayol, 2009), the overall results are mixed (Torbeyns et al.,
2015).

Being well aware of the prominence of this line of research in the international research of early
mathematics education, the IPC of the 23™ ICMI study on “Whole number arithmetic” invited one
of the leading scholars in that line of research, namely Brian Butterworth, as a plenary speaker of
the conference, which took place in June 2015 in Macau, China. In his plenary lecture Butterworth
(2015) presented a very informative overview of this cognitive (neuro)scientific line research, and
strongly defended this research in the working groups and panels wherein he participated. However,
at that conference, it also became clear that the dominant picture of early mathematical competences
and education in current mainstream (neuro)cognitive research is dangerously narrow. In the present
paper, we will try to broaden that picture in multiple ways. In doing so, we will partly rely on recent
and current work done in our own research group, but also on the work of many colleagues who
have been active in the field of early mathematics education during the past decade(s).

The ordinal and measurement aspect of number

A first important feature of the line of research summarized above is its focus on the cardinal aspect
of number, or, to state it differently, its neglect of other constituent aspects of number, particularly
its (1) ordinal and (2) measurement aspect. Hereafter we discuss these two neglected aspects.

The distinction between the ordinal and cardinal aspect of number knowledge is well known.
Whereas cardinality refers to the capacity to link number symbols to collections, e.g., to know that
four or 4 is the correct representation to denote a group of four objects, ordinality refers to the
capacity to place number words and numerals in sequence; for example, to know that 4 comes
before 5 and after 3 in the sequence of natural numbers. Given the wide recognition of the
importance of ordinality for the constitution of number since Piaget (1952) developed his theory of
children’s concept of number, it is remarkable that, until recently, the ordinality aspect of number
seems largely neglected in the above mainstream cognitive neuroscientific conceptualization,
assessment and instruction of early numerical abilities.

Interestingly, recent neuroscientific evidence shows that accessing ordinal information from
numerical symbols (e.g., decide whether three numbers are in order of size) relies on a different
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network of brain regions and shows qualitatively different behavioral patterns when compared to the
cardinal processing of magnitudes or numerical symbols or to the ordinal processing of perceptual
magnitudes (Lyons & Beilock, 2011, 2013). And, how well a child is able to reason about ordinal
relations between number symbols has been found to be one of the strongest predictors of
mathematical skill such as mental arithmetic (Lyons, Price, Vaessen, Blomert, & Ansari, 2014) —
much stronger, by the end of the first grade of elementary school, than non-symbolic or symbolic
cardinal processing as measured by the numerical magnitude comparison task. So, the idea that
emerges from this recent neuroscientific research is that children’s sense of ordinality of number
symbols may be distinct from their sense of cardinality and, in terms of developing skills needed for
success in mathematics, that ordinality may even be the more significant one (Sinclair & Coles,
2015, see also Vogel, Remark, & Ansari, 2015).

This line of research pointing to the importance of ordinality also led math educators to criticize the
mainstream neuroscientific view on how children’s early number sense may be stimulated. The
latter view suggests that working on linking symbols to sets of objects may reinforce the very way
of thinking that young children need to overcome to become successful in school mathematics. But
this is the current practice in many countries, where the emphasis in early mathematics education is
firmly on linking number symbols to collections of objects - whether this is done through subitizing
or counting. Based on the above theoretical and empirical arguments, Sinclair and Coles (2015, p.
253) asserted that this emphasis on cardinal awareness in learning number is misplaced and argued
that what young children above all need is “support to work with symbols in their relationship to
other symbols”. This plea for paying more attention to the importance of ordinality has led these
authors to the design of an innovative iPad app, TouchCounts (Sinclair & Jackiw, 2011) wherein the
way numerosities are built, labeled and manipulated does not primarily require sense of cardinality
but rather ordinality.

The cardinal emphasis on number knowledge has also been attacked from another, more radical,
perspective. In his plenary address at the ICMI23 conference, Bass (2015) described an approach to
developing concepts of number using the notion of quantity measurement. This approach is not
new, of course, and is quite well-known among mathematics educators (see e.g., Brousseau,
Brousseau, & Warfield, 2004), even though it has, to the best of our knowledge, hardly led to actual
and wide-scale implementation in national curricula.

It has been articulated most prominently by Davydov (1990), a Soviet psychologist and educator,
who developed, together with his colleagues, in the 1960s and 1970s, a curriculum for number and
arithmetic based on this measurement approach. This curriculum delayed the introduction of
number instruction until late in the first grade. Early lessons rather concentrated on “pre-numerical”
material: properties of objects such as color, shape, and size, and then quantities such as length,
volume, area, mass, and amount of discrete objects, but without yet using number to enumerate
“how many”. So, in this approach number is not intrinsically attached to a quantity; rather it arises
from measuring one quantity by another, taken to be the “unit:” How “much” (or many) of the unit
is needed to constitute the given quantity?

The discrete (counting) context in which whole numbers are typically developed in most approaches
to early and elementary mathematics education is characterized by the use of the single-object set as
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the unit, so that the very concept of the unit, and its possible variability, is rarely subject to
conscious consideration. According to Bass (2015, p. 11), “this choice is so natural, and often taken
for granted, that the concept of a chosen unit of measurement need not enter explicit discussion. If
number is first developed exclusively in this discrete context, then fractions, introduced later, might
appear to be, conceptually, a new and more complex species of number quite separate from whole
numbers. This might make it difficult to see how the two kinds of numbers eventually coherently
inhabit the same real number line. Indeed, this integration entails seeing the placement of whole
numbers on the number line from the point of view (not of discrete counting, but) of continuous
linear measure.” (see also Behr, Harel, Post, & Lesh, 1992, for a similar argument coming from the
research literature on rational numbers).

According to Bass (2015), this measurement approach has a lot of advantages over the counting
based approach, especially if one takes a broader long-time mathematics educational perspective.
First, it is a way of providing coherent connections in the development of rational numbers. A
second advantage is that it makes the geometric number line continuum present from the start of the
school curriculum as a useful mathematical object and concept. Third, the approach provides
opportunities for some early algebraic thinking.

The above analysis suggests that it is important to balance cardinal, ordinal and measurement
aspects of number in early mathematics education. This requires some serious reflection on the
ingrained ways in which cardinality is now privileged in early mathematics education as well as
further creative explorations of how the two other elements of ordinality and measurement can be
mobilized to promote the development of a broad and balanced number concept.

Arithmetic reasoning skills

It is apparent that the mainstream analysis of early mathematics-related competences has capitalized
on measures that emphasize children’s numerical competences, i.e., their subitizing skills, counting
skills, the ability to compare numerical magnitudes, and the ability to position numerical
magnitudes on an empty number line. While such measures provided empirical evidence for the
multi-componential nature and importance of young children’s early numerical competences for
future mathematical development, they reflect also in another way a restricted view on children’s
early mathematical competences.

Starting from Piaget’s (1952) logical operations framework, there is a recent renewed research
attention to children’s early arithmetic reasoning skills, such as their understanding of the additive
composition of number or their additive and multiplicative reasoning skills, as well as to their
importance for later mathematical learning at school (e.g., Clements & Sarama, 2011; Nunes,
Bryant, Barros, & Sylva, 2012; Robinson, 2016).

As documented in her extensive review of this research, Robinson (2016) points out that the
research on children’s conceptual understanding of these arithmetic concepts is heavily focused on
additive concepts, that is, concepts involving the operations of addition and/or subtraction. Various
principles including the additive composition of number but also the arithmetical properties such as
the commutativity, the associativity, the addition-subtraction inverse, and the addition-subtraction
complement principle have been intensively studied, sometimes also in relation to children’s actual
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use of these principles in their mental arithmetic (Baroody, Torbeyns, & Verschaffel, 2009;
Verschaffel, Bryant, & Torbeyns, 2012). Quite a number of these studies already involve young
children at or even before the age of 6-7 years old.

Similar multiplication and division principles have also been investigated, however, to a much
lesser extent and with a more restricted developmental range, from late middle childhood to
adulthood (Larsson, 2016; Robinson, 2016), which is not surprising given that, for most children,
these operations are typically not yet formally introduced in the first grades of elementary school.

Only a few of these studies have explicitly addressed the question of how young children’s
emergent understanding of these additive and multiplicative principles is predictively related to their
(later) achievement in school mathematics, in similar ways as has been done for the numerical
aspects of early mathematical competence reviewed in the previous section. The limited available
evidence from these few studies suggests that early mathematical reasoning of this sort makes a
separate and specific contribution to achievement in school mathematics, even up to several years
later (Nunes, Bryant, Evans, Bell, et al., 2007; Nunes et al., 2012).

As an illustration, we refer to the study of Nunes et al. (2012), which used data collected in the
context of the Avon Longitudinal Study of Parents and Children (ALSPAC) involving about 4000
pupils, to assess whether arithmetic reasoning makes an independent contribution, besides
calculation skills, to the longitudinal prediction of mathematical achievement over five years.
Arithmetic reasoning was assessed at the start of children’s elementary education (i.e., at 7 years)
using a test that included three types of items: additive reasoning about quantities, additive
reasoning about relations, and multiplicative reasoning items (see examples in Figure 2).

Figure 2: Examples of items from Nunes et al.’s (2012) arithmetic reasoning test

The outcome measures of mathematical achievement were standardized assessments designed to
measure school standards by the end of elementary school. Hierarchical regression analyses were
used to assess the independence and specificity of the contribution of arithmetic reasoning vs.
arithmetic skill to the prediction of achievement in mathematics, science, and English at the end of
elementary school, using age, intelligence, and working memory as controls in these analyses.
Arithmetic reasoning and skill made independent contributions to the prediction of mathematical
achievement, but arithmetic reasoning was by far the stronger predictor of the two. These
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predictions were also specific, in so far that these measures were more strongly related to
mathematics than to science or English.

In sum, according to Nunes et al. (2012), their findings provide a clear justification for making a
distinction between arithmetic reasoning and numerical, counting and calculation skills. The
implication for diagnosis and intervention in early mathematics education is that arithmetic
reasoning should receive a greater emphasis from the early years in primary school on.

Understanding patterns and structures

In another attempt to identify and explain common underlying early bases of mathematical
development and its stimulation, other researchers have looked at mathematical patterns and
structures (Liiken, 2012; Mulligan & Mitchelmore, 2009; Mulligan, Mitchelmore, & Stephanou,
2015; Rittle-Johnson, Fyfe, Loehr, & Miller, 2015)

In what can be considered as one of the most enduring, systematic and influential research programs
in this respect, based on a series of related studies with diverse samples of 4- to 8-year-olds,
Mulligan and colleagues have identified and described a new construct, Awareness of Mathematical
Pattern and Structure (AMPS) (Mulligan & Mitchelmore, 2009; Mulligan et al. 2015), that has been
shown to be related to children’s later mathematics achievement in school.

Mathematical pattern involves any predictable regularity involving number, space, or measure such
as number sequences and geometrical patterns, whereas structure refers to the way in which the
various elements are organized and related, such as iterating a single ‘unit of repeat’ (Mulligan &
Mitchelmore, 2009). AMPS involves structural thinking based on recognizing similarities,
differences and relationships, and also a deep awareness of how relationships and structures are
connected.

An interview-based assessment instrument was developed and validated, the Pattern and Structure
Assessment - Early Mathematics (PASA) (Mulligan et al., 2015). The PASA yields an overall
AMPS score as well as scores on five individual structures: sequences, shape and alignment, equal
spacing, structured counting, and partitioning. Some examples of tasks are sequences that have to be
extended (e.g., a sequence of colored pearls on a string or a series of triangular dot configurations of
increasing size) or structured counting tasks (e.g., counting by two’s, counting the number of cells
in a partly covered rectangular pattern). Based on the child’s response, which may include drawn
representations and verbal explanations of patterns and relationships, five broad levels of structural
development were identified and described: pre-structural, emergent, partial, structural, and
advanced structural (Mulligan & Mitchelmore, 2015). Validation studies indicated that high levels
of AMPS were correlated with high performance on standardized achievement tests in mathematics
with young students (Mulligan et al., 2015).

In alignment with the assessment of AMPS, an innovative, challenging alternative learning
program, the Pattern and Structure Mathematics Awareness Program (PASMAP) was developed
and evaluated longitudinally in the kindergarten (= the first year of formal schooling in Australia).
This study first showed that kindergartners are capable of representing, symbolizing and
generalizing mathematical patterns and relationships, albeit at an emergent level (Mulligan,
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Mitchelmore, English, & Crevensten, 2013). The study also tracked and described children’s
individual profiles of mathematical development and these analyses showed that core underlying
mathematical concepts are based on AMPS, and that some children develop these more readily and
in more complex ways than others. Finally, this study also involved an attempt to provide an
empirical evaluation part involving 316 kindergartners from two schools with and two schools
without the PASMAP program. Highly significant differences on PASA scores were found for
PASMAP children in comparison to children from the control schools, also for those children
labeled as low ability, both at the posttest and the retention test, when children had already moved to
Grade 1. On the other hand, there was no significant impact of PASMAP on improving children’s
mathematical achievement as measured by a general mathematics achievement test.

Other researchers have also performed analyses of (1) elementary school children’s perceptions and
understandings of patterns and structures, providing nice descriptions and accounts of young
children’s abilities and difficulties with respect to various mathematical patterns and structures
tasks, (2) the predictive value of their mastery of pattern and structure for their later mathematical,
i.e. algebraic proficiency, and (3) how instruction on patterns and structures can not only transfer to
similar and other patterns and structures, but also to other mathematical domains such as ratios, and
mathematics achievement in general (for an overview, see Rittle-Johnson, Fyfe, Loehr, & Miller,
2015).

Of course, the idea that patterns and structures play an important role in the learning of
mathematics, and should play an important role in its teaching, is not new (Orton, 1999). After all,
is the definition of “mathematics as a science of patterns” (Miiller, Selter, & Wittmann, 2012) not
one of our favorite definitions of what mathematics is all about? The critically new element in the
research of the work of Mulligan and associates is that they give it such a prominent role in their
diagnostic and teaching materials for early mathematics. In doing so, they contribute to broadening
the picture of what (early) mathematics is all about — a picture that is largely undervalued in current
early and elementary school mathematics with its strong focus on learning about numbers and
arithmetic facts and procedures.

Spontaneous focusing tendencies

The studies and views on the early development of children’s mathematical competence reviewed
so far typically take a purely “ability” perspective. In doing so, they neglect other aspects of young
children’s early mathematical competence, such as their attention to or feeling for, numerical
magnitudes, mathematical relations, or mathematical patterns and structures. During the past
decade, researchers have started to explore children’s spontaneous tendency to focus on numerosity
(SFON), its development, its cultivation, and its predictive relation to children’s later mathematical
achievement (Hannula & Lehtinen, 2005). To a lesser extent, similar attempts have been done for
quantitative relations (SFOR) and, even much less, mathematical patterns and structures (SFOPS).

These SFON, SFOR or SFOPS tendencies are not about what children think and do when they are
guided to the mathematical elements, relations or patterns in the situation, but what they
spontaneously focus on in informal everyday situations. SFON assessment instruments must
therefore capture whether children spontaneously use their available number recognition or
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quantitative or mathematical reasoning and patterning skills in situations where they are not
explicitly guided or instructed to do so. So, the instruments used to assess these spontaneous
focusing tendencies must meet several strict methodological criteria (Hannula & Lehtinen, 2005).

As far as SFON is concerned, the most frequently used task so far is the Elsi Bird Imitation task,
wherein the child is instructed to imitate the experimenter’s play behavior with toys, i.e., feeding
berries into the beak of a toy parrot. A SFON score is given on an item as soon as the child is
observed doing or saying something that shows that he or she has spontaneously attended to the
quantitative aspect of the situation. Meanwhile several other SFON tasks have been developed, such
as the Picture Description task, with cartoon pictures displaying both non-numerical and numerical
information and the request to tell what is in the picture. If the child spontaneously refers to the
exact numerosities - correct or not — in his or her verbal descriptions of the pictures, (s)he gets a
SFON score (for an overview and critical discussion of SFON measures, see Rathé, Torbeyns,
Hannula-Sormunen, De Smedt, & Verschaffel, 2016).

Observations of children’s activities in SFON assessment indicated that already at the age of 3-4
years children can be spontaneously engaged in mathematically relevant practices in their everyday
environments (Hannula & Lehtinen, 2005). This research also revealed great inter-individual
differences in children’s tendency to spontaneously focus on number. It further showed that
children’s SFON at the age of 5 or 6 is a unique and strong predictor of later development of
mathematical skills even up to the end of elementary school. The hypothetical explanation for these
findings is that children who spontaneously focus on the numerical aspects of their environment in
everyday situations get much more practice of magnitude recognition, number comparison,
combining of numbers, etc. than children who only do this when explicitly instructed by parents or
teachers. SFON may support the development of numerical skills and more elaborated numerical
skills may further strengthen the SFON tendency. However, convincing direct empirical evidence
for this explanatory mechanism is still scarce (Rathé, Torbeyns, Hannula-Sormunen, & Verschaffel,
2016).

In many everyday activities exact numerosity is not the only mathematically relevant aspect that can
be focused on. In young children’s daily life there are many opportunities to focus on more complex
quantitative aspects, such as quantitative relations. Children can also recognize and use
mathematical or quantitative relations without explicit guidance to do so. Based on a series of
studies, McMullen, Hannula, and Lehtinen (2013, 2014) proposed that there is a similar tendency to
focus on quantitative relations as SFON, which indicates that instead of mere numerosity children
and school pupils can also focus spontaneously on quantitative relations (SFOR). McMullen and
colleagues (McMullen, Hannula-Sormunen, Laakkonen & Lehtinen, 2016; McMullen, Hannula-
Sormunen, & Lehtinen, 2013; McMullen, Hannula-Sormunen, & Lehtinen, 2014). designed the
Teleportation Task to measure SFOR. This task involves a cover story telling that a set of supplies
containing three sets of objects was sent from earth through space with a teleportation machine.
However, when doing so, the objects are transformed. Children are asked, first, to describe the
transformation in their own words in as many ways as possible, and, second, to draw what they
expect to happen with a different numerosity of the same objects. When describing or drawing the
transformation, learners can pay attention to the various non-mathematical changes (e.g., in terms of
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the colors or shapes of the objects), but also to the quantitative relation between the original and
final numerosity of the three sets. The results of the longitudinal study of McMullen, Hannula-
Sormunen, Laakkonen, and Lehtinen (2016) showed that there were substantial individual
differences in students’ SFOR tendencies,. It also revealed that SFOR tendency had a unique
predictive relationship with rational number conceptual development in late primary school students
during the 2-year follow-up period.

Interestingly, in their conceptualization of AMPS, Mulligan and Mitchelmore (2009) also tend to go
beyond the pure ability aspect of early mathematical competence, by stating that AMPS may consist
of “two interdependent components: one cognitive (knowledge of structure) and one meta-
cognitive, i.e., “spontaneous” (a tendency to seek and analyze patterns)” (p. 39). According to these
authors, both are likely to be general features of how children perceive and react to their
environment. However, neither in their assessment nor in their intervention materials, they have
already tried to specifically and explicitly address this spontaneous focusing aspect.

Early mathematics and executive functions

In the previous sections, we have discussed various kinds of domain-specific competences that all
have been claimed, and in many cases been shown, to be predictively related to general
mathematical competence or to knowledge and/or skill in specific subdomains of the mathematics
curriculum. However, it is a well-established research finding that formal mathematics achievement
is also influenced by domain-general processes, such as sustained attention, inhibitory control,
cognitive flexibility, working memory capacity, and - even more generally - intelligence (Bull &
Scerif, 2001; De Smedt, Janssen, et al., 2009; Friso-van den Bos et al., 2013; LeFevre et al., 2010;
Peng, Namkung, Barnes, & Sun, 2016).). While most of that research evidence comes from research
with older participants, there is increasing evidence on the importance of executive functions in
early mathematical thinking and learning too.

In one line of research, authors have analyzed the relative importance of general executive skills as
compared to the role of domain-specific early numerical competences in predicting concurrent and
later mathematical development. For instance, in a longitudinal study wherein we followed children
during the first grades of elementary school, we were able to show that working memory at the start
of primary education was predictively related to individual differences in mathematics achievement
six months later in Grade 1 and one year later in Grade 2 (De Smedt, Janssen, et al., 2009).
Interestingly, overviewing the research, Bailey et al. (2014), concluded that the contribution of
domain-specific factors, such as children’s early numerical competences to their later mathematical
development is relatively small compared to these more stable domain-general factors, such as
intelligence and working memory.

The relation between these executive functions and mathematical performance may also be more
specific in nature. Research has revealed specific relations between certain executive functions,
such as inhibition or working memory, on the one hand, and specific mathematical competences,
such as mental arithmetic or word problem solving, on the other hand. Robinson and Dubé (2013),
for instance, investigated the role of inhibition in children’s use of the inversion and associativity
shortcuts on mental addition and subtraction (e.g., 6 + 23 — 23 = ?). Children who demonstrated the
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highest use of conceptually-based shortcuts also scored highest on the Stop-Signal task, a standard
measure of inhibitory abilities. This finding suggests that these children were able to inhibit their
tendency to routinely solve problems from left-to-right and thereby process all of the presented
numbers before executing the clever shortcut strategy.

So far, we have discussed the role of executive functions in children’s performance on relatively
complex mathematical tasks. However, to make the picture about the role of executive functions
even more complicated, these executive functions are also assumed to play a critical function in the
early mathematical tasks, such as the magnitude comparison task, the SFON tasks, the mathematical
reasoning tasks, and the patterns and structures tasks discussed above. Take, for instance, the non-
symbolic magnitude comparison task used to assess the approximate number system (ANS) and
which lies at the basis of this whole line of research that has led to the pivotal role of the precision
of children’s early ANS representations in early mathematics diagnosis and intervention (see
Section 1). In this task it is important to ensure that participants are basing their judgements on the
numerosity of the visual arrays, rather than possible visual cues such as the size of the dots, or the
area that the dot arrays cover. As Gilmore, et al. (2013) have argued, in an attempt to control for this
possible confound, researchers introduce an inhibitory control aspect to the task, as for half of the
items with which the child is confronted inconsistent visual cues must be inhibited to indicate the
correct set. But if the non-symbolic comparison task is, in part at least, a measure of inhibitory
control, then it is perhaps unsurprising that it is predictive of school-level mathematics achievement,
but for other reasons than claimed by the advocates of this task.

Starting from the above research documenting in various ways the involvement of executive
functions in mathematical thinking and learning, researchers have also asked the question about the
possibility and efficacy of enhancing mathematical thinking and learning through training of these
executive skills. At least for working memory, a recent meta-analysis by Schwaighofer, Fischer, and
Biihner (2015) led to the general conclusion that attempts to improve working memory only
improved performance on working memory tests but failed to improve mathematics achievement.

So, while there is increasing research evidence that, from a very young age on, an association
between mathematics and executive functions exists, this complex and multi-aspectual association
and its implications for early mathematics education and assessment is not well understood yet.
Numerous questions remain (Robinson, 2016; Van Dooren & Inglis, 2015). As (early) mathematics
educators we are traditionally not so much interested in these general executive functions. However,
for various reasons related to theory, diagnosis and intervention, it may be unwise to neglect them.

The role of parents and early caregivers during the preschool years

As amply shown in the previous sections, before the start of formal mathematics education -
typically at the age of 5-6, children already begin their initial explorations into everyday
mathematics at home, progressively developing and refining their mathematical knowledge and
skills as well as their mathematics-related orientations, beliefs, and affects. However, there is wide
variation - linked in part to socio-economic status (SES) and culture - in the kinds of early
mathematical learning experiences children have at home and the ways in which they are stimulated
and helped by their parents. Further, in many cultures, the majority of young children spend
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significant time in non-parental care, including family childcare and organized preschool education
(DREME, 2016). Arguably, the quantity and quality of mathematics learning stimulation in these
various settings also vary enormously, impacting children’s mathematical development. For evident
reasons, mainstream cognitive (neuro)psychological research on early numerical competences has
paid little or no attention to these informal mathematical learning environments. But also within the
mathematics education research community this topic is “under-studied”. Indeed, we know
relatively little about the role of parents and early caregivers during the preschool years when
compared, on the one hand, to the development and stimulation of children’s emergent literacy, and,
on the other hand, to mathematics education in the higher educational levels. Fortunately, the last
few years have witnessed an increased research interest.

First, several researchers have aimed for an understanding of children’s preschool experiences at
home and of how these experiences affect their early mathematical development. For instance,
starting from the well-documented finding that children’s early numerical competence before the
start of formal schooling is highly predictive of their acquisition of mathematics in (the first grades
of) elementary school, several authors have pleaded for a better understanding of children’s
preschool experiences at home. In a well-known study by Lefevre, Skwarchuk, et al. (2009), the
mathematical skills of + 150 Canadian children in Kindergarten, Grade 1, and Grade 2 were
correlated with the frequency with which parents reported informal activities that have quantitative
components such as board and card games, shopping, or cooking on a questionnaire. The results
support claims about the importance of home experiences in children’s acquisition of mathematics,
given that effect sizes were consistent with those obtained in research relating home literacy
experiences to children’s vocabulary skills. In a more recent and more sophisticated study,
Susperreguy and Davis-Kean (2016) analyzed the relation between the amount of mathematical
input that preschool children hear from their mothers in their homes and their early mathematics
ability one year later. Forty mother—child dyads recorded their naturalistic exchanges in their homes
using an enhanced audio-recording device. Results from a sample of naturalistic interactions during
mealtimes indicated that all mothers involved their children in a variety of mathematics exchanges,
although there were differences in the amount of input children received. Moreover, being exposed
to more instances of mathematics talk was positively related to children’s early mathematical ability
one year after the recordings, even after control for maternal education, self-regulation, and recorded
minutes. Finally, starting from the well-documented finding that early numerical competences
amongst children vary widely and from the belief that a better understanding of the sources of this
variation may help to reduce SES-related differences in mathematics skills, Ramani, Rowe, Eason,
and Leech (2015) examined two sources of this variation in low SES families: (1) caregiver reports
of number-related experiences at home, and (2) caregivers’ and children’s talk related to math
during a dyadic interaction elicited by the researchers. Frequency of engaging in number-related
activities at home predicted children’s foundational number skills, while caregivers’ talk during the
interaction about more advanced number concepts for preschoolers, such as cardinality and ordinal
relations, predicted children’s advanced number skills that build on these foundational concepts. So,
these findings suggest that the quantity and quality of number-related experiences that occur at
home contribute to the variability found in low-income preschoolers’ numerical knowledge.
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Complementary to these ascertaining studies, several intervention studies reported positive effects
on children’s early numerical and later mathematics performance at school. Again, we can give only
a few examples. In a series of high-impact studies with children from low-income backgrounds,
who were found to lag behind their peers from middle-income backgrounds already before the
children enter school, Siegler and Ramani (2008) found that playing a research-based designed
numerical board game for only a couple of hours already eliminated the differences in the two
commonly used measures of understanding of numerical magnitudes, namely numerical magnitude
comparison and number line estimation. Moreover, in a subsequent study (Siegler & Ramani, 2009),
children who had played the number board game also performed better in a subsequent training on
arithmetic problems. Thus, playing number board games was found to increase not only
preschoolers’ numerical knowledge but also to help them learn their school arithmetic. Van den
Heuvel-Panhuizen, Elia, and Robitzsch (2016) report on a very recent field experiment with a
pretest—posttest control group design, which investigated the potential of reading picture books to
kindergarten children for supporting their mathematical understanding. During three months, the
children from nine experimental classes were read picture books. Data analysis revealed that, when
controlled for relevant covariates, the picture book reading programme had a positive effect on
kindergartners’ mathematics performance as measured by a test containing items on number,
measurement and geometry. Finally, we refer to one of the best known research-based early
mathematics programs, namely the Building Blocks (BB) program of Clements and Sarama (2011).
This program, which is organized into five major strands: (numeric, geometric, measuring,
patterning, and classifying and data analyzing), consists of daily lessons where children are
encouraged to extend and mathematize their daily experiences through sequenced activities, games,
and the use of technology. The daily lessons are organized in whole group activities, small group
activities, free-choice learning centers, and reflection time. The program is complemented with a
parallel in-service teacher training program. Studies on the effectiveness of the BB intervention
program (Clements & Sarama, 2007, 2011) demonstrated that 3- and 4-year-olds who received the
BB intervention program developed stronger mathematical abilities than children in the control
group, with effects lasting up to the end of first grade. Bojorque (2017) recently successfully
implemented the BB program in the Ecuadorian context, with significant effects on the quality of
the kindergarten teachers’ pedagogical actions as well as on children’s progression both on a
standard mathematics achievement test based on the national K3 curriculum and on their SFON.

The findings emerging from all these observational, correlational, and intervention studies are very
informative for the design of educational environments and activities aimed at increasing young
children’s mathematics learning - far beyond the rather narrowly oriented (computer) games aimed
at stimulating children numerical magnitude representations that have been derived from the
cognitive neuroscientific line of research. But still a lot of work needs to be done to further advance
knowledge on effective ways to increase parents’ and professionals’ engagement in preschoolers’
mathematics learning, particularly in children growing up in poverty and/or in contexts of
unfavorable immigration.
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Preschool to elementary school transition

As explained in the previous sections, a large number of factors in the young child and in its home
and caretaking environment have a strong impact on the ease with which (s)he will take the step to
formal mathematics education at the age of 5-6 (depending on the country or culture) and profit
from the elementary school mathematics curriculum. However, the child’s mathematical
development and achievement will evidently also be significantly affected by the quality of the
transition from preschool to elementary school (see also Gueudet, Bosch, diSessa, Kwon, &
Verschaffel, 2016).

Interestingly, researchers working on this theme typically take a much broader theoretical stance
than the cognitive (neuro)scientific researchers who look for the elements in children’s domain-
specific and domain-general competences that are predictively related with success in school
mathematics. Their inspiration comes from socio-cultural, sociological, anthropological, and critical
mathematical theories (Dockett, Petriwskyj, & Perry, 2014; Perry, McDonald, & Gervasoni, 2015).

The transition from prior-to-school to school mathematics is primarily conceived by these
researchers as a set of processes whereby individuals “cross borders” or undergo a “rite of passage”
from one cultural c.q. educational context or community to another and, in doing so, also change
their role in these contexts or communities. Dockett et al. (2014, p. 3) provide the following
summation of this approach: “While there is no universally accepted definition of transition, there is
acceptance that transition is a multifaceted phenomenon involving a range of interactions and
processes over time, experienced in different ways by different people in different contexts. In very
general terms, the outcome of a positive transition is a sense of belonging in the new setting.” There
is growing research evidence that developing practices that promote effective transitions, and that
strive for giving agency of all involved and rely on the “Funds of Knowledge” available in
children’s home and local environments, results in positive effects - although most of this research
is more qualitative and descriptive in nature and thus not primarily interested in following strict
experimental designs and providing “hard” statistical data. A nice overview of this broader
transition perspective is provided by Perry et al. (2015).

In an interesting newly funded project, Andrews and Sayers have begun to examine how two
systems, England and Sweden, facilitate the early mathematical competences, and more specifically
their foundational number sense (FONS) (Andrews & Sayers, 2015), of children starting in Grade 1.
Currently the project team is comparing the FONS opportunities found in commonly used textbooks
in the two countries (Lowenhielm, Marschall, Sayers, & Andrews, 2017a). Simultaneously the team
has been interviewing first grade teachers in the two countries about their role as well as their
perceptions of their pupils’ parents’ roles in the development of children’s FoNS-related
competence. Initial analyses (Lowenhielm, Marschall, Sayers, & Andrews, 2017b) have identified
both similarities and considerable differences in the relationship between the school and home
environment between the two countries.

It is a general complaint among stakeholders of early mathematics education that mathematics
learning in preschool is often disconnected from the first grades of elementary school. This
disconnect, which is particularly relevant for lower SES and immigrant children, can lead to
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children experiencing uneven instructional practices, which can compromise their mathematical
development in elementary school. So, policy makers, curriculum developers, teacher trainers, etc.
should work toward creating greater alignment of and coherence between preschool and elementary
school mathematics education, using research-based insights and recommendations. Unfortunately,
there is still limited research on the impact of these policies and practices on the learning
experiences and learning outcomes of children moving from preschool through the early elementary
grades.

Professional development of caregivers and teachers

In the previous section, we emphasized the importance of a high-quality mathematical learning
environment in the preschool years, the first years of elementary school, and the transition between
the two. Evidently, this requires highly professional (mathematics) teachers, i.e., “teachers who
know the content, who understand children’s thinking, who know how to engage in pedagogical
practices that support learning, and who see themselves as capable math teachers” (DREME, 2016,

p. 4).

At the same time, many teachers and caregivers in the early care and education field may not be
adequately equipped to provide appropriate math-related experiences and instruction to these young
children. Research suggests that many practitioners working with preschool, kindergarten and early
grade children (1) are themselves not competent in mathematics, (2) have important shortcomings in
the pedagogical content knowledge, particularly with respect to the components of the early math
curriculum beyond counting, number, and simple addition and subtraction, and/or (3) do not see
themselves as competent in mathematics (see e.g., Lee, 2010). And, even if practitioners are
mathematically capable and do view themselves as such, they may still hold pedagogical
reservations against teaching mathematics to young children, believing that early childhood
programs should focus primarily on social emotional and literacy goals (Platas, 2008).

While these problems have shown to be partly due to these professionals’ restricted mathematical
talents and negative earning histories in elementary and secondary education, research also indicates
that the nature of the pre-service and in-service training they received does not greatly help to
overcome these problems. As DREME (2016, p. 4) argues: “Professional teacher preparation
programs rarely address how to identify the wide range of informal mathematical understandings
that young children bring with them to the classroom, or how to translate these into intentional,
individualized math experiences for children with diverse backgrounds and needs.” Indeed, surveys
of early childhood education degree programs (e.g., Maxwell, Lim, & Early, 2006) reveal that early
education practitioners are exposed rarely to high-quality pre-service or in-service courses that
address children’s mathematical development, or the pedagogical content knowledge necessary for
supporting it.

We emphasize that the above analysis is largely based on critical reflections upon the situation in
the US. So, the situation may be better in other places in the world, although there are good reasons
to restrain from being too optimistic, because the above observations about early math teachers’
professional knowledge and beliefs and previous educational histories seem to hold, at least to some
extent, for many other countries too.
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To support the training of prospective and practicing early childhood teachers, there is a need of
creating and implementing research-based modules for professional development that can be used in
a variety of pre-service and in-service settings (DREME, 2016). The way forward for research is to
attempt to figure out what are the key levers of professional development that might effect
significant change in the quality of early math education and its learning outcomes. Given the
above-mentioned depiction of the complex and multi-sided nature of caregivers’ and early math
teacher’s professional knowledge base, it seems reasonable to expect the greatest effect from
modules that do not focus on one single aspect of professionalism but work on the development of
early math related knowledge, skills and beliefs, and that convey the idea that early mathematics is
more than teaching young children some basic number knowledge and counting skills.

Conclusion

Inspired by developments in the field of neuroscience (e.g., Butterworth, 2015), the past two
decades have witnessed the emergence of a very productive and highly influential line of
(neuro)cognitive research on children’s early number sense, its development, and its relation to
school mathematics. Cross-sectional and longitudinal studies have demonstrated that various core
elements of children’s early mathematical ability - especially their numerical magnitude
understanding, their subitizing and counting skills, and their ability to transcode a number from one
representation to another - are positively related to concurrent and future mathematics achievement
(Torbeyns et al., 2015).

However, other research, most of which is situated in other scientific circles and relying on other
theoretical and methodological perspectives, has yielded increasing evidence for uniquely
significant relations of mathematical achievement also with (1) young children’s understanding of
ordinal and measurement aspects of number, (2) their abilities related to mathematical relations,
patterns and structures, and (3) their tendency to spontaneously attend to numerosities and to
mathematical relations, patterns, and structures in their environment, and has confirmed the
important role of domain general executive functions.

Moreover, researchers have started to explore and analyze the rich variety of early mathematical
learning environments at home, in preschool and kindergarten settings, as well as the coherence
between these informal learning settings and the first years of elementary school mathematics, with
special attention to the professional quality of the early caregivers and teachers. Also, they started to
set up various kinds of intervention studies aimed at the improvement of the quality of these
environments and of the professionals operating in these environments. These studies have yielded
evidence on the short- and long-term benefits of such attempts to provide high-quality early
mathematics education in preschool settings and in the transition from preschool to elementary
school.

While the small-scale, short-term and focused experimental intervention programs derived from the
(neuro)cognitive research on early numeracy have their value in enhancing our theoretical insight
into numerical cognition and learning, practitioners active in the field of early mathematics
education may profit more from the studies describing the design, implementation, and evaluation
of large-scale and more broadly conceived intervention programs that combine and balance several
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of the elements that have been found to be foundational for future mathematics learning (see
Sections 2-6) and that also integrate aspects of teacher development, working with parents, and
community building (see Sections 7-9), with the Building Blocks program of Clements and Sarama
(2007) and the Pattern and Structure Mathematics Awareness Program of Mulligan et al. (2013) as
the most visible and successful examples. Still, as math educators, we should continue to follow,
with an open but critical mind, the cognitive neuroscientific research on mathematical cognition
and, equally important, also try to have an impact on their research agenda (De Smedt et al., 2011).

As a result of all this research, there is a lot of practically useful new knowledge, techniques and
resources to promote young children’s math learning. Still there remains much to learn about how to
optimally enhance math learning at home and at school in the preschool years and about how to help
teachers to be well prepared for delivering high-quality instruction to those young children,
particularly the weaker ones. In this respect, we should applaud - and may-be also strive for an
European counterpart — of the recent initiative called the DREME Network in the US, which is
aimed at developing new researchers and enticing current elementary math education, child
development, and policy researchers to expand their work to include young children’s mathematical
learning.
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This paper presents the contributions of the participants at the CERME 0 panel, as well as some of
the questions raised during the discussion. Our main aim is to examine the notion of solid finding in
mathematics education, the theoretical and methodological assumptions underlying their
establishing and the degree of agreement (and disagreement) they provoke. We will consider their
possible utilities and weaknesses, even jeopardies, taking into account two different standpoints:
how solid findings are identified and what kind of common ground they rely upon; what are solid
findings for, how can they be useful and what could be their risks or adverse effects. The panellists
will adopt different perspectives on the topic, focusing on the specific selection of solid findings
proposed by the Committee on Education of the European Mathematical Society, approaching the
problem of the methodologies and use of psychometric models, questioning the use of evidence in
policy development and curriculum evaluation.

Keywords: Mathematics education, solid findings, criteria, empirical proof, concept images,
measurement, reliability, validity, invariance, math anxiety, statistics anxiety, PISA.

Solid findings in mathematics education: A necessary discussion

Marianna Bosch

Proposing to collectively discuss on ‘solid findings’ in mathematics education at CERME10 was
certainly motivated by the initiative of the Education Committee of the European Mathematical
Society (EMS) to start publishing a series of articles on ‘Solid findings in mathematical education’
in 2011 (http://www.euro-math-soc.eu/ems_education/education_homepage.html). This can be

interpreted as an audacious attempt to establish a stable account of our young discipline, which
otherwise might appear as made of too diverse principles, approaches and perspectives. It is thus
supposed to facilitate the approach by people from the outside, especially mathematicians and
teachers, by giving more visibility of the type of questions approached and the results obtained.
Inside the discipline, it also appears as an effort to organise and elaborate a provisional common
hard core (in the sense of Lakatos) of sound and relevant knowledge, without denying the
provisional and dynamic nature of the considered findings.
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Taking the EMS project and its products as initial motivation, the aim of the panel is to examine the
notion of solid finding, the theoretical and methodological assumptions underlying studies on solid
findings and the degree of agreement (and disagreement) they might provoke. We propose to
consider the possible utilities and weaknesses, even jeopardies, of the reports on solid findings,
taking into account two different standpoints: (1) how solid findings are identified and what kind of
common ground they rely upon; (2) the purpose of solid findings, their potential utility, and also
their possible risks or adverse effects.

The aim of the panel was thus to open a debate on controversial questions like:

(1) What is a solid finding in Mathematics Education? What criteria are used to select them?
Who decides whether a finding is solid or not? Are solid findings linked to specific
methodologies, theories or approaches? Can they be contested and how? What kind of
evidence is required? Is it the same kind of evidence for the different ‘findings’?

(2) What is the purpose of identifying solid findings? What are they for? How can they be
useful? Are they necessary for teacher education? Could they help to give more visibility to
our field and to negotiate with educational decision makers? Can there be a risk of
disseminating false ‘weak’ solid results instead of disseminating the persistent questions
addressed from research in mathematics education — which do not always coincide with those
raised by the actors of the educational system (teachers, students, parents, decision makers,
etc.)?

During the discussion among the participants at the panel session, the question of the diversity of
theoretical perspectives was raised on various occasions. It is clear that solid findings are always
anchored in a given research approach or paradigm (a set of close theories sharing the main
theoretical principles or assumptions). Agreement on solid findings thus supposes agreement on
these main assumptions too. This does not seem to be — at the moment — the historical situation of
the research community in mathematics education, where a diversity of approaches coexists without
a common shared ground. Not only the type of results provided by these approaches are different,
but mainly the type of research questions asked, the methodologies used, and even the empirical
units of analysis considered. If solid findings are presented without mentioning the approaches
where they have been produced, we run the risk of interpreting solid findings as if they came from
an a-theoretical perspective (or from a fully shared one), which is in fact a way of giving
preponderance to the already dominant approaches in detriment of the less disseminated ones.

Other questions related the issue of solid findings to the problem of the dissemination of results. If
solid findings should be closely contextualised within a given theoretical framework — or research
perspective —, how to make them accessible to people not knowledgeable of the framework? To
what extent, and under what conditions, could solid findings be extended to include frameworks?
The question varies of course if we think about disseminating research outcomes outside the field,
or about highlighting what are seen as important milestone in the evolution of the field, for instance
to build the basis for productive debates.

Furthermore, participants also indicated that it is important to avoid not only taking the theoretical
‘load’ of solid findings for granted, but also to pay attention to the values they implicitly carry on,
for instance, about the purpose of education, the purpose of research on mathematics education or

Proceedings of CERME10 54



Plenary Panel

about the corresponding specific epistemology or conception of science. For instance, the choice of
the term ‘finding’ seems related to a somewhat naturalistic perspective — the scientific discovery of
a pre-existent reality —, while other options such as ‘claims’, ‘proposals’ or ‘questionings’ (in the
double sense of raising questions and questioning the status quo) would entail other connotations.
In this sense, maybe the dimension of problematizing can also be a possible direction to work with.

In fact, one of the questions from the audience addressed the issue of the relationships between
solid findings, persistent phenomena and educational problems: Are solid findings restricted to
phenomena that persist? Is it also possible to have a solid finding that eliminates a problem? In
other terms, because advancing research also modifies our ways of problematizing reality, solid
findings can also make some problems appear as simple difficulties that can be overcome, or as
consequences of other factors to be approached. In the other sense, a solid finding can also consist
in the awareness that a problem has not solution — at least in the framework where it is formulated.

The establishment of solid findings as such was also referred to by some participants. Some of them
wondered if it is possible to identify some steps to help establish solid findings and build upon them
more systematically. Others asked about efficient ways of guaranteeing cumulative research efforts,
such as the replicability of the solid findings, which was proposed as a possible research avenue to
pursue. One should not see naivety in this kind of demands — as if we were asking for ‘recipes’ —,
but on the contrary, interpret them in terms of a reflection on the research methodologies followed
(in terms of validity, truthfulness, reproducibility, etc.) and the level of exigence put on them. To
enrich the debate, some participants provided related materials or counterexamples to this kind of
reflexion, such as the U. S. webpage “What Works in Education” (http://ies.ed.gov/ncee/wwc/) or
the special issue of the International Journal of Research & Method in Education (2016) Is the
Educational ‘What Works™ Agenda Working? Critical Methodological Developments, including a
paper on review procedures to optimise reviews’ impact and uptake (Green, Taylor, Buckley, &
Hean, 2016).

The three contributions that form the core of this paper address some of the issues raised from very
diverse — and complementary — perspectives. Tommy Dreyfus, a member of the Education
Committee of the EMS and co-author of some of the ‘solid findings’ articles, provides a very
interesting account of two moments of reflection of our community around the issue of ‘results’ or
‘findings’ in mathematics education, and their related projects. He also presents two examples of
‘solid findings’, showing the criteria used to identify them and also some of the limitations of the
efforts made. He argues for a collective effort toward the products of more systematic reviews on
different topics or approaches, as a way to increase the impact of research outside the field but, also,
to “establish and organize mathematics education as scientific discipline and to determine where we
come from, where we are and where we might go as a research community”. From a completely
different side, Caterina Primi, an expert in the field of quantitative educational research, addresses
the methodology problem — measurement tools to support rigorous research designs — for findings
to be ‘solid’ or, in statistical terms, ‘robust’, ‘reliable’ and ‘unbiased’. Even if the example taken
and the questions raised are only related to quantitative methods — where statistical tools are more
commonly applied —, the reader can do the mental exercise of transposing them to qualitative as
well as theoretical studies to see how demanding the research work to make knowledge develop can
be. Finally, Gerry Shiel, National (Ireland) Project Manager for the OECD PISA 2015 Study,
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tackles what can be called the ‘impact issue’ of educational research, considering the PISA
phenomenon, which is maybe the source of the most practical and political pressures nowadays in
almost all countries. The relationships between ‘solid finding’ and evidence-based decision making
provides a rich paradigmatic example and reminds us how intricate is the situation, especially when
raw data is proposed without any protection from the procedure followed to generate it and the
theoretical framework, including political ideologies, that underlies its generation.

To end this introduction, let me quote the British sociologist Martin Hammersley (2011) who, in his
book on methodology, notes how extremely demanding it is to achieve the ‘threshold of likely
validity required by academic work’ (p. 8). After presenting ‘dedication’, a ‘heightened sense of
methodological awareness’ and ‘objectivity’ as important virtues for the researcher, the author
recalls that, besides these individual virtues:

[The] collective character of enquiry places additional obligations on researchers, as regards how
they present their work, how they respond to criticism and how they treat the work of colleagues.
In large part, what is required is that academic research takes place within an enclave that is
protected from the practical considerations that are paramount elsewhere. [...] In other words,
academic discussion must be protected from political and practical demands, so that the
consequentiality of proposing, challenging, or even just examining particular ideas or lines of
investigation is minimised. [...] [While] the ‘findings’ of particular studies should be made
public within research communities, they should not be disseminated to lay audiences. What
should be communicated to those audiences, via literature reviews and textbooks accounts, is the
knowledge that has come to be more or less generally agreed to be sound within the relevant
research community, through assessment of multiple studies. (Hammersley, 2011, p. 10)

I am not sure if the field of mathematics education has already reached a sufficient level of
development to agree on what can be globally accepted as sound and relevant knowledge, and thus
to identify, elaborate and disseminate ‘solid findings’ to lay audiences. However, I am certain that
the community of research in mathematics education is mature enough to initiate a productive
debate on this, as a way to make different research perspectives interact in a productive way. The
effort of gathering, summarising, organising, and discussing the research produced about certain big
questions or issues — as the one undertaken by the EMS Educational Committee — appears
nowadays as an endeavour that cannot be postponed.
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What are solid findings in mathematics education?

Tommy Dreyfus

Relying on earlier studies by an ICMI Study and the Education Committee of the EMS, the question
what the term ‘solid finding’ might mean with respect to mathematics education is discussed and
criteria are proposed. Examples are provided for solid findings that mathematics education
research has produced.

Introduction

Mathematics education as a research community has grown over the past approximately 50 years:
ERME, The European Society for Research in Mathematics Education is approaching its 20™
anniversary in 2018 — CERMEI, the first conference took place in Osnabriick, Germany, in August,
1998. PME, the International Group for the Psychology of Mathematics Education has held its 40"
annual conference in 2016 - the first one took place in 1977 in Utrecht, The Netherlands. JRME, the
Journal for Research in Mathematics Education, is now producing its 48" annual volume, and
ESM, Educational Studies in Mathematics is currently in its 50™ year of publication since Volume 1
appeared in 1968. One of the characteristics of research results in (mathematics) education is that
they depend on the context in which the research has been designed and carried out. Nevertheless,
after 50 years, one would expect the community to be able to make statements that go beyond “it
depends on the context and the learning environment”, which is often implicit in the results of even
high quality research articles. Review articles could be expected to remedy this situation to some
extent but few review articles are published in the domain.

What are the results of research in mathematics education — ICMI Study 8

The question whether we, as a research community, have obtained results with a certain scope,
range or breadth of validity and what these results are, has been approached at least twice, once in
the framework of the study conference of ICMI Study 8 in 1996 (ICMI stands for the International
Commission on Mathematical Instruction), and a second time in the framework of the Education
Committee of the European Mathematical Society (EMS) in 2011.

The task assigned by ICMI to the Study 8 program committee was to discuss what is research in
mathematics education and what are its results. The title of the book published two years later as
outcome of the study is Mathematics Education as a Research Domain: A Search for Identity
(Sierpinska & Kilpatrick, 1998). Maybe significantly, the word ‘results’ has disappeared in the
process. Nevertheless, one of the working groups at the study conference dealt with results (Dreyfus
& Becker, 1998). One of the questions the working group dealt with was what counts as result; the
term ‘solid’ did not appear. Rather, ‘result” was interpreted as ‘significant result’.

Working group members agreed that without a question, there can only be facts but no results.
Results are more than data: They are based on data collected with questions in mind that have been
asked within a theoretical framework, and consist of findings interpreted in that theoretical
framework. Effects alone (e.g., statistical differences in achievements between different groups) are
not results. In mathematics education, we need to explain the differences, not only show them. We
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need to identify the variables of the didactic situation in order to combine the different facts into a
coherent network of reasons, which informs the circular process of understanding the learning of
mathematics and thus improving its teaching. Hence, results are often theoretical as well as
experimental. Many of our theoretical frameworks are mathematics-specific (e.g., process, object,
procept), and therefore our research questions and results are often domain-specific.

Context was seen as relevant with respect to theory as well as beyond: mathematical context
(contents, concepts, symbols, representations and epistemological status), the community, the
educational system, among others. Results might be tied not only to the theoretical framework but
also to the institution that asked the question. It is not the result itself, but the conditions under
which it was obtained, that make it significant.

The contextual nature of results implies that results are neither universal nor eternal, that their
validity is situated in space and time, and that we have to be careful when trying to generalize. The
validity of a result depends on the interpretation within a theory, and the theory might change with
time and place, with mathematical content, learning environment, and so on. Hence results are
permanent but their relevance might be ephemeral.

Characterising solid findings

It is on this background that the members of the Education Committee (EC) of the European
Mathematical Society (EMS) asked themselves what solid findings mathematics education has
produced. While the question was motivated by the intention of the committee to present
mathematics education to mathematicians, in particular to EMS members, with an interest in
mathematics education, committee members were well aware that the exercise of identifying solid
findings contributes to establishing and organizing mathematics education as scientific discipline
and to determining where we come from, where we are and where me might go as a research
community.

Of course, the first, and possibly most difficult task of the EC was to discuss, agree and explain
what they meant by ‘solid findings’. A major difficulty in defining what it means that a result it
solid is the context dependence, mentioned above. A second and related difficulty is complexity. As
we know well, things are more complex than one might think; we know, for example that the
mathematics taught and learned in parallel classes with a similar population according to the same
curriculum may be quite different (e.g., Even & Kvatinsky, 2010; Pinto, 2013). A third, and of
course also related difficulty is that much of the research in mathematics education is qualitative.
Since qualitative empirical research cannot be repeated in a strict sense, reproducibility is replaced
by the question how close the results are that one obtains in similar contexts; and the answer to this
question of course depends on the metric used to measure closeness. This lack of reproducibility
may appear as a serious drawback of mathematics education’s claim to be a scientific discipline;
however, reproducibility has recently been shown to be very low even in many hard sciences such
as physics, chemistry and engineering (Baker, 2016).

Aware of these difficulties and with the ICMI 8 study characterization of (significant) results as
background, the EC has observed that results with the potential of being considered solid usually do
not stand alone but have emerged from a line of research consisting of a larger set of related studies.

Proceedings of CERME10 58



Plenary Panel

Solid findings are typically yielded by such a line of studies. Next, the EC has built on three
properties of research quality proposed by Schoenfeld (2007 — see there for a much more detailed
discussion): trustworthiness, generality and importance. Each of these contributes to the solidity of
research results. A characterisation adapted to the purposes of the EC was agreed upon and
published in the Newsletter of the EMS (Education Committee of the European Mathematical
Society, 2011a). I summarize this characterization here, adapting and supplementing it for the
purposes of the present CERME panel.

Trustworthiness includes the explanatory power of research, its rigor and specificity, and whether it
makes use of multiple sources of evidence. However, a study may be trustworthy but trivial, in
terms of generality or importance.

Generality (or scope) refers to the question: What is the scope or generality of a research result?
How widely does this finding, this idea, or this theory apply across content domains, learning
contexts, cultures, etc.? For example, did researchers, in different countries and school systems
obtain comparable or related empirical results? Do theoretical constructs turn out to be useful
beyond the bounds of the individual studies in which they were developed?

Trustworthiness and generality together are expected to impart some predictive power to a result. A
result that has no predictive power cannot be considered solid. On the other hand, the difficulties
mentioned above, such as context dependence, will usually limit this predictive power. If a result is
used to predict an outcome in a new context, and the prediction failed, a trustworthy explanation of
the failure may in fact increase the solidity of the result.

Importance addresses the question: Does it matter? What is the (actual or potential) contribution of
the research to theory and practice. Of course, importance is to a large extent a value judgment. As
in any other field of study, beliefs about what is essential and what is peripheral are not static but
change over decades, reflecting trends both within and beyond the discipline. Hence recognition of
the significance of the result by experts contributes essentially to the solidity of a result.

The term ‘solid’ may remind the reader of the term ‘robust’ often used in related situations.
‘Robust’ often has a technical meaning that refers to a finding having been repeatedly observed or
confirmed in many studies reporting the same or similar results leading to the same (general)
conclusions (see Primi, below). The term solid has been chosen intentionally, to refer to results
rather than findings, and imply that robustness in the technical sense is not possible, nor maybe
desirable, in mathematics education.

While robustness can be defined and hence (dis-)proved, solidity cannot. The above is a
characterization or description — not a definition. Hence, solidity cannot be proved but it can
definitely be argued by on the basis of the above criteria of significance, trustworthiness, generality
and adaptability to context.

Examples

The second major task of the EC with respect to solid findings was to provide a variety of examples
of findings that are solid according to the EC’s characterization. While the selection of the examples
to be presented was somewhat eclectic and partly determined by EC members who were willing to
write about a topic, the EC as a whole discussed and approved the proposed topics; the EC also
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revised every draft several times. As result a sequence of brief articles has been published
presenting a rather representative selection including solid findings about cognition and about
affect, about teaching and about learning, about elementary school and about university, about
specific mathematical contents and about cross domain issues such as the use of technology, and
maybe most importantly about theoretical and about empirical results. Most of the issues of the
EMS newsletter from Issue 82 (December 2011) to Issue 95 (March 2015) present such a solid
finding.

Here, I briefly present two of these, one reason for my choice again being personal preference and
the other representativeness, at least in the empirical — theoretical dimension.

Do theorems admit exceptions?

Empirical studies on students’ conceptions of proof have found that many students provide
examples when asked to prove a universal statement. Universality refers to the fact that a
mathematical claim is considered true only if it is true in all admissible cases without exception. A
student who seeks to prove a universal claim by showing that it holds in some cases is said to have
an empirical proof scheme. The same student is also likely to expect that a statement, even if it has
been ‘proved’, may still admit exceptions. There is considerable evidence that many mathematics
students, and some mathematics teachers, rely on validation by means of one or several examples to
support general statements. The majority of students who begin studying mathematics in high
school have empirical proof schemes, and many students continue to act according to empirical
proof schemes for many years, sometimes into their college years.

While the issue of empirical proof schemes has already been mentioned by Polya (1945), Bell
(1976) may have been the first to report an empirical study about students’ proof schemes.
Following Fischbein’s (1982) seminal investigation on universality, the issue has been re-examined
many times, usually with similar results. For example, findings by Sowder and Harel (2003)
indicate the appearance of empirical proof schemes among university mathematics graduates.

The phenomenon of empirical proof schemes is general in the sense that it has been found in many
cultures, countries, school systems, and age groups. It is persistent in the sense that many students
continue to do so even after explicit instruction about the nature of mathematical proof. However, it
is also complex. For example, the London proof study (Healy and Hoyles, 2000) showed that even
for relatively simple and familiar questions, 14-15 years old high-attaining students’ most popular
approach was empirical verification but that many students correctly incorporated some deductive
reasoning into their proofs and most valued general and explanatory arguments.

How can this pervasive phenomenon be explained? The notion of a “universally valid statement” is
not as obvious as it might seem to mathematicians. Mathematical thought concerning proof is
different from thought in all other domains of knowledge, including the sciences, as well as
everyday experience. In everyday life, the “exception that confirms the rule” is pertinent. Students,
in particular young children, have little experience with mathematics as a wonderful world with its
own objects and rules. According to Fischbein (1982), the concept of formal proof is completely
outside mainstream thinking, and we require students to acquire a new, non-natural basis of belief

Proceedings of CERME10 60



Plenary Panel

when we ask them to prove. These explanations contribute to the trustworthiness of the findings on
empirical proof schemes.

In summary, the studies on empirical proof schemes, only a few of which have been referred to
here, firmly establish the solidity of the phenomenon of empirical proof schemes. (For a more
detailed exposition, see Education Committee of the European Mathematical Society, 2011b.)

Concept images in students' mathematical reasoning

Vinner and Hershkowitz (1980) were the first ones to point out that students’ geometrical thinking
is frequently based on prototypes rather than on definitions. They have shown, for example, that
junior high school students tend to think that the altitude has to reach the base (rather than its
extension). Hence, they draw the altitude inside the triangle, even in a triangle with an obtuse base
angle. Students' prototype altitude is one that is inside the triangle. This is so, even if the students
know and can recite the (general) definition of altitude in a triangle.

Authors from many countries have reported, over the past 35 years, analogous patterns in students'
reasoning in other areas of mathematics, even among talented students in elementary school, high
school and college. For example, and in spite of ‘knowing’ the appropriate definitions, students tend
to act according to rules such as multiplication makes bigger, inflection points have horizontal
tangents, definite integrals must be positive, and sequences are monotonous.

A commonality in these and parallel studies is that students do not base their reasoning on the
definition of the concepts under consideration (even though they are often aware of these definitions
and can recite and explain them) but rather on what Tall and Vinner (1981) have called their
concept image: "the total cognitive structure that is associated with the concept, which includes all
the mental pictures and associated properties and processes" (p. 152). A student’s concept image
need not be globally coherent and may have aspects which are at variance with the formal concept
definition.

The notion of a student’s concept image is complex since it is influenced by all of this student’s
experiences associated with the concept. These include examples, problems the student has solved,
prototypes the student may have met substantially more often than non-prototypical examples, and
different representations of the concept including visual, algebraic and numerical ones. Images may
deeply influence concept formation. As a consequence, the concept image is personal and
continuously changing through the student’s mathematical experiences.

How can this pervasive phenomenon be explained? While it is not possible to introduce a concept
without giving examples, particular instances of the concept never suffice to fully determine the
concept. As a consequence, specific elements of the examples, even if not pertinent to the
mathematical definition of the concept, become for the student key elements characterizing the
concept. And even if at the stage a concept is introduced a teacher might make an effort to present a
rather varied set of examples, as the concept is being used over the coming months or years, some
of these properties tend to be reinforced because they appear much more frequently than others that
may recede. Examples abound, and the height of a triangle being vertical in the sense explained
above is a typical one. Students may see many triangles in which the altitude is inside the triangle,
and few in which it is not. They might consider these few cases as exceptions (Lakatos might say
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monsters). This explanation contributes to the trustworthiness of the findings on empirical proof
schemes.

In summary, a solid finding of mathematics education research, supported by dozens of studies in
many difference contexts, is that students' mathematical reasoning is frequently based on their
concept images rather than on a mathematical concept definition. A more detailed exposition of this
solid finding has been published elsewhere (Dreyfus, on behalf of the EC of the EMS, 2014).

Conclusion

The list is of solid findings presented by the EC of the EMS is, of course, not exhaustive but limited
by the time of service of the committee and the people who served on it. I would like to encourage
CERME members (and other researchers) to write and publish articles about solid findings they are
aware of and consider important. This might have the desirable effect of producing a type of article
lacking almost completely from our literature — review articles. Let me make just one suggestion:
Work to raise the awareness of issues and of research on teaching and learning among university
lecturers and tutors is necessary; it usually improves students’ attitudes but effects on learning are
limited. Research in at least four countries (USA, Germany, England, Finland) has shown that work
with students has more potential for large scale effects. It seems to me that a suitable review article
might not only inform many mathematics educators of an important line of research but might have
a considerable effect on university teaching centres, an effect that a single study report could (and
should) never have.

In conclusion, the researchers and teams referred to above have shown that mathematics education
has, over the past 50 years, produced theoretical and empirical results that are solid in the sense that
they have explanatory and predictive power, that they can be applied in contexts beyond those
involved previous studies, and that they are recognised as important contributions that have
significantly influenced the research field, for example by providing a theoretical lens that allows to
see an observed phenomenon differently from how it was seen before.
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Solid findings in mathematics education:

A psychometric approach

Caterina Primi

The foundation of all rigorous research designs is the use of measurement tools that are
psychometrically sound. The purpose of this paper is to present the scales’ proprieties such as
reliability, validity, and invariance that are fundamental prerequisite for assuring the integrity of
study findings. Providing examples of how to assess the psychometric properties of tools used in
mathematics research may be helpful for future researches in this topic.

In the document prepared by the Education Committee of the European Mathematics Society
(2011), the description of “solid findings” includes an aspect of “robustness”. That means that
findings in the research on mathematics learning and teaching should be repeatedly observed or
confirmed in many studies reporting the same or similar results leading to the same (general)
conclusions. To achieve this goal rigorous research designs and measurement tools that are
psychometrically sound are needed. Starting from these premises I will try to identify the
contribution of psychometrics to solid findings in mathematics education.

Measurement

In many educational measurement situations, the variables of interest such as ability, beliefs,
attitudes, and anxiety are not directly observable. As such, they are latent variables or traits.
Indeed, they are easily described but they cannot be measured directly, as can height or weight for
example, since these variables are concepts rather than physical dimensions.

To give an example of a measurement process, imagine that a researcher is interested in measuring
mathematics anxiety (MA). Mathematical anxiety is commonly defined as an adverse emotional
reaction to math or the prospect of doing math (Hembree, 1990). It is a state of nervousness and
discomfort brought upon by the presentation of mathematical problems and may impede
mathematics performance irrespective of true ability (Ashcraft, 2002; Ashcraft & Moore, 2009).
The negative consequences of mathematical anxiety are well-documented (Morsanyi et al, 2017).
Students with high levels of mathematical anxiety might underperform in important test situations,
they tend to hold negative attitudes towards mathematics, and they are likely to opt out of elective
mathematics courses, which also affects their career opportunities. Over the last decade there has
been more interest in understanding how and when MA develops (Dowker, Sarkar, & Looiet, 2016;
Harari, Vukovic, & Bailey, 2013; Jameson, 2013; Ramirez, Gunderson, Levine, & Beilock, 2013),
investigating the incidence of MA, and its effects on primary school samples (e.g. Galla & Wood,
2012; Karasel, Ayda, & Tezer, 2010; Wu, Barth, Amin, Malcarne, & Menon, 2012), as well as its
consequent influence on math achievement (Wu et al., 2012). Given the widespread prevalence of
MA and its detrimental long-term impact on academic performance and professional development,
it is important to measure this construct in a valid and reliable way.
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From a measurement prospective it is not possible to directly observe MA. Following the latent trait
theory (Lord & Novich, 1968), we can measure something that cannot be observed only by
inference from what can be observed. Thus, while the trait itself is not observable, its interaction
with the environment produces, at the surface level, observable indicators which can be used to
infer the level or degree of the latent trait. Considering MA, although we cannot observe our latent
variable, its existence may be inferred from behavioural manifestations or manifest variables (for
example, as feeling tense, fearful and apprehensive about mathematics). These manifestations make
it possible to measure MA asking, for example, a series of questions (the items of the instruments)
that describe each manifestation (for example, “I feel nervous when I use numbers”). Indeed, a
measurement instrument can be constructed using these items with the purpose of assessing the
unobservable trait.

However, the primary goal of educational measurement is to determine the level of the latent trait
that a person possesses. In general, scaling is the process of establishing the correspondence
between the observations and the latent variable. Several mathematical approaches have been
developed in order to define how to measure a latent trait through item responses, assuming that the
latent trait is continuous. These approaches include Classic Test Theory (CTT) and the more recent
Item Response Theory (IRT).

Traits, indicators, and their relationships can be represented graphically. Figure 1 represents the
measurement structure of the Abbreviated Math Anxiety Scale (AMAS; Hopko, Mahadevan, Bare,
& Hunt, 2003). This is a two-factor measure of MA that is considered a parsimonious, reliable, and
valid scale. The two factors are Learning Math Anxiety, which relates to anxiety about the process
of learning, and Math Evaluation Anxiety, which is more closely related to testing situations. The
AMAS is one of the most commonly used measure of MA in college and high school students (for a
review, see Eden et al., 2013). The scale has been translated into several languages, and it has been
found to be a valid and reliable measure in a variety of populations (Polish version: Cipora,
Szczygiel, Willmes, & Nuerk, 2015; Italian version: Primi, Busdraghi, Tomasetto, Morsanyi, &
Chiesi, 2014; Persian version: Vahedi & Farrokhi, 2011). Recently, it has also been adapted for
children between the ages of 8 to 11 (Italian version: Caviola et al. 2017), and 8 to 13 (English
version: Carey et al. 2017).

Looking at the details of Figure 1, the ovals represent latent, unobserved variables, specifically,
Learning Math Anxiety and Math Evaluation Anxiety. The squares represent the observed variables
(items); five for Learning Anxiety (e.g., listening to a lecture in a math class), and four for Math
Evaluation Anxiety (e.g., thinking about an upcoming math test one day before). The relations
between items and the latent traits are represented with arrows that indicate that the traits cause the
corresponding indicators. In Figure 1, the error components that we have to take into account in the
measurement process are also represented. Any observed score has two parts: The true score part
and the error part. Intuitively, we control for the error and we estimate the true score by taking
several measures and averaging them. We assume that averaging several measures results in a better
estimate of the true score. These ideas are formalized in the concept of reliability. We use multiple
indicators or items to better measure the trait. This way, we can have more information and reduce
the error components, that is, we can maximize the reliability or precision of the measurement tool.
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Moreover, verifying the relationships among indicators and the corresponding traits, through a
confirmative procedure, such as a confirmatory factor analysis (CFA), we can verify that the
measurement tool truly captures the underlying trait, attesting the validity of the measurement tool
(Zumbo, 2009). Indeed, obtaining evidence of validity is part of the measurement process.
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Figure 1: Model of the Abbreviated Math Anxiety Scale (AMAS)

Invariance

Measurement validity also implies that the meaning of the construct and its operationalization is the
same in different social and cultural contexts. Testing the invariance of the test concerns the extent
to which the psychometric properties of the test generalize across groups or conditions. Therefore,
measurement invariance is a prerequisite of the evaluation of substantive hypotheses regarding
differences between contexts and groups.

If the research question is, for example, about assessing gender differences in MA, and our test
shows that female students have higher math anxiety scores than male students, we would be
tempted to interpret test scores in terms of the trait that they are intended to reflect, i.e., that females
have greater MA than males. However, it is possible that the test scores do not purely reflect the
latent trait, i.e. MA in each group. That is, it is possible that the test is biased in some way.

Bias is used as a general term to represent the lack of correspondence between measures applied to
different groups (Van de Vijver & Tanzer, 2004). There are different kinds of bias, for example
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construct bias, when the meaning of the studied trait varies among groups; item bias, when the
meaning of the item content is different in certain groups, or method bias, when the characteristics
of instruments induce measurement errors for particular groups of respondents.

These biases violate the assumption of measurement invariance, which holds that measurement
properties should not be affected by group membership (Zumbo, 2009). In other words, the
observed scores should depend only on the latent construct, and not on group membership. An
observed score is said to invariantly measure the construct if it is affected by the true level of the
trait in a specific person, rather than by group membership or context (Meredith, 1993). This means
that people belonging to different groups, but with the same level of a trait, are usually expected to
display similar response patterns on items that measure the same construct. Thus, when studying
test invariance, we determine whether the tool functions equivalently in different groups, that is, we
test the absence of biases in the measurement process.

A well-known method to assess invariance is multiple group confirmatory factor analysis
(MGCFA) in which the theoretical model is compared to the observed structure in two samples.
Testing measurement invariance involves a step-by-step procedure in which nested models are
organized in a hierarchal ordering. Specifically, the following invariance models are tested. The
configural one, which refers to testing whether an instrument exhibits the same structure (Do the
groups show the same general factor structure? Same number of factors? Same conceptual
definition of latent constructs?). The next model, the metric one, tests whether the items function
equally across groups. If this invariance is established, the groups can be said to have the same unit
of measurement. The final model, the residual one, tests if measurement errors are the same across
groups, which means that the scale is be equally reliable in both groups.

Applying this method, we tested the equivalence of the AMAS across male and female Italian
students (Primi et al., 2015). With regard to the measurement issue, given that the assessment of
MA relies on self-report measures, it is important to note that females are more willing to report
their feelings of anxiety than males (e.g., Goetz, Bieg, Liidtke, Pekrun, & Hall, 2013). This finding
highlights the importance of employing measures of MA which are invariant across genders. That
is, there is a need to test if the items measure the same construct when administered to male and
female respondents, controlling for the differences in true group means. Indeed, to compare groups
of individuals with regard to MA, one must be sure that the values that quantify the construct are on
the same measurement scale.

The issue of measurement invariance has received considerable attention also in cross-cultural
research because people from different cultures might have different understanding of the same
questions included in an instrument (Milfont & Fischer, 2010). Indeed, testing invariance is of
particular concern when using a translated version of a survey instrument, and it is a necessary
prerequisite for the translated instrument to be used in cross-cultural research (e.g., Baumgartner &
Steenkamp, 1998).

For this reason, we tested the invariance of the Italian version of the Statistical Anxiety Scale (SAS)
developed by Vigil-Colet, Lorenzo-Seva, and Condon (2008). Learning statistics is often associated
with statistics anxiety, defined as “extensive worry, intrusive thoughts, mental disorganization,
tension, and physiological arousal [. . .] when exposed to statistics content, problems, instructional
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situations, or evaluative contexts” (Zeidner, 1991, p. 319). In the original validation study, Vigil-
Colet et al. (2008) analyzed the internal structure of the SAS using exploratory factor analysis. The
results attested a three-factor structure: Examination Anxiety (referring to the anxiety involved when
taking a statistics class or test), Interpretation Anxiety (referring to the anxiety experienced when
students are making a decision about or interpreting statistical data), and Fear for Asking for Help
(referring to the anxiety experienced when asking a fellow student or a teacher for help in
understanding specific contents). The primary aim of our work was to confirm this factorial
structure of the Italian version using CFA. As confirmation of the same base factor model was not a
sufficient condition to establish the equivalence of the Spanish and Italian versions of the SAS, we
tested the invariance of the factor model’s parameters between the Italian sample and a comparison
Spanish sample. Since the results indicated a substantial equivalence of the Italian and Spanish
versions of the SAS, we can use the translated instrument in cross-cultural research, we can make
meaningful comparisons between Italian and Spanish students’ statistics anxiety, and we can
develop intervention strategies to enhance students’ achievement across Spanish and Italian
educational frameworks.

To sum up, if measurement tools are not “invariant”, instruments do not measure the same trait
across the different groups or contexts, results are not comparable, and inferences about differences
are misleading. As a consequence, methods for investigating biases should be implemented when
new measures are created, when existing measures are adapted to new contexts or for different
populations, or when existing measures are translated.

Conclusion

The foundation of all rigorous research designs is the use of measurement tools that are
psychometrically sound. Confirmation of the validity and reliability of tools is a prerequisite for
assuring the integrity of study findings.

In empirical research, comparisons are often made between distinct population groups, including
groups from different cultures, genders, or that speak different languages. These analyses implicitly
assume that the measurement of these outcome variables is equivalent across groups, although this
assumption often remains untested. Measurement invariance can be tested and it is important to
make sure that the variables used in the analysis are indeed comparable across groups.

In conclusion, testing the psychometric properties of tools, such as measurement invariance might
help in increasing the robustness of findings across various groups and contexts.
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Can the outcomes of PISA 2015 contribute to evidence-based decision making in
mathematics education?

Gerry Shiel

Drawing on data from the OECD’s Programme for International Assessment (PISA), which
assesses mathematical literacy and other domains among 15-year olds in over 70 countries every
three years, this paper explores the extent to which PISA outcomes in 2015 can be described as
‘solid’ and hence contribute to evidence-based decision making. It identifies aspects of PISA that
render its findings ‘solid’, but also points to pitfalls that arise in interpreting PISA outcomes
related to achievement. The paper concludes by examining how PISA can contribute to thinking
about the nature of evidence-based findings in mathematics education.

Introduction

A key feature of the educational landscape since 2000 has been the Programme for International
Student Assessment (PISA), a study sponsored by the Paris-based Organisation for Economic
Cooperation and Development (OECD) that assesses performance in mathematics, reading literacy
and science among 15-year olds in over 70 countries every three years. In addition to administering
tests to students, PISA administers questionnaires to students, their parents and their school
principals. The student questionnaire asks about students’ socioeconomic status, their attitudes
towards mathematics and other subjects, and their instructional experiences. This paper looks at
performance outcomes in the two most recent PISA cycles — 2012, when mathematics was a major
assessment domain, and 2015, when mathematics was a minor domain, and PISA moved from a
paper-based to computer-based testing in most participating countries.

Interest in the extent to which PISA provides ‘solid’ or ‘evidence-based’ findings arises because of
the strong impact that PISA has on policy making in many participating countries. In Ireland, for
example, a significant drop in performance in mathematics and reading literacy in PISA 2009 led to
the implementation of a National Strategy to Improve Literacy and Numeracy 2011-2020 (DES,
2011). The strategy set out a series of measures designed to improve performance, including plans
to enhance initial teacher education, curriculum and assessment. In parallel with the Strategy,
revised curricula in mathematics at post-primary level have been rolled out in a phased basis since
2010 in an initiative known as ‘Project Maths’. This involves a strong focus on developing
students’ conceptual understanding in mathematics, and on applying mathematical knowledge in
solving problems in context using a range of methods. Ni Shuilleabhain (2013) described Project
Maths as ‘a philosophical shift in Irish post-primary classrooms from a highly didactic approach
with relatively little emphasis on problem solving towards a dialogic, investigative problem-focused
approach to teaching and learning mathematics’ (p. 23).

A key feature of the National Strategy is the inclusion of national targets for performance in PISA
mathematics. In an interim review of the Strategy (DES, 2017), there are targets of 10.5% of
students achieving below proficiency level 2 by 2020, and 12.0% achieving levels 5-6. The first of
these is quite an ambitious relative to current performance (15% performed below Level 2 in 2015),
while the second is more modest (11% performed at Levels 5-6 in 2015).
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Efforts to ensure that PISA findings are solid

The procedures around the development of PISA survey instruments, including the mathematics
test, are designed to ensure that findings can be relied on and used by participating countries to
enhance teaching and learning, and raise performance standards. The development of the PISA
mathematics test and scale encompasses the following:

e An assessment framework is developed and published at the outset of each PISA cycle (e.g.,
OECD, 2013). The framework provides a definition of mathematical literacy in PISA, and
outlines the content areas (mathematical content categories) and processes to be assessed,
the contexts in which items are to be embedded and the item formats to be used. Items are
then developed in a way that ensures that all elements of the framework are adequately
addressed. The assessment framework is a key source of evidence to support the validity of
the PISA tests.

e Jtems based on the framework are submitted by countries, or are developed by the
consortium charged by the OECD with implementing PISA. Items are vetted by countries
for cultural and linguistic appropriateness and suitable items are forwarded for field trialling.

e The PISA field trial is conducted on a sample of 15-year olds in each participating country,
and the performance of items is assessed within and between countries. The outcomes of
both classical item analysis and item response theory scaling are taken into account in
determining the suitability of items. These items, along with any trend items not field-
trialled, are then used to compile test forms for the main study.

e Considerable effort goes into ensuring that items are scored accurately, using scoring guides
prepared by the PISA consortium. Many items are marked by two or four scorers, and real-
time indices of inter-rater reliability are used to guide the quality of scoring.

e The PISA main study is implemented. Quality control is a key aspect of the Main Study, as
countries are held accountable to quality standards (see below).

e Performance on PISA is scaled using Item Response Theory models and links with
performance on earlier rounds are established.

A document, PISA Technical Standards (e.g., OECD, 2014), is issued in each cycle to guide
countries in ensuring that their samples, response rates, security procedures, translation and coding
practices are of a sufficiently high standard that their data warrants inclusion in international
reports. For example, the 2015 Technical Standards indicate that response rates of 85% at school
level and 80% at the student level are required. The achieved samples of countries failing to meet
these criteria are examined in detail for potential bias. In some cases, countries have not been
included in international reports because of low response rates (e.g., the Netherlands in 2000, and
the UK in 2003).

At the end of each PISA cycle, a technical report is prepared by the PISA consortium and is issued
by the OECD (e.g., OECD, 2017). It details the procedures used in each aspect of the
implementation of PISA, including sample design, field operations, quality control, survey
weighting, scaling, proficiency scale construction, and coding reliability.
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The consortium charged with implementing PISA establishes expert groups for mathematics,
science and reading literacy, and there is also a Technical Advisory Group, which advises the
Consortium on its use of scaling and other procedures, and a Questionnaire Expert Group. These
groups act as a further check on the quality of the PISA instruments and outcomes.

Hence, PISA has taken several precautions to ensure the quality and solidity of its findings.
Notwithstanding the fact that PISA assesses the mathematics that students require for life after they
leave school (or mathematical literacy) and for future study, rather than mathematics based on
school curricula, the steps taken to ensure that findings are solid are extensive.

The introduction of computer-based assessment as a threat to the solidity of
PISA findings

Prior to 2015, PISA implemented computer-based testing in subsets of countries on an optional
basis. In 2012, for example, mathematics was assessed on paper in all 65 participating countries,
and on computer on an experimental basis in a subsample of 32 countries. In 2015, however, there
was a shift to computer-based assessment in most participating countries, with 56 of 73 countries,
including all 34 OECD member countries, administering PISA in this format. The remaining
countries administered PISA on paper.

The transition to computer-based testing in PISA presented some significant challenges for the
OECD. A key component of PISA is the availability of trend data — that is, performance from one
PISA cycle to the next must be placed on the same underlying scale so that average performance
and performance across proficiency levels in each country and on average across OECD countries
can be tracked from cycle to cycle. The task facing the OECD and its contractors' was to establish
the feasibility of linking performance on the 2015 computer-based tests to scales based on
performance on paper-based tests in earlier cycles. This was further complicated by a requirement
to continue to provide trend data for countries that administered PISA in paper-based form in 2015.

There were several ways in which the transition to computer-based testing could have been
managed, given the imperative to maintain trends. For example, all students (or equivalent samples
of students) taking PISA 2015 could have been given paper-based and computer-based tests. Then
trends could have been established with reference to performance on the paper-based measures and
new computer-based scales could have been devised, based on the computer-based items, and used
for trend analysis in the future. This would have eliminated any concerns about mode effects (an
advantage or disadvantage arising from implementing PISA on computer).

The approach taken by the OECD and its contractors was to make adjustments in 2015 based on
how the same items performed on paper and on computer in the PISA 2015 Field Trial, which took
place in all participating countries in spring or autumn 2014. In the case of mathematics, which was
a minor domain, items used in earlier PISA cycles (i.e., trend items) were transferred from paper to
computer, and equivalent representative samples of students from each country took the paper- and
computer-based tests. Hence, the purpose of the mode study was to ascertain whether tasks or items

! The lead contractor in PISA 2015 was the Educational Testing Service in the US. The lead contractor in all earlier
cycles of PISA was the Australian Council for Educational Research.
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presented in one mode (i.e., paper) functioned differently when presented in another mode (i.e.,
computer) and vice versa. For the purpose of analysis, items were pooled across countries, as
individual countries did not have sufficiently large samples of students to allow for reliable
comparisons of individual items across modes, or for an analysis of item-by-country interactions.
Where item parameters were judged to be ‘strongly invariant’ (that is, similar on paper and
computer), item parameters were constrained to be the same in the 2015 Main Study (OECD, 2017).
In the course of the Field Trial analysis, a subset of items showed mode effects. To account for
these effects in the Main Survey, different item parameters were estimated for paired paper- and
computer-based items. According to the OECD (2017, Chp. 7, p. 53), ‘this established an invariance
model that assumes scalar or strong invariance for the majority of items and metric invariance for a
minority of items for which difficulty differences were detected’. A correlation of .95 was found
between paper-based and computer-based item parameters for mathematics in the Field Trial,
further supporting a link between performance on computer-based tests in 2015 and paper-based
tests in earlier cycles, as well as between computer- and paper-based tests administered in 2015.

The PISA 2015 Field Trial yielded other interesting findings that applied to mathematics as well as
other domains. For example, across countries, students taking the Field Trial tests on computer had
significantly fewer omitted responses than students taking the paper versions. Furthermore, there
were fewer effects of cluster positon on performance when tests were administered on computer
(that is, items administered by computer were more likely to perform in the same way regardless of
whether they appeared early or late in the test). However, as Jerrim et al. (in press) note, while the
Field Trial did not yield large differences across modes for male and female students, no analyses
were conducted to examine potential interactions with variables such as ethnicity or socioeconomic
status. They also questioned the representativeness of the samples used in the Field Trial, which, in
some countries, could be described as convenience samples. They viewed this as weakening the
external validity of the results, given the implications for the adjustments made within Main Study
scaling to enhance cross-mode comparability.

Overall performance on PISA 2015 mathematics

The PISA main study took place in all participating countries in 2015. The OECD issued two
volumes of findings in December 2016 that included country mean scores in mathematics, and
comparisons with performance in earlier cycles. The mean score of students in Ireland in 2015 was
503.7 (OECD, 2016). This was significantly above the average across OECD countries (490.2), and
was about the same as in 2012 (501.5), 2006 (501.5) and 2003 (502.8). Indeed, the only year in
which average performance moved outside the 501-504 range was in 2009 (487.1).

While the mean mathematics score of students in Ireland was stable in the transition to computer-
based assessment, a number of countries saw large declines in performance between 2012 and 2015.
These included Korea (down 29.7 score points, though still well above Ireland at 517.4), Chinese
Taipei (17.5), Hong Kong (13.3), Poland (13 points), and the Netherlands (10.7 points). On the
other hand, a small number of countries experienced increases in achievement, including Sweden
(15.7 points), Norway (12.4), the Russian Federation (11.9), and Denmark (11.1).

It is noteworthy, however, that Norway, Denmark and the Russian Federation were among the
countries with the highest use of computers by students in mathematics classes in PISA 2012 for
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purposes such as entering data on a spreadsheet, drawing a graph of a function, constructing
geometric figures, re-writing algebraic expressions and solving equations (OECD, 2015). In
contrast, Korea, Hong-Kong China and Ireland were among the countries with the lowest usage of
ICTs by students in mathematics classes.

The fact that Ireland’s overall performance on PISA 2015 is similar to 2012 can be interpreted in a
number of ways:

e It suggests that students in Ireland are equally adept as solving mathematical problems in
paper and computer-based formats; indeed, this would suggest that the mode of assessment
does not matter, at least for students in Ireland.

e [t suggests that students in Ireland improved in their mathematics between 2012 and 2015,
but this improvement was largely hidden because of the transition to computer-based
testing.

The second of these seems the most likely. PISA 2015 was the first PISA cycle in which all
students in Ireland’s sample had studied under the Project Maths syllabus. This interpretation is
consistent with a finding that students in initial Project Maths schools (24 schools that had
implemented Project Maths first) outperformed students in non-initial schools in PISA 2012
mathematics (see Merriman et al. 2013), though the difference was relatively small (4 score points)
and not statistically significant.

A further relevant finding relates the optional computer-based assessment of mathematics
administered as part of PISA 2012. In that assessment, students in Ireland had a mean score that
was not significantly different from the corresponding OECD average score, despite achieving a
mean score on paper-based mathematics that was significantly above the corresponding OECD
average in the same year (Perkins et al., 2013). Hence, performance on PISA 2015 can be
interpreted as being indicative of a possible improvement.

Interestingly, the OECD has continued to hold the positon that mode effects in PISA 2015
mathematics were small and did not impact on the performance of participating countries (OECD,
2016, 2017). Implicit in this is the view that performance on computer-based assessment in 2015
can be linked back to performance on paper-based assessment in earlier PISA cycles.

Other threats to the solidity of PISA 2015 findings

The transition to computer-based assessment in PISA is clearly one threat to the validity of scores
reported by the OECD for PISA 2015 mathematics. However, there were several other changes to
PISA 2015 which could also impact on the interpretation of outcomes, and hence the solidity of
PISA findings. The changes — several of which occurred because a new consortium was contracted
by the OECD to gather and analyse PISA data — include:

e Changes in the assessment design — the design of PISA 2015 was modified to reduce or
eliminate differences in construct coverage for major and minor assessment domains for test
takers. In practice, this meant that fewer students took mathematics in PISA 2015, compared
with earlier cycles, but more mathematics items were included in the assessment, thereby
allowing for broader construct coverage.
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e Changes in the calibration sample — prior to 2015, item difficulty in PISA was estimated
using the responses of students in the most recent cycle (e.g., in 2012, this comprised data
from students who took PISA in 2009). Moreover, the calibration sample in earlier cycles
comprised a random sample of 500 students per participating country. In 2015, item
parameters were re-estimated using all students in all participating countries in the previous
four PISA cycles. This change was implemented to reduce the uncertainty around estimates
of the item parameters used in calibration.

e Changes to the scaling model — in earlier PISA cycles, a one-parameter Item Response
Theory (IRT) model (with adjustment for partial credit) was used to scale performance. In
2015, item functions based on a two-parameter logistic IRT model for dichotomous data,
and a generalized partial-credit model for polytomous data were used in scaling data in the
case of new items, while functions based on a one-parameter model were used (as
previously) with trend items. Unlike its predecessor, the new approach does not give equal
weighting to all items when constructing a score, but assigns optimal weights to tasks based
on their capacity to distinguish between high- and low-achieving students.

e Changes in the treatment of differential item functioning across countries — where items
performed unexpectedly differently across countries, the calibration in 2015 allowed for a
number of country-by-cycle-specific item parameters. In previous cycles, items that showed
differential item functioning (e.g., because of differences across languages) were dropped
from scaling. The change in 2015 was intended to reduce the dependency of country
rankings on the selection of items included in the assessment (for a country) and hence
improve fairness (OECD, 2016).

e Changes in the treatment of not-reached items — in PISA 2015, not-reached items
(unanswered items at the end of a section, such as at the end of the first and second hour of
testing) were treated as not administered when estimating proficiency (i.e., scoring student
responses), whereas in previous PISA cycles they were treated as incorrect. A reason for this
change was to eliminate the opportunity for countries and test takers to randomly guess
answers to multiple-choice questions at the end of a section of the test. As in previous
cycles, not-reached items were treated as not administered when computing item parameters
(i.e., during scaling).

The OECD (2016) acknowledges that improvements to the PISA test design and to scaling in PISA
2015 can be expected to result in reductions in link error (the error associated with particular sets of
items used in a particular cycle) between 2015 and future cycles. However, it also acknowledges
that the changes described above may result in increased link error between PISA 2015 and earlier
cycles, as past cycles used a different design (paper-based assessment) and used different scaling
procedures. Furthermore, the OECD (2016) acknowledges that the change in the treatment of not-
reached items could result in higher scores than would have been estimated in earlier PISA cycles
for countries with many unanswered items.
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Conclusion

The problem in terms of interpreting trend scores is that any of the changes implemented by the
OECD and their contractors in relation to the design and scaling of PISA in 2015 could have
impacted on the scale scores achieved by students. Interpretation becomes even more difficult when
multiple changes are implemented, as these may interact with one another in complex ways. The
OECD has sought to address this in a limited way by rescaling data from earlier PISA cycles using
the methods implemented in 2015. Thus, in the case of Ireland, performance on PISA mathematics
changed by +2 score points between 2012 and 2015 (see above), but, the change was 6.0 score
points when newer scaling methods were applied to the 2012 mathematics data. On average across
OECD countries, the impact of changes to scaling procedures was also reported to be small (a
published drop of 3.7 score points between 2012 and 2015, and a drop of 2.5 score points following
rescaling of the 2012 data) (OECD, 2016). For most countries, differences arising from re-scaling
are within the error margins of the original difference scores reported by the OECD.

While the readjustment of scores from PISA 2012 using the new scaling procedures implemented in
2015 may go some way towards reassuring users that PISA outcomes are comparable over time, the
sheer number of changes implemented in PISA 2015, including the change to computer-based
testing, indicates that particular care should be exercised in interpreting PISA 2015 data.

Efforts to improve the design and scaling of PISA 2015 also contain some lessons for efforts to
generate solid data in mathematics education. On the one hand, solid findings can be obtained by
implementing the same testing procedures and methodologies on multiple occasions (e.g., pre- and
post-intervention). In the words of Beaton (1990), ‘when measuring change, do not change the
measure’ (p. 165). On the other hand, at least in the case of longitudinal, multi-year surveys such as
PISA, there is an ongoing need to build innovation into all aspects of the project to maintain
relevance and deliver more robust measures for the future. One clear danger is that, when
mathematics becomes a major assessment domain in PISA 2012, the construct measured will also
change, as new items specifically designed to take advantage of the affordances computers, will be
introduced for the first time.
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Introduction

The role and importance assigned to argumentation and proof in the last decades has led to an
enormous variety of approaches to research in this area. The 27 papers and 1 poster presented in the
Thematic Working Group (TWG) “argumentation and proof” come from 18 countries across 4
different continents, and offer a wide spectrum of perspectives. These contributions intertwine
educational issues with explicit references to mathematical, logical, historical, philosophical,
epistemological, psychological, curricular, anthropological and sociological issues.

Taking into account this diversity, the contributions were presented and discussed in working sessions
organized under the following 7 themes: (1) assessments issues of argumentation and proof; (2)
theoretical and philosophical issues of argumentation and proof; (3) argumentation and proof in
textbooks; (4) tools for analyzing argumentation and proof; (5) intervention studies on argumentation
and proof; (6) argumentation and proof at the university mathematics level; and (7) task design in
argumentation and proof. Since the themes are intertwined, each paper could be assigned to multiple
themes. Therefore, the assignment of papers to themes was guided by a “best fit” approach as well as
practical considerations. We will briefly discuss each theme separately.

Assessment issues of argumentation and proof

This theme included three papers, related to issues of assessment in the area of argumentation and
proof: Kénya and Kovacs’ paper focused on development of inductive reasoning of prospective
teachers by analyzing their problem-solving processes on a carefully selected problem. Hemmi, Julin
and Porn’s paper investigated teachers’ perspectives on the possibility of using students’ common
misconceptions, identified in prior research, as a starting point for activities that develop students’
understanding and skills in proof. Demiray and Bostan’s paper investigated pre-service middle school
mathematics teachers’ interpretations of statements regarding proof by contrapositive and the reasons
for their incorrect interpretations. The discussion of the three papers in the TWG raised several
important issues, such as:

The influence of sociocultural context should be considered in assessment findings.

Alternative variations of task design should be considered in the interpretation of students’
performances.

Adopting a more positive model. Should researchers aim to identify students’ competencies rather
than misconceptions?
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Theoretical and philosophical issues of argumentation and proof

The two papers in this theme addressed implications of Habermas’ rationality theory. Conner’s paper
discussed how Habermas’ rationality can be used to analyse how teachers support argumentation
processes in their classrooms. Boero’s paper showed the added value of analyzing individual
student’s thinking processes while attempting to prove a statement. The discussion of the papers
raised several points, including the following:

What is the added value of applying Habermas’ rationality to a particular kind of analysis, and what
would be lost if it was not used?

The difficulty of applying the categories of Habermas’ rationality to coding data and, in particular,
the difficulty in distinguishing between teleological rationality and epistemological rationality.

Argumentation and proof in textbooks

The five papers presented in this theme were grouped based on their relation to argumentation and
proof in textbooks. Zalska’s paper described how different types of arguments enacted in one
classroom were influenced by the textbook, the teacher beliefs, and the students. Wong’s paper
presented an examination of geometry chapters in a prominent Hong Kong textbook series and
illustrated the limited opportunities for students to engage in the process of generalizing and providing
proofs. Cousin and Miyakawa’s paper described the evolution of proof in Japanese geometry
textbooks and the role of the specificity of Japanese language on that process. Mesnil’s paper
described a reference for studying and teaching logic in France, while Bergwall engaged the TWG in
analysis and discussion of reasoning-and-proving opportunities in Finish and Swedish textbooks on
primitive functions. The discussion addressed several important topics, such as:

The role of language and linguistics in introducing, teaching, and writing proofs; and how the goal
of teaching proof is articulated in a curriculum, represented in textbooks, and enacted in classrooms.

The role of mathematical logic in the teaching and learning of proving.

Definitions in research frameworks. Caution is required in the interpretation of the findings from
different studies which operationalized certain terms in different ways.

The need for specialized analytical frameworks when examining argumentation and proof
opportunities in textbook tasks versus textbook expositions.

Tools for analyzing argumentation and proof

The five papers in this theme concerned different tools for analyzing argumentation and proof.
Ruwisch’s paper concerned a one-dimensional model to rate reasoning competences at the primary
level, considering both mathematical reasoning and its linguistic realization. With the same goal to
better understand primary students’ reasoning characteristics, Koleza, Metaxas and Poli used a
simplified model of Toulmin’s argumentation, drawing also on argumentation schemes described by
Walton. The paper by Mata-Pereira and da Ponte aimed to understand how application of design
principles regarding tasks and teacher actions can help provide students with opportunities to justify,
and presented a framework that accounts for the level of complexity in students’ justifications. In a
longitudinal study, Fahse explored secondary school students’ ways of argumentation on tasks
concerning division by zero. He identified three different types of student argumentation and showed
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how these relate to students’ age. Focusing on teachers’ competencies, Chua’s paper presented a
theoretical framework that classifies justification tasks by their nature, purpose and the expected
element to be provided in the justifications. The discussion of the five papers raised some deep issues,
including the following:

The validity versus utility of theoretical frameworks in argumentation and proof. The utility of a
framework depends on how well it is designed to address a particular goal.

Multi-dimensional models of proof. Researchers should acknowledge the complexity of proof and
specify the aspect(s) of proving that they are focusing on.

Language and argumentation. Investigating relations between language and argumentation requires
clarifying what we mean by “mathematical language”.

Classroom culture should be considered in interpretations of research findings.
Intervention studies on argumentation and proof

The five papers in this theme related to implementing proving activities in school mathematics
classrooms. Reid and Vallejo Vargas’ paper describes an intervention where 3™ graders learn division
through “proof-based teaching” by developing a shared toolbox of justification principles. The study
showed that 3™ graders are capable of reasoning deductively from premises when explaining their
thinking. The paper by Soldano and Arzarello described students using game activities in Dynamic
Geometry Environments (DGEs) to discover geometric properties of the mutual relationship between
two circles. The authors found that games helped students to communicate their claims, formulate
and check conjectures, and explain their thinking. Siopi and Koleza’s paper focused on students’ use
of a specific tool, a pantograph, to explore geometrical properties of parallelograms. The paper by
Pericleous and Pratt examined how a teacher helped students to foreground mathematical
argumentation as they investigated geometrical properties within a DGE. Finally, Buchbinder
reported on a study on professional development sessions where teachers became familiar with
‘proof-task prototypes’, applied them in their teaching, and reflected on this application. These
activities helped teachers to involve proof-oriented activities in their ordinary mathematics
classrooms. The discussion included the following issues:

What was the contribution of particular tools to students’ learning?

Students’ investigations within DGEs and the ambiguity of the expression ‘play with the software’.
The need for structured support for teachers to implement proving activities.

Argumentation and proof at the university mathematics level

The five papers in this theme were concerned with teaching and learning of proof at the university
level. Yan, Mason and Hanna’s paper suggests an exploratory teaching style to promote the learning
of proof, and describes specific pedagogical strategies. Selden and Selden’s paper discusses
theoretical perspectives for proof construction and its teaching. They suggest including psychological
aspects of proving to these perspectives, and how these aspects should be considered in teaching and
future research. Moutsios-Rentzos and Kalozoumi-Paizi’s paper also considers psychological aspects
by describing affective and cognitive experiences of a mathematics undergraduate student while
producing a proof under exam-conditions. The innovative methodology of their study is to examine
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students’ facially expressed emotions during proving activities, as a way to study and influence
students’ attitudes towards proof. Gabel and Dreyfus’ paper describes an attempt to analyze rhetorical
aspects of proof presentation. They use Perelman's “New Rhetoric” as a framework to identify ways
to analyze and increase the effectiveness of teachers’ argumentation in mathematics classrooms.
Azrou’s paper suggests that students’ lack of meta-knowledge about proof, such as features of
mathematical proof and how a proof should be organized, influences their competence to write
mathematical proofs. The discussions of these papers raised the following issues:

Phenomena (as behavioural issues) that have not been previously considered by psychologists or
mathematics educators may play a role in students’ difficulties to construct proofs.

The role of emotions and feelings in proof construction.
Task design in argumentation and proof

Although many papers touched on issues of task design, this was the main topic of the two papers in
this theme. Komatsu and Jones’s paper explores how task design can facilitate students’ engagement
with the mathematical activity of proofs and refutations in the context of a DGE. Hein and Prediger’s
paper explored the role of task design and scaffolding to foster students’ learning of deductive
reasoning, making explicit the logical structures and unpacking their verbal representations in
geometry. The discussion included the following issues:

Proving something in a particular case: how can we help students see the generality of the proof?
The notion of scaffolding. How can we make explicit to students the logical structure of proving?
The special place of geometry in teaching, learning and researching of argumentation and proving.
Conclusions

We think that the TWG on argumentation and proof has offered the participants the richness of
diversity in this research domain and the opportunity of fruitful discussions. At the last session of the
TWG, the participants engaged in a discussion to identify areas in which they would like, and hope,
to see more research in future CERMEs. The following areas were identified:

The teaching of proof and argumentation in both school and university settings, including in teacher
education. The study of the classroom implementation of tasks rich in argumentation and proof
opportunities, scaffolding and responding to unexpected student responses.

Issues of language in argumentation and proof. This also includes representations, structure, oral and
written language, rhetoric and logic.

Aesthetics of proof and ways in which students of all levels of education can improve their attitudes,
emotions, and beliefs about proof.

The identification of these areas is aimed at describing the state of the art of the field, without
suggesting prioritizing certain areas of research. The TWG is committed to representing the diversity
of perspectives and research areas on argumentation and proof in future CERMEs.
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We deal in this paper with a particular difficulty with proof and proving at the undergraduate level,
which concerns knowledge about proof at a meta-level. Some undergraduate students’ difficulties
or mistakes observed in their proof texts have been related to lack of that meta-knowledge. In order
to test this hypothesis, interviews with a sample of students have been performed. Relationships
with the didactic contract have been discussed.

Keywords: Proof, meta-knowledge, theorem, undergraduate students.
Introduction

Most mathematics teaching at all school levels is concentrated on teaching content; at the university
level, students learn about functions, differential equations, matrices and integrals, by manipulating
definitions and theorems. In order to assimilate the content, students are asked to solve problems
and prove statements. The difficulties of students with proof have been largely investigated in
research (Moore, 1994; Epp, 2003; Selden & Selden 2007; Harel & Sowder, 1998); some of these
difficulties are related with the fact that students do not know mathematics at the meta-level,
particularly as it concerns proof (Morselli, 2007; Hemmi, 2008). Several students do not see clearly
the difference between a definition and a theorem, the difference between an example and a counter
example. Knowledge about proof at the meta-level is neither presented in textbooks nor in courses
of specific mathematical disciplines, but it makes one of the most important differences between
mathematicians and students. In this paper, we will consider in particular the meta-knowledge about
proof (MKP), such as the knowledge of the notion of proof and the rules related to how a proof
must be organized. Many researchers acknowledge the fact that high school and university students
do not understand what is meant by “proof” and “proving” (e.g. Schoenfeld 1989, Harel & Sowder
1998). “To most undergraduates, convincing their teacher (and thereby earning satisfactory grades)
is typically the most important reason for constructing a proof” (Weber, 2004, p. 429) and
“unfortunately, many students believe that they either know how to solve a problem (prove a
theorem) or they don't, and thus, if they don’t make progress within a few minutes, they give up”
(Selden & Selden 2007, p. 96); students often believe that non-deductive arguments constitute a
proof, or “an argument is a proof if it is presented by or approved by an established authority, such
as a teacher or a famous mathematician” (Weber, 2003, p. 3); other different interpretations and
conceptions of students regarding proof are described in Harel & Sowder (1998) and in Recio &
Godino (2001). Meta-knowledge about proof is used implicitly by mathematicians when they
construct proofs, “what may be assumed contextually and what needs to be explicitly proved, using
logical deduction and previously established results, is highly non-trivial and, I would suggest, is
implicit rather than explicit in the minds of most mathematicians” (Tall, 2002, p. 3). Our focus in
this paper will be on the lack of MKP and what it might cause as difficulties to students when
constructing proofs. The present study is developed using a past empirical study with
undergraduates that consisted of investigating students’ difficulties by analyzing their proof texts
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responding to different tests (Azrou, 2015). We would like to examine if the following hypothesis is
supported by an interview analysis: Is lack of MKP one of the reasons behind the messy proof
texts? Moreover, we would like to answer the following question: Why students do not develop
MKP?

Theoretical framework

We choose the definition of proof stated by Durand-Guerrier et al. in (Durand-Guerrier, Boero,
Douek, Epp, Tanguay, 2012), inspired from the Vergnaud’s conceptual fields (Vergnaud, 1990).
According to Vergnaud, a concept (in our case proof) is learnt by acquiring three components: the
set of different representations (oral, written, formal, etc), the situations of reference (proof in
geometry, in algebra, in calculus, etc.) and the operatory invariants (related to the logical structure
of proof: legitimated inference rules, status of hypotheses, thesis, axioms, etc). Mastering the MKP
is mastering the concept of proof according to Vergnaud, as it was stated by Durand-Guerrier et al.
(2012).

We are interested in comparing MKP that students acquire with how they have been presented
proofs and how they have been taught MKP by their teachers. As we consider the relationship with
the teaching regarding proof and proving, we will be referring to the didactic contract (Brousseau,
1988) that is defined as a set of rules framing the mathematical practices of teachers and students
under the constraints of the teacher-students institutional relationships. Most of these rules
regarding how, why and what teachers do mathematically (and students should learn to do) are
implicit and thereby not declared by teachers, who often suppose that students would assimilate
them over time and practice. Often, teachers use some particular intentions and rules with the proofs
exposed to students, without being aware of and without feeling the importance of explaining them;
consequently, sometimes students are misguided to make correct proofs. Let us take the example of
proof writing: ‘the processes used by mathematicians are often rough and informal, but students
typically see proofs in their final forms, and rarely witness the process of creating a “rough draft”,
as a result, students often do not know where to begin when writing their own proofs’ (Moore, R.
C., 1994). We will examine what kind of MKP students learn from their teachers and how they
manifest it.

Methods

We are more interested in examining in students’ proof texts their MKP considering the three
components of the definition of Durand-Guerrier et al. (2012); students’ behaviors will be checked
regarding definitions and other used mathematical statements (mathematical argument), regarding
their modes of reasoning and argumentation and how they expressed them and presented them.
Especially, how lack of MKP is manifested through students’ proof texts and their interviews. A
test composed of open questions (to which the proof cannot be procedural but rather syntactic or
semantic (Weber, 2004)) have been submitted to 98 undergraduates during their third academic
year, for a complex analysis course in a high level school of engineers in Algeria. The written
language is French, but often, Arabic dialect is used, along with French, in the oral form. The
analysis of students’ proof texts indicates that one of the difficulties behind writing messy and
disorganized proof texts to open questions was lack of MKP (Azrou, 2015). To receive further
evidence for our findings, interviews were performed with a sample of students. We have chosen
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fourteen students to interview whose proof texts contained well-organized, less organized and very
disorganized proof texts. Our aim was to investigate, by analyzing students’ words, whether they
master the concept of proof at a conscious level, in other words if they have a mastery of its
operatory invariants (Vergnaud, 1990).

A-priori analysis of the test

The test contained three questions, but in scope of this paper we can only include the first question.

1- Is it possible to find a holomorphic function that admits 0 as a simple pole such that Residue of f
at 01is 0 (Res (f, 0) =0)?

By designing such questions, we aimed at ascertaining if students were able to construct the proof,
based on known definitions and theorems, in a clear argumentation form by providing their own
way of expressing the answering to the question. The question is about the possibility of having (P
— Q) and its negation (P and Q) at the same time, which results in a contradiction and thus it is

impossible. Logically speaking: the fact that the residue at a point is not 0 is a direct consequence of
that point being a simple pole for the function. We have chosen to refer to the point 0 to simplify
the formula. There was no doubt that students knew all these concepts because they had used them
many times before, but always when performing direct calculations and procedures. However no
request of identifying and exploring the links between concepts had been made, especially in a
written form.

A preliminary analysis of students’ proof texts

We have observed in students’ proof texts, among others, the following behaviors related to the
concept of proof:

- Lack of justifications: students do not know when the justification is necessary and when it is not;
they might give a justification for an obvious fact and miss to justify a non-obvious statement.

- Students turn around confusing the hypothesis and the thesis (forwards and backwards between
the premise and the result).

- An example is given instead of a justification to prove that the statement is true.
- Incomplete mathematical statements and/or formulas.

- Missing details that make holes in the proof.

- Lack of organization of proof steps.

- Disconnection between statements.

- Writing the proof text like a draft or a sketch.

Examples of students’ proof texts

The following excerpts show some of the difficulties cited before; the language used is French.
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Proof text 1

Exercice 1: Est-il possible de trouver une fonction qui admet . (0) comme pdle simple
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In this proof, the student responds by saying that such function does not exist and gives an example
of a function that does not verify the conditions given by the statement. Clearly, the existence of a
function that does not verify the conditions does not tell why these conditions cannot go together.
This student considers that giving such example is the proof of the inexistence of functions
verifying the two conditions.

Proof text 2

Exercice 1: Est-il possible de trouver une fonction qui admet
tel que Res(f,0) =07 Justi fier, ,
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The student does not provide an answer to the question, the proof is a series of statements; each one
derived from the previous one by an implication, but without any justification; moreover the last
three ones are similar but incorrect, they present the simple pole definition, but the limit should be
not 0.

Interviews

Based on the analysis of students’ written productions, in the wider investigation this study belongs
to, we have conducted interviews to address our previous questions, but also to receive more
information about students’ points of view. We will present only the questions of the interviews that
deal with MKP about proof. The main interview contained three questions, each with three or four
sub-questions.

QI- If your answer would have been addressed to another teacher, would you have written it the
same way?

a- What is important, to a teacher, to see in a student response to questions like this one?

b- Do you think another teacher, not familiar with the course, would have understood the answer?
c- How can the teacher know if the answer is right or not?

d- If the question has been proposed in homework, would you have presented it in a different way?

Q3- If a rigorous mathematician would have answered to this question, how would he presented his
answer?

a- What is the difference from your answer text and those we find in mathematics books?
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b- After this time, looking again to your answer, is there something you would add or change in
yours answer or would you keep it as it is?

Results of interviews

Q1: Four students said ‘yes’, while the rest (ten) said ‘no’. They intended their responses to be
given especially to their own teacher, so they made their responses intentionally focusing on what is
important to the teacher which is, according to them, their reasoning and showing that they got the
idea of the process and understood enough the concept at stake in order to get the credit or a part of
it. ‘I know that my teacher will understand it even if it’s not complete’.

Ql.a: All students responded that the teacher would check in a proof whether a student got the
whole idea of the solution or not: ‘the teacher would see always the method’; ‘the reasoning’; ‘the
process of the proof°.

Q1.b: Half of the students said ‘yes’ and the others said ‘no’: ‘no, because we are used to respond
to get the credit, so we address the response to our teacher’.

Ql.c: All of them responded mentioning the reasoning of the student (method, the logic in his
response, whether it is convincing, if there is no contradiction): ‘the teacher would follow the
reasoning of the student to find out if his understanding is clear or not about the concept’.

Q1.d: Twelve students answered ‘no’ and only two students said ‘yes’. They would keep the idea or
the method the same but make better the organization or the presentation: 7 would have changed
the way I wrote, ... the organization’; ' would have given more details’.

Q3: Two students (good ones) said ‘the same’; one didn’t answer clearly, six said with more details
and/or better organization; two said with better reasoning and three said with more symbols: ‘a
mathematician would have another goal, mine is to give the response and get the credit’; ‘he would
use only symbols till getting the final result, you see, I wrote a lot of comments’.

Q3.a: Twelve students said that they would contain more symbols and less comments; with an
academic rigorous style: ‘it’s different’; ‘my answer is addressed to the teacher while mathematics
books are addressed to all’; ‘with more symbols and less comments’.

Q3.b: Four students among fourteen answered by keeping their text as they are. Five said they
would improve the organization, three said they would add more details and two said they would

make the explanation better: 7 might keep the idea, but I will give more details’; ‘I would write it
better’.
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Data analysis
Analysis of the written texts

Different students’ weaknesses emerge from the analysis of students’ written texts (difficulty of
communication, lack of justification, using incomplete mathematical statements (or formulas) and
lack of organization of the proof); the last three are of particular interest for MKP. Failing to give
justification may be caused by the didactic contract supposing that the teacher would not mind it, by
a lack of concept mastery or by a lack of meta-knowledge about proof. Mathematical statements are
given incomplete because students might suppose that they are clear for the teacher, or because they
are not well mastered by them or not important to be given complete in a proof text, which is related
to MKP. The lack of organization of the statements displayed by students might be originated in
didactic contract, in lack of concepts mastery, but also in lack of MKP.

Results of interviews analysis

The answers to Q1, Q1.b and Q1.c. confirm that students, when writing their proof texts, intend to
address it particularly to their own teacher. The answers to Q1.d show that students are aware of
their unclear text and possible missing details. According to them, they have to focus on two
important points that have the same objective: how to get the most part of the credit and show to
their teacher that they understood the concept at stake by presenting the main idea or the method of
the proof; because they believe that the teacher will focus on that. This shapes their meta-
knowledge about proof writing. Most answers to the third question and to Q3.a support more details
would be given by a rigorous mathematician and mathematics textbooks, students mention that the
organization would be better in both cases than theirs — but they reveal how their conception about
proofs in mathematics concerns superficial aspects when they say that proofs in textbooks contain
more symbols and less comments and words in comparison with their proofs and do not mention the
structure of the proof. Answers to question Q3.b confirm that students are aware that their proof
texts need improvement — but it must be related to previous consideration about superficial aspects.

Conclusion

Students’ texts and interviews offered strong evidence for students’ lack of MKP and its influence
on proof writing. Students have many situations of reference for proofs at their disposal but do not
master the operatory invariants of the proof concept and the form of the proof texts as conscious
objects. Findings suggest particularly that the influence of the didactic contract is strong. Teachers
generally write proofs in a direct linear way, making unfolding the steps till the conclusion.
Students learn to do the same: when they first set some ideas about how to solve a problem, they
write their first exploratory draft as a final text because they were never shown how to go further to
the written proof text. Here, the didactic contract works against to the development of MKP because
the contractual knowledge substitutes the knowledge about the concept of proof. An important
element emerged in the interviews, which is the intention of the students to write the proof text only
for their teachers, which supports our hypothesis of lack of MKP. Students acknowledge that their
texts miss details, but do not see that these missing details would make the organization of the
different parts of the proof clearer. This shows that the MKP and the didactical contract are strongly
related. When students compare their texts with mathematicians’ or textbooks’ proofs, they only
point out to symbols and comments, they do not see that in these perfect proofs, the statements are
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linked through a deductive process from the hypothesis to the proof end, the proof text is organized,
not only in its form, but also in the structure; avoiding holes, disconnections and missing
justifications. This is evidence of students’ superficial perception of proof texts, which indicates
lack of mastery of proof structure and representation as a concept, which is related to lack at the
operatory invariants level. As MKP is also built up through language, we hypothesize that students’
weak mastery of French language, especially in the oral form, which should be translated to the
written form, might have contributed to their unclear written texts.

Let us examine now why students are not able to develop their MKP; it seems that they are stuck in
a constant perception of proof that does not help them to overcome their difficulties, if not causing
some of them, and as long as there are not alternative ways of presenting proofs, they will hold on
it. “Students need to understand that proofs are not generally conceived of in the order they are
written” (Selden & Selden, 2007, p. 114) and that “successful reasoning can be carried out both by
relying on the logic and formal structures of syntactic reasoning, and by relying on the informal
representations of mathematical objects of semantic reasoning” (CadwalladderOlsker, 2011, p. 48).
Changing or adjusting the didactic contract may favor students’ autonomy to understand and make
proofs; university teachers often mistakenly think that undergraduates understand what a proof is
and how to make proofs by following the standard presented proofs. In fact, “while a traditional
definition-theorem-proof style of lecture presentation may convey the content in the most efficient
way, there are other ways of presenting proofs that may enable students to gain more insight”
(Selden & Selden, 2010, p. 411). Teachers should provide samples of proof construction instead of
final products, to be clear about what do they expect from students when they are asked to prove
and to provide an opportunity to learn how to make proofs. “In general, professors should avoid
“dumbing down” their assessments by asking routine questions that can be answered by mimicking.
One needs to modify the “didactic contract” in order to achieve this; otherwise, questions requiring
genuine problem solving and proving will be considered “unfair” ” (Selden & Selden, 2010, p.414).
We support that “university teachers should consider including a good deal of student-student and
teacher-student interaction regarding students’ proof attempts, as opposed to just presenting their
own or textbook’s proofs” (cf. Selden & Selden, 2007, p. 114). Finally, in order to gain control,
students need to master meta-knowledge about proof; “the difficulty of students to reach a structural
axiomatic proof scheme suggests that a capstone course including some attention to meta-
mathematics as a topic might be of value to mathematics majors” (Harel and Sowder, 1998, p. 280).
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Several recent textbook studies focus on opportunities to learn reasoning-and-proving. They typically
investigate the extent to which justifications are general proofs and what opportunities exist for
learning important elements of mathematical reasoning. In this paper, I discuss how a particular
analytical framework for this might be refined. Based on an in-depth analysis of certain textbook
passages in upper secondary calculus textbooks, I make an account for analytical issues encountered
during this process and identify aspects of reasoning-and-proving in textbooks that might be missed
unless the framework is refined. Among them there are characterizations of generality, use of
different representations, logical and mathematical structure, and ordering of material and student
activities. Finally, implications beyond textbook research are discussed.

Keywords.: Reasoning-and-proving, mathematics textbook, upper secondary calculus.
Introduction and background

Almost two decades ago, Hanna and de Bruyn (1999) pointed out that textbook research with specific
focus on reasoning and proving was rare. Even though a number of papers with such a focus have
been published in prominent journals since then, the field is still young. While the ultimate goal is to
come up with well-founded prescriptions for textbook design, research is still striving to describe the
current state of the art for reasoning-and-proving in textbooks (Stylianides, 2014).

Several studies have focused on (potential) opportunities to learn reasoning-and-proving (RP).
Textbooks from different stages in mathematics education, from different educational contexts, and
from different content areas have been studied (e.g., Davis, Smith, Roy, & Bilgic, 2014; Nordstréom
& Lofwall, 2006; Otten, Gilbertson, Males, & Clark, 2014; Stacey & Vincent, 2009; Stylianides,
2009; Thompson, Senk, & Johnson, 2012). They typically include one or several of the following
aspects of RP: generality (are statements justified with proofs or specific cases?), elements of proof-
related reasoning (are students asked to make and investigate conjectures, find and correct errors,
design counter examples?), proof methods (direct, indirect, by contradiction), purposes of proof
(conviction, verification, discovery etc.), levels of formalism, and mathematical structure.

The variety of analytical frameworks developed for textbook studies can make it difficult to compare
findings. However, some researchers have purposefully chosen to use frameworks and methods
developed by others. For instance, the framework by Thompson et al. (2012) has been used with
slight modification by Otten et al. (2014) and Bergwall and Hemmi (2017), and it was the basis for
Bergwall (2015). Their framework is similar to the one developed by Stylianides (2009), which also
has been used by Davis et al. (2014). While this simplifies comparison of findings, there is a risk that
certain aspects of RP always are missed in the analysis. The purpose of this paper is to examine such
potential aspects in relation to the framework by Thompson et al. (2012) and to contribute to a more
refined conceptualization of opportunities to learn RP in mathematics textbooks.
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Theory and analytical framework

Mathematics textbooks are widely used in classrooms around the world and are important links
between national curricula and student learning (e.g., Stein, Remillard, & Smith, 2007). Tasks and
expository sections, as they appear in a textbook, are potential sources for opportunities to learn RP.
The concept of RP goes beyond formal proof and includes proving elements such as developing,
outlining, or correcting an argument; deriving a formula; making or testing a conjecture; and
providing a counterexample.

In this paper, I will focus on opportunities to learn RP through justifications in expository sections. I
will use the framework and analytical procedure by Thompson et al. (2012). They employ a four item
framework for justifications: A general proof is named a general justification (G), a deductive
justification based on a generic case is named a specific justification (S); if the authors explicitly ask
the student to provide a rationale it is referred to as justification left to student (L); and otherwise
there is no justification (N). As in Bergwall and Hemmi (2017), I include all non-proof arguments in
the S-category.

Stylianides (2009) uses a more refined framework with a separate category for specific justifications
that are not generic. Otten et al. (2014) made modifications to the framework by Thompson et al.
(2012) and distinguish between specific and general statements. They also have additional categories
for justifications that only outline the general proof and for justifications that can be found in past or
future lessons. We have adopted Thompson et al. (2012)’s methodology for the present and other
studies (Bergwall, 2015; Bergwall & Hemmi, 2017). It has been put forward that mathematics
education research needs more of cumulative research (Lesh & Sriraman, 2010) and we want to
compare with — and build on — Thompson et al.’s extensive results on US upper secondary textbooks.

Textbook sample and analytical procedure

Cases for the present paper are chosen from the two most commonly used textbooks in Sweden and
the only Finnish textbook available in Swedish (for Finland’s Swedish speaking minority):
Alfredsson, Bréting, Erixon, and Heikne (2012); Szabo, Larson, Viklund, Dufiker, and Marklund
(2012); and Kontkanen, Lehtonen, Luosto, Savolainen, and Lillhonga (2008). I refer to them as SW1,
SW2, and FI1 respectively.

In Bergwall and Hemmi (2017), we report our findings from an analysis of all expository sections
and students’ tasks on integral calculus in these textbooks (and others). In that study, we identified
all mathematical statements presented as results and categorized their justifications using the
framework described above. Like Thompson et al. (2012), we also checked if there were opportunities
for the students to conjecture the result, how the statements were labeled, and what proving methods
were used. Like researchers always do during such processes, we encountered a number of analytical
difficulties. In the present paper, I will focus on these difficulties and on other issues that became
apparent when the textbooks were compared to each other. I consider them a relevant base for
discussing the development of frameworks for RP opportunities.

An upper secondary textbook cannot present a general theory for integral calculus. Thus its authors
face the problem of what kind of justifications to include. This makes this topic relevant when
examining frameworks for opportunities to learn RP. I will illustrate my findings with an analysis of
the sections where students first encounter the definition of primitive function, the statement of the
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representation formula F(x) + C for all primitive functions to F’, and the justification of this result.
This particular choice was made since it includes a complete definition-theorem-proof chain for a
central concept and a non-trivial result. Furthermore, the textbooks present this particular content
quite differently.

Analysis and results

The analysis and results are presented as follows. I give a condensed description of how each textbook
treats primitive functions, following the chronology of that textbook. This description will include all
details needed to: (1) make an analysis according to the Thompson et al. (2012) framework, (2)
describe analytical difficulties, and (3) make my points about the need to further develop the
framework. Aside from the textbook’s definition, justification and statement, 1 describe material
placed immediately before, after, and in between them if such exists. This is followed by my analysis
and description of analytical difficulties and other issues. Finally, I make a short summary of aspects
of RP opportunities that could be better incorporated in the framework.

For easier reference, the descriptions of the justifications are presented as numbered lists. Note that
the representation formula can be expressed as an equivalence. Therefor the (trivial) statement that
F(x) + C is a primitive function to F'(x) will be referred to as ‘the sufficiency’, while the (non-
trivial) statement that @/l primitive functions have this form is referred to as ‘the necessity’.

SW1 (Alfredsson et al., 2012, pp. 173-174)

Before. There is one exercise where the student, based on graphical representations, shall identify
which function has a certain derivative, and another where the student shall draw two different graphs
with the same derivative. This is followed by a short note that it now is time to turn the problem of
finding the derivative around.

Definition. The following text is framed and labelled ‘Primitive function’: “A function F is called a
primitive function to f if F'(x) = f(x).”

In between. The authors write about three questions that need to be answered: How to find one
primitive function, a// primitive functions, and the primitive function satisfying a certain condition?

Justification.

1. x?and x? + 5 are presented as examples of functions with derivative 2x and the reader is told
that “whatever constant C we add to x? we get a primitive function to f(x) = 2x”.

2. There are plots of the graphs to x? + 1, x?, x> — 1 and x? — 2, and the authors write:
“Obviously, graphs to functions with the same derivative must for every x-value have the
same slope. Hence the graphs have the same form, they are only translated in the y-direction”.

3. The authors continue: “This means that if f(x) = 2x then every function F(x) = x? + C,
where C is a constant, is a primitive function to f(x)”.

4. The authors ask if there are other functions with derivative 2x and immediately answer that it
can be proven that there are no such functions.

Statement. The following text is framed and labelled ‘Summary’: “If F(x) is a primitive function to
f(x) then F(x) + C, where C is a constant, denotes all primitive functions to f(x)".
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After. There are two worked examples illustrating how primitive functions are determined, a table
with some elementary primitive functions and then a student exercise set.

Analysis. (1) provides two specific cases for the sufficiency (x? and x? + 5), and it is said in words
(without explanation) that any additive constant works. The necessity is touched upon in (2). This
might be meant as an intuitive argument. But it is merely a formulation in words of the statement
itself with no further warrants for the conclusion. The authors also chose to return to the sufficiency
in (3) before they return to the necessity in (4), but once again without any argument. This means that
in relation to the framework by Thompson et al. (2012) the sufficiency is justified with a specific case
(S) and that there is no justification (N) for the necessity.

Analytical difficulties. The first difficulty was to decide if this justification should be counted as one
or two. In Bergwall and Hemmi (2017), we chose the second alternative. However, if the unit of
analysis is the justification of the statement as it is formulated in the textbook one could also choose
the first. Then there are at least two alternatives: the justification receives the code N (since there are
not justifications for both directions) or the code S (since there is a specific case justification for at
least one direction).

The second difficulty was whether (2) should be counted as an intuitive justification of the necessity
and receive the code S instead of N, since it seems to have a convincing purpose.

Other issues. Even a specific case such as x? + C has some generality to it: the identity (x? + €)' =
2x holds for all x. This indicates that when dealing with functions there is room for a more nuanced
way of describing justifications than the categories G and S admit. Also, if the textbook statement
had been that x? + C denotes all primitive functions to 2x, then the justification offered for the
sufficiency is a general proof.

Summary. The analytical framework/method should be developed to better account for opportunities
to learn: the difference between an equivalence and an implication and how such are justified; the
roles of different kinds of non-proof justifications, such as intuitive arguments based on visual
impressions from a drawing of an “arbitrary” case; and that justifications can be specific in different
ways when statements include several kinds of variables (dependent and independent), and that
whether a justification is general or not also depends on how general the statement is.

SW2 (Szabo et al., 2012, pp. 154-155)

Before. The authors demonstrate how velocity can be obtained by differentiating the distance function
and then state that the opposite problem can be solved by asking which function has a certain
derivative. In the margin there is a table with some elementary derivatives.

Definition. The following text is framed and labelled ‘Primitive function’: “A function F is a primitive
function to f if F'(x) = f(x).”
Justification.
1. x?, x*+5,and x? — 4 are given as examples of functions with derivative 2x and in the
margin it is emphasised that the derivative of a constant term is 0.

2. The authors write: “You can add and subtract any constant to a primitive function without
altering its derivative. Thus a given function has an infinite number of primitive functions”.
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Statement. The following text is framed and labelled All primitive functions’: “If F'(x) = f(x) then
F(x) + C, where C is a constant, gives all primitive functions to f(x).”

After. There are two worked examples illustrating how primitive functions are determined followed
by a student exercise set.

Analysis. The sufficiency is justified with three specific functions in (1). That any constant C can be
added/subtracted is explained in (2). However, it is not clear if the first sentence cited in (2) refers to
a primitive function to any function or to a primitive function to 2x. In the former case, the argument
could have been expressed symbolically as (F(x)+ C)' = F'(x), which most teachers and
mathematicians would have accepted as a proof. In the latter case, the sufficiency is only justified
with a specific case. Concerning the necessity, there is neither a justification nor a remark that there
is something more to prove. Summing up, this means that there is an ambivalence concerning the
sufficiency ((S) or (G)) and that there is no justification (N) for the necessity.

Analytical difficulties. The question arises whether (2) is a general proof or not. There are two issues
here: The use of words instead of algebraic symbols, and clarity in what the authors refer to.

Other issues. When comparing SW1 and SW2, we see at least three differences even though the
classifications of the justifications are the same. First, SW1 discusses the necessity and states that it
can be shown that there are no other primitive functions, which SW2 does not. But neither textbook
clearly expresses the representation formula as an equivalence. Second, SW1 uses graphic
representations and describes the meaning of the statement in terms of slope and form which SW2
does not. Third, SW2 is less vague in its labelling and formulations. While SW1 labels the statement
“summary” and expresses that F(x) + C “denotes” all primitive functions, SW2 uses the label “All
primitive functions” and expresses that F (x) + C “gives” all primitive functions.

Summary. The analytical framework/method should be developed to better account for opportunities
to learn: what needs to be justified, what has been left out of a certain justification, or if a justification
is a proof or not; the role of different forms of representations; and the structure of mathematics, i.e.
what part of a mathematics text that is a definition, a statement, and a proof, and what their different
roles are.

FI1 (Kontkanen et al., 2008, pp. 7-8)

Definition. The following text is framed and labelled ‘Primitive function’: “Assume that the functions
f and F are defined in the open interval I. The function F is a primitive function to f for every x € I,

ifF'(x) = F(x).”

In between. In worked examples, the authors demonstrate how one checks if a certain function is a
primitive function to another given function. In one of these examples, it turns out that two different
functions can be primitive functions to the same function. However, the algebraic descriptions of
these functions are not such that it is obvious that they only differ by an additive constant.

Statement. The following text is framed and labelled “theorem”: “Assume that F; is a primitive
function to f. Then all functions of the type F(x) = F, (x) + C are primitive functions to f. The
function f has no other primitive functions.”

Justification. The justification is labelled “proof” and divided in two steps. First the sufficiency is
justified by differentiation of F(x) = F, (x) + C. Then the necessity is justified using the fact that if
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a derivative is 0 everywhere the function is constant. For this fact, there is a reference to a theory
section at the end of the book.

After. It is pointed out and illustrated in a diagram that the additive constant C corresponds to a vertical
translation of the graph. The notation [ f(x)dx is introduced. This is followed by three worked
examples on calculation of primitive functions and a set of student exercises.

Analysis. The sufficiency and the necessity are both justified with general proofs (G).
Analytical difficulties: There are none that have not been mentioned so far.

Other issues: In FI1 it is clear that the statement contains two parts even though it is not formulated
as an equivalence. The justification is labelled proof (SW1 and SW2 have no labels on their
justifications). The justification comes after the statement (not before as in the Swedish books). There
is a graphical interpretation of the statement but it is put after the proof (not before as in SW1) and it
seems to have the purpose of illustrating the meaning of the statement (and not to justify it as in SW1).
FI1 is the only textbook that emphasizes that being a primitive function actually is a global property
(i.e. that F'(x) = f(x) should hold for a/l x in an interval). However, as in SW1 and SW2 the
definition is phrased using the word ‘if” even though it should be interpreted as ‘if and only if.

SW1 and SW2 have activities and/or worked examples before the definition which together with their
justifications give the student an opportunity to discover and conjecture the statement. In FII the
section starts with the definition. The indefinite integral notation is used throughout FII but is
completely avoided in SW1 and SW2.

Summary. The analytical framework/method should be developed to better account for opportunities
to learn: mathematical formalism, detail and notation; different purposes with different forms of
representation; the conjecturing as well as the verifying nature of mathematical work; and the
importance of clear definitions.

Discussion

When opportunities to learn RP are studied in textbooks there are several aspects to take into account
and there is always a risk that important aspects are left out. The examples mentioned above illustrate
a number of such aspects identified when a specific analytical framework was applied to a few
textbook passages on primitive functions. Here I chose to discuss the importance of four such aspects
of RP and their relevance in a refined framework for RP.

The first aspect is generality and relates to opportunities to learn what makes a justification a proof.
Students’ difficulties with understanding the difference between a general proof and an example are
well-established (e.g., Harel & Sowder, 2007). However, justifications can have different levels of
generality, or ‘scope of variation’, which opens up for sub-categories of non-proof justifications (e.g.,
Bergwall, 2015). Also, a justification must be judged in relation to the statement’s formulation and
the level of detail in relevant definitions. Thus an analysis of textbook justifications should include
an analysis of statements (which Otten et al. (2014) do) and definitions.

The second aspect concerns forms of representation and relates to opportunities to learn how proofs
are communicated. Sometimes a justification is better expressed in words but often algebraic symbols
bring more precision and detail to the argument. Graphical representations may be used to illustrate
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meaning as well as the idea behind an argument. Frameworks should take the use of different forms
of representation and their roles and purposes into account.

The third aspect is structure and relates to opportunities to learn the role of proof in mathematical
theory. Here I include the logical structure of individual definitions, statements and justifications as
well as the overall structure of the mathematical theory, with its definitions, theorems and proofs, and
the connections between them. To some extent this is captured in an analysis of labeling (as in
Thompson et al. (2012)) and references to other lessons (as in Otten et al. (2014)).

The fourth aspect is about ordering of the material, including student exercises and worked examples,
and relates to opportunities to learn different purposes of proof, and to how justifications can serve
different educational purposes. Student investigations, specific cases and intuitive arguments placed
before a statements can emphasize the creative and conjecturing side of mathematical work, while
formal general proofs placed after the statement can emphasize the verifying and organizing side.

All four aspects have one thing in common. They concern proofs and justifications as objects and not
only as processes (e.g., Sfard, 1991). To analyze if textbooks offer opportunities to understand proofs
and justifications as objects, the analytical frameworks and methods need to focus on opportunities
to learn object properties of proofs and justifications. Generality, forms of representation, structure,
and ordering are examples of such properties.

Finally, development of frameworks and methods that better capture important aspects of RP are of
importance not only for textbook analysts and textbook authors. Similar frameworks can be used for
analyzing lecture scripts and teaching episodes. Hence they can also aid teachers when they plan their
lectures and teaching elements. A detailed framework risks being of limited analytical use but is an
important contribution when conceptualizing opportunities to learn RP.
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Cognitive unity of theorems, theories and related rationalities
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The construct of cognitive unity of theorems was introduced twenty years ago to identify suitable

conditions for students’ “smooth” approach to proving. In this paper the Habermas’ construct of

rationality, adapted to mathematics education in previous research, is used to identify some factors
in the activation of cognitive unity of theorems. In particular, I consider the dependence of
cognitive unity on the specific rationality (e.g. analytic geometry rationality, or synthetic geometry
rationality) according to which a conjecturing and proving problem is dealt with. The analysis of
some examples will provide evidence for it, together with hints for further research.

Keywords: Theorems, conjecturing and proving, cognitive unity, proving as rational behavior.
Introduction

“Cognitive unity of theorems” (CUTHE) is a construct introduced in Garuti, Boero, Lemut &
Mariotti (1996) to account for a phenomenon detected in a grade 8 (13-years-old students)
classroom engaged in a conjecturing and proving activity, concerning a theorem of space geometry
contextualized and verbally expressed in terms of Sun rays (instead of straight lines) and Sun
shadows (instead of shapes projected on a plane according to parallel projection rules). The
conjecturing task (see Garuti et al, 1996) may be shortly reported this way: “Is it possible that the
Sun shadows of two non-parallel sticks are parallel on the ground? If yes, under which
conditions?”. After comparison and standard re-phrasing (“if... then...”) of their conjectures,
students were asked to validate their statements by “general reasoning”. We observed that, while
trying to validate their conjectures, several students resumed some pieces of personal reasoning
(e.g. ways of looking at the Sun rays and the Sun shadows) developed during the production of the
conjecture and the search for reasons for its validity, and arranged them in a deductive chain of
statements. The ways of looking at the Sun rays and the space relationships had been different for
different students; those ways corresponded to the different ways of proving the theorem by them.
After having found other theorems (in geometry, and in elementary arithmetic) for which students
behaved in a similar way, we defined “cognitive unity of theorem” (CUTHE) what happens for
some theorems when:

during the production of the conjecture, the student progressively works out his/her statement
through an intensive argumentative activity functionally intermingled with the justification of the
plausibility of his/her choices. During the subsequent statement-proving stage, the student links
up with this process in a coherent way, organizing some of the previously produced arguments
according to a logical chain (Garuti, Boero, & Lemut, 1998, p. 345).

The CUTHE construct was also extended to the case of the relationships between the exploratory
phase of proving a theorem, and the subsequent construction of a proof for that theorem (Garuti et
al., 1998): indeed, the exploratory phase of proving shares some common aspects with conjecturing
(as re-construction of the meaning, and appropriation, of a statement; and identification of elements
for its validity). The construct of cognitive unity resulted in various research developments.
Pedemonte (2007, 2008) performed studies in which (given a theorem for which CUTHE is
accessible to students) the mechanism of arranging arguments produced in the exploratory phase
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does not result in a proof for some students, due to their difficulty of re-arranging inductive or
abductive arguments into deductive arguments. These difficulties are not likely to emerge in
algebraic conjecturing and proving (Pedemonte, 2008), while they frequently emerge in the case of
plane geometry (Pedemonte, 2007). Leung and Lopez Real (2003) investigated CUTHE in the case
of computer-based learning environments, which change the nature of students’ exploration and
make CUTHE difficult to activate, finding out ways of activating it in the new situation. Fujita,
Jones and Kunimune (2010) studied conditions under which CUTHE may be activated in the field
of synthetic geometry: they “analyze the circumstances when students unite, or not, their conjecture
production and proof construction”; the potential of geometrical constructions for the activation of
CUTHE was explored. The quoted studies suggest the opportunity of investigating the conditions
for the activation of CUTHE for a given theorem. Boero et al. (1998) started a discussion on it,
taking into account both the student (her skills, her knowledge and expertise in a given field of
mathematics) and the field of mathematics in which a given statement is dealt with. Douek (1998)
analyzed the individual variety of exploration strategies and their effects on conjecturing and
proving; at present (personal communication) she is further deepening the idea of subject-relativity
of CUTHE, together with the relationships between the quality of student’s exploration (including
its semiotic features) and the construction of the proof. In this paper I will try to identify some
aspects of the relativity of CUTHE referred to a given system of discursive practices that concern
the truth of statements, the ways of producing and validating them, and the ways of communicating
with others - i.e. a “rationality”, according to Habermas (1998).

Theoretical assumptions
Mathematical theory

It is possible to define a mathematical theory (shortly, a theory) by its characteristic components:
primitive notions, and definitions related to them; postulates; inference rules to get true statements
from the postulates and other statements proved as true. ‘Characteristic components’ depend on the
historical period and, in a given historical period, on epistemological assumptions that may be
different, according to different fields of mathematics. The case of Euclidean geometry before and
after Hilbert’s Grundlagen der geometrie is a well-known paradigmatic example of historical
change in the ways of considering the requirements of a mathematical theory. In this paper, we will
consider the following theories: Synthetic geometry (in particular, Euclidean geometry); Analytic
geometry (including the algebraic treatment of conic sections); Elementary, verbal-semantic
number theory (evidence for truth and inference rules rely on properties of the concept of number
and its representations); Elementary, algebraic-formal number theory (evidence for truth of
statements comes from the interpretation of an algebraic expression derived, through suitable
syntactic transformations, from the algebraic expression which represents the problem situation).

Theorem

Mariotti (2001) defines a theorem as a statement and its proof with reference to a theory (and
related inference rules). The definition results in the possibility of considering different theorems
with the same statement (in particular, when different proofs referring to different theories are
available). The definition encompasses theorems related to various kinds of theories and related
inference rules: Euclid’s as well as Hilbert’s geometry; analytic geometry; graph theory, with its
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reference to visual objects; 19th-century probability theory as well as Kolmogorov’s axiomatic
theory, etc.; and the different ways of considering proof since the Greeks, including verbal-semantic
proofs (like in Euclid) and modern algebraic-formal proofs of arithmetic statements.

CUTHE and Habermas’ rationality

In this paper we are interested in CUTHE, one possible aspect of the conjecturing and proving
process, in order to identify for which theorems (in Mariotti’s sense) it may be easily activated, thus
we need a comprehensive frame to deal with the process of proving and its relationships with the
product (proof) to be built up in a given theory. Habermas (1998, pp. 310-317) deals with the
complexity of discursive practices according to three interrelated components, concerning:
knowledge at play, and the answer to “why is it true” questions in a given cultural context
(epistemic rationality); action and its goals, and strategies to achieve them, to be evaluated
(teleological rationality), communication and related, intentional choices in a given social context
on a given subject (communicative rationality). In Boero & Planas (2014) a detailed elaboration of
the reasons for adapting Habermas’ construct to mathematics education is presented, with
references to how it has been used in different studies. In the case of proof and proving, according
to Mariotti’s definition of theorem, the adaptation of the Habermas’ construct concerns:

e criteria for validity of inferences and truth of statements within a theory, and their dependence
on historical periods, mathematical domains, and institutions and cultures. Inferences may rely
on visual evidence, or conceptual meaning, or syntactic transformations, etc.;

e problem solving strategies that may be adopted to reach the goal of proving, along with their
effectiveness; strategies may use analogies, abduction, and so on. Strategies and exploration are
not constrained within the border of the reference theory;

e the choice and use of appropriate communication means for proof in a given context,

together with the relationships among them, taking into account the goal of the proving process — a
proof, conforming to requirements specified for the first and the third components. The expression
‘rationality frame’ will be used to put into evidence the system of epistemic constraints, strategies
and forms of communication, which works as reference for proving and proof in a given theory.

Examples

Moving to the school, the role of the following examples is to provide evidence for the hypothesis
that CUTHE depends, for the same statement, on the specific rationality frame in which a
conjecturing and proving problem is dealt with by the student; and also to provide elements for
further investigation. The examples will include some excerpts from students’ think aloud solving
processes. Italic is for written texts. (...) is for omitted sentences. ... is for a pause in oral speech.

Example 1
The same conjecturing and proving problem was proposed in grades VIII and IX: “Consider all the
products of three consecutive natural numbers. What is their GCD? Prove that it is their GCD”. S-A
is a grade VIII (13-years-old) student not yet familiar with the use of letters to prove:
Student S-A: [-2-3=6 2-3-4=24 3-4-5= 60 10-11-12=1320; it is evident that 6
is the GCD of the first three products, because it is the greatest divisor of the first
product and a divisor of the other products. Is it a divisor of 13207 ... Yes, 1320 is
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an even number divisible by 3 because the sum of its digits is a multiple of 3.
Then 6 might be the divisor of all the other products too. But why? Probably, by
looking at these four products, all the products are even... But why? OK, one
factor is always even! Even numbers go two by two, thus among three numbers
one number ... one number at least is even, and they may be two, like in the case
of 2-3-4. Look at, three is there! And a multiple of three is in the last product!
Why? In the case of 2, multiples go two by two ... In the case of 3, numbers go
three by three. That is the reason! Now I try to write down the general reasoning:
The greatest common divisor is 6 because every product is divisible by 6 because
every three consecutive numbers contain one even number (multiple of 2) and one
multiple of 3, because multiples of 2 go two by two, and multiples of 3 go three by
three (The teacher writes the following question: Why greatest?) (after a while)
Because the first product is divisible by 6, and no greater divisor is there.

S-A resumes the examples, which conjecturing was based on, to identify general reasons for the
truth of the conjecture. The intention of proving is related to the emerging conjecture, through “But
why?” self-posed questions of epistemic relevance. A narrow intertwining between epistemic,
teleological and communicative components of rationality allows the student to move continuously
from exploration to the production of the conjecture, to proof construction by exploiting relevant
elements got during the exploration, and then to proof writing. We may consider S-A’s solution as
an example of CUTHE in the rationality frame of verbal-semantic elementary theory of numbers.

S-B is a grade IX student who tries to solve the problem after some classroom work (about 10
hours) on the use of letters to prove in an algebraic way. Note that he would be free (according to
the didactic contract) to choose another way of solving the problem, as other schoolmates do:

Student S-B: (n+1)(n+2)(n+3)=(n2+2n+n+2)(n+3)=(n’+3n+2)(n+3)=n’+3n’+2n+3n2+9n+6
=n*+6n’+11n+6. 1 do not see anything. But if I consider, for instance, 2-3-4=24
3:4-5=60 5-6:7=210 Isee that... Yes, I see that 6 is always a divisor, because |
see it as 2-3, as one half of 3-4, as 6 in the products. The same for 13-14-15. (...)
24 1is also divisible by 12, and by 8, but 60 is not divisible by 8, but it is divisible
by 12. Let us see 210: (...) not divisible by 12, thus 6 is the only remained
candidate! With algebra: n’+6n°+11n+6=6(n’+1)+nm’+11). 1 do not see
anything. Perhaps it is not true! 16-17-18 (...) not a good counter-example!
Because 18 is divisible by 6. 21:22-23= (the student uses his cellular phone to
make calculations; the product is divisible by 6). Perhaps it is easier by
considering: (n-1)n(n+1)=n(n’-1).... I see nothing! I am not able to prove it!

S-B tries to solve the conjecturing and proving problem in the rationality frame of elementary
algebraic theory of numbers; the difficulty to produce a conjecture in that frame is overcome by
moving to the rationality frame of verbal-semantic theory, where afterwards he will also try to
dispel a doubt on the truth of the conjecture by considering a further, more elaborated example.
Differently from S-A, no effort is addressed to find general numerical regularities that might be
exploited to build up a verbal-semantic proof. In terms of rational behavior, this is an example of
lack of connection between two different strategies (teleological aspect): to produce the conjecture
and afterwards to provide some empirical evidence for it; and to produce a general reasoning for
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proving. As a consequence, CUTHE does not work in the rationality frame where it could have
been activated (verbal-semantic theory). The same happened with the other students who tried to
build up an algebraic - formal proof. Note that an algebraic - formal validation of the statement
may be performed either in combinatorics, or in modular arithmetic. Some schoolmates get the
conjecture in the rationality frame of verbal-semantic theory of numbers, then they consider the
products (n+1)(n+2)(n+3) or (n-1)n(n+1) and realize that in these products one number is divisible
by three and at least one number is divisible by two; thus proving still relies on semantic
considerations related to the number line and the positions of multiples of 2 and 3 in it, like in the
case of S-A. The algebraic expression of the product is only a device to favor the transition to a
general reasoning. CUTHE works thanks to the intention of finding general regularities and a proof
in the same rationality frame of verbal-semantic theory, where the conjecture had been produced.

Example 2

A conjecturing and proving problem was proposed by the same teacher in grade XI, in three parallel
classes, as an individual task: “Among the triangles with a given side and the same perimeter, find
the triangle with the greatest area”. Those classes were familiar with conjecturing and proving in
number theory (both in a verbal-semantic way and in an algebraic way), and in Euclidean geometry.

The first class at that moment was familiar only with proving in plane Euclidean geometry;
according to the conjecturing style of Euclidean geometry, some students (one third of that class)
got the conjecture (the solution of the problem is the isosceles triangle) by considering that, after
drawing some triangles, an isosceles triangle looks as the “widest” one (students say: “the fattest™)
among the drawn triangles (but three students got the conjecture of a right-angled triangle with the
same considerations); a few students got the conjecture through a “limit & symmetry” consideration
related to the fact that, when the triangle becomes strongly asymmetric, the surface within it
becomes very “small”, if we want to keep the same perimeter. During the discussion on the
produced conjectures, after disproving (through measures) the conjecture concerning the right
angled triangle, some students proposed to consider another triangle with the same height of the
isosceles triangle (thus with the same area), and to try to prove that its perimeter is longer than in
the case of the isosceles triangle. But a rigorous proof is not easy to build up, and in fact no student
built it up, in spite of a long time spent for it in the classroom, by working in small groups (and then
at home as well!); a relatively easy proof needs an auxiliary construction and the use of related
theorems. The exploration to get the conjecture only suggests a first step of a proving process, and
does not provide the ingredients to build up the proof: CUTHE does not work.

The second class had already met conic sections in synthetic geometry (they knew that an ellipse is
the locus of points whose sum of distances from two given points is constant, and its basic
properties concerning symmetry, axes, etc.). In this class, the conjecture was produced in a similar
way as in the first class; but one fourth of students, thanks to the drawings of some triangles with
approximately the same perimeter, arrived also to make a link with the ellipse in synthetic
geometry. Students shared what had been discovered; then (by working in small groups) four
groups out of six were able to solve the proving problem by considering the properties of an ellipse
in synthetic geometry. The exploration provided students with a visual link with the ellipse in
synthetic geometry, thus bridging conjecturing with proving — even if proving did not rely on the
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considerations (“fatness” of triangles) that has generated the conjecture (and thus CUTHE did not
work). Here is an excerpt from S-C’s think aloud process:

Student S-C: (...) Now I have a reasonable conjecture. How to prove it? (student C draws three
more triangles, with the same side in common with the four previously drawn
triangles, and approximately the same perimeter). It is even more evident that the
isosceles triangle has the largest area. But it seems to me that all those triangles
have something in common. Their free edges are ...Yes! I understand: the same
perimeter means that the free edges are on an ellipse. Thus I may try to see if I
succeed to build the proof by using the ellipse. (...)

The third class had already constructed, under the teacher’s guide, the equations of a circumference
and a parabola by translating into algebraic equations the characteristic conditions of those
geometric loci. They had not yet met the equation of an ellipse, or the notion of an ellipse in
synthetic geometry. The teacher suggested to use algebra to solve the problem. Student S-D is a
representative of those students (about one third of the class) who succeeded in finding the
conjecture and proving it. S-D draws three triangles with (approximately) the same perimeter:

Student S-D: I must maximize an expression for the area of the triangle, when x changes:

The maximum is when x=0. Perhaps this is the solution! But I have not
considered the condition a+c=K. And what I found is ... it is obvious: x=0 means
the rectangle triangle. Obvious: in that case the side of length a is vertical,
namely, maximum height of the triangle. But that side has always the same length.
But in this problem a is related to c. I should find how to take the condition a+c=K
into account. Perhaps it should be good to compare two expressions for the height
of the triangle, perhaps... in order to get the area depending only on b and K.
e e

e sy S8 Ti P aekc
ler . 1;"5' H £ﬂ=gf\£€l¢h jﬂﬁ;ﬂiﬂéﬂ'

al_ _]-L:L_..?Hﬁ.-h'ﬂl.-é?:lzglx_é

a-Taghe Too  A=p|/(Egh)~~*

Good! Given K and b, the area depends only on x (algebraic calculations follow)

4= bTCarabe)

Now it works: I see the equation of a parabola; ... if x=b/2 I get the the vertex of
the parabola, it means the maximum... the maximum of the area. (S-D draws an
isosceles triangle) OK, it looks fine: the isosceles triangle looks as the widest one!
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We may observe how (as it usually happens in analytic geometry) conjecturing and proving are
dealt with at the same time, thus CUTHE works. Exploration is driven by the goal to be attained
through algebra, thus the initial figures are not exploited to get a conjecture. The first trial is
abandoned after interpretation of the algebraic result, the second one develops and brings to the
conclusion. Epistemic control works on formalization, choice of syntactic transformations, and
interpretation of results (see Morselli & Boero, 2011, pp. 455-456).

Conclusion and discussion

The aim of this paper was to elaborate the idea of cognitive unity of theorems (CUTHE) by relating
it to the rationality frame available to (or chosen by) students to solve a conjecturing and proving
problem. Through the examples (particularly Example 1, S-A and also Example 2, S-D) we have
seen how the same statement may be produced in a particular rationality frame and then proved in
the same rationality frame by exploiting some elements produced during the conjecturing phase, in
a continuous process where the intention to achieve the conjecture and ascertain why it is true
drives the attention of the student to relevant aspects of the problem situation, useful to build up the
proof. While the same statement of Example 1 resists S-B’s effort of proving it in another
rationality frame. The same for the statement of Example 2 in the frame of Euclidean geometry.

This paper brings some elements of novelty in the field of research, which deals with the
relationships between the exploratory phase of conjecturing and proving (or of proving a given
statement), and the phase of proof construction. Through the use of the rationality construct, the
hypothesis of dependence of activation of CUTHE on the theory chosen as reference for
conjecturing and proving, already briefly presented in Garuti et al (1998), is further elaborated, with
a counterpart in some examples from classroom activities. The rationality perspective provides a
lens to compare (and distinguish between) different rationalities in mathematics, with different
opportunities to validate the same statement by activating CUTHE. The chosen examples
(particularly in the case of S-B if compared with S-A and with some S-B’s schoolmates) also
suggest to move to a deeper consideration of the relationships between the student’s intention (i.e.
the teleological component of her rational behavior) and the production of those elements, which
might be arranged in a deductive chain in order to get a proof. Another, possible research
development (related to Douek’s present work) concerns a connection with what is called “semantic
proof production” in Weber (2005, p. 356-357): in his reported example the student produces a
visual-graphic representation of the sequence (a,)=(1,0,1,0,1, ...) and a horizontal band, which
‘shows’ that the sequence is not convergent to a limit; that “informal representation” suggests and
guides “the formal inferences that (she) would draw”. CUTHE does not work: elements produced
during the exploration are not resumed as steps of the construction of the proof in the rationality
frame of formal Calculus. But those elements allow to bridge the exploration of the proving
situation with the construction of a proof in terms of the teleological component of rationality, with
some analogy with the case of S-C (in Example 2); both cases suggest to widen the idea of CUTHE
by including that kind of productive relationships between exploration and proof construction.

Proceedings of CERME10 105



Thematic Working Group 01

References

Boero, P. & Planas, N. (2014). Habermas' construct of rational behavior in mathematics education.
In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the Joint Meeting of
PME 38 and PME-NA 36 (Vol. 1, pp. 228-235). Vancouver, Canada: PME & UBC.

Douek, N. (1999). Argumentative aspects of proving. In O. Zaslavsky (Ed.), Proceedings of the
23th Conference of the International Group for the Psychology of Mathematics Education (Vol.
2, pp. 273-280). Haifa (I1): PME.

Fujita, T., Jones, K., & Kunimune, S. (2010). Students’ geometrical constructions and proving
activities: a case of cognitive unity? In M. M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of
the 34th Conference of the International Group for the Psychology of Mathematics Education
(Vol. 3, pp. 9-16). Belo Horizonte (MG): PME.

Garuti, R.; Boero, P.; Lemut, E.& Mariotti, M. A. (1996). Challenging the traditional school
approach to theorems: A hypothesis about cognitive unity of theorems. In P. Luis and A,
Guttierez (Eds.), Proceedings. of the 20th Conference of the International Group for the
Psychology of Mathematics Education (Vol. 2, pp. 113—-120). Valencia: PME.

Garuti, R.; Boero, P. & Lemut, E. (1998). Cognitive unity of theorems and difficulties of proof. In
A. Olivier & K. Newstead (Eds.), Proceedings of the 22th Conference of the International Group
for the Psychology of Mathematics Education (Vol. 2, pp. 345-352). Stellenbosch (SA): PME.

Habermas, J. (1998). On the pragmatics of communication. Cambridge, MA: MIT Press.

Leung, A. & Lopez Real, Francis (2002). Theorem justification and acquisition in dynamic
geometry: A case of proof by contradiction. [International Journal of Computers for
Mathematical Learning. 7 (2), 145-165.

Mariotti M.A. (2001). Introduction to proof: the mediation of a dynamic software environment.
Educational Studies in Mathematics, 44 (1&2), 25-53.

Morselli, F. & Boero, P. (2011). Using Habermas’ theory of rationality to gain insight into students’
understanding of algebraic language. In J. Cai & E. Knuth (Eds), Early Algebraization (pp. 453—
481). Heidelberg (DE): Springer.

Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed?
Educational Studies in Mathematics, 66(1), 23—41.

Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM Mathematics Education, 40(3),
385-400.

Weber, K. (2005). Problem-solving, proving and learning: The relationships between problem-
solving processes and learning opportunities in the activity of proof construction. Journal of
Mathematical Behavior, 24, 351-360.

Proceedings of CERME10 106



Thematic Working Group 01

Supporting classroom implementation of proof-oriented tasks: Lessons
from teacher researcher collaboration

Orly Buchbinder
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This paper reports on a professional development (PD) which aimed to support secondary teachers
in incorporating argumentation and proof-oriented tasks in their classrooms. The teachers
interacted with researcher-developed models of proving tasks in a variety of ways, including
modifying the tasks to their classrooms contexts, implementing the tasks, sharing and reflecting on
the experiences. In the process of modifying proof-oriented tasks by teachers some of the original
researcher-intended goals were lost, while other unexpected affordances emerged. This raises
important questions regarding modes of teacher-researcher collaborations around proof-oriented
classroom interventions, and their potential effectiveness.

Keywords: Reasoning and proof, professional development, instructional activities, classroom
interventions.

Introduction

As the body of knowledge on reasoning and proof grows, the focus of mathematics education
research has shifted from examining individual students’ conceptions of proof and theorizing about
potential causes of students’ difficulties with proof towards designing classroom interventions that
aim to remediate these difficulties and provide instructional support for students and teachers in
classrooms (Stylianides & Stylianides, 2016). In this process teachers play a critical role, as they are
responsible for establishing learning environments in their classrooms. In line with the wide
recognition of the importance of argumentation and proving to students’ mathematical experiences
(e.g., Reid & Kipping, 2010) teachers are expected to implement tasks that promote reasoning, and
have students construct and critique mathematical arguments (CCSS, 2010).

While many teachers agree, in principle, with this vision of mathematics classrooms, they often find
them challenging to implement and maintain over time (Brodie, 2010). Moreover, only a limited
number of professional development (PD) settings explicitly focus on argumentation and proving in
connection to classroom practices (Brodie, 2010). Hence there is a need to expand the theoretical
and practical knowledge of successful strategies for supporting teachers in this area.

This paper reports on an experimental model of a PD intended to support teachers in incorporating
argumentation and proving in their classrooms. The following sections describe theoretical grounds
underlying a special feature of the PD: teachers modifying researcher-designed proof tasks for
implication in their classrooms. I illustrate two such modified tasks and analyze them in terms of
affordances for students’ learning, and their (mis)alignment with the original designer’s intentions. |
close by discussing some implications for supporting teachers’ implementation of proof-oriented
classroom activities.
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Theoretical framework
Supporting change in teacher practices: the emphasis on argumentation and proving

Research has identified key features of PD settings that have shown to be successful in supporting
change in teachers’ practices. Among them are: focus on content and pedagogical knowledge, active
learning experiences, establishing strong connections to teachers’ own classroom contexts, and
providing ongoing support for teachers (Copur-Gencturk & Papakonstantinou, 2015). These general
features can be adapted to provide targeted support for teaching argumentation and proving, for
example, by emphasizing mathematical knowledge for teaching proof (MKT-P).

Building on Stylianides’s (2011) notion of “comprehensive knowledge package for teaching proof™,
Buchbinder et al. (2016) suggest that MKT-P includes 4 types of knowledge. Two types are related
to pedagogical content knowledge: (a) knowledge about students’ conceptions of proof, and (b)
knowledge of pedagogical practices for supporting students’ development of correct conceptions of
proof. The other two types of MKT-P involve subject matter knowledge: (c) robust knowledge of
mathematical content involved in a given task, and (d) meta-mathematical knowledge of proof, such
as argument validity, logical connections, types of proof, and the role of examples in proving. These
four types of knowledge were addressed in the design of the PD reported in this study. In addition,
the PD activities established strong connections to teachers’ own classrooms by providing practical
tools for teachers to develop and implement proof-oriented instructional tasks in their classrooms.

Task design

Choosing, adapting and designing mathematical tasks is one of the cornerstones of a teacher’s work.
With textbooks providing only limited opportunities for students to engage in argumentation and
proving (Thompson et al., 2012) teachers have been encouraged to treat textbooks’ tasks as a
starting point for planning instruction: to modify tasks to increase their cognitive demand or develop
their own tasks (Stein et al., 2000). Since PD efforts in this area have seldom specifically targeted
argumentation and proving tasks, the knowledge on teachers developing and implementing such
tasks has been limited. Adding to this concern, Stylianides and Stylianides (2016) argue that it is
unrealistic to expect individual teachers to design their own instructional activities that successfully
target persisting difficulties with proving. On the other hand, Kim (2016) has found that teachers
regularly tend to omit, replace or substitute instructional activities, even when working with reform-
based, research informed curricula, which often compromises the original designer intentions.

This dilemma can be addressed by fostering close collaboration between researcher-designer and the
teacher (Cobb et al., 2003). While the researcher-designer brings in strong theoretical and empirical
knowledge related to proving, the teacher has an intimate knowledge of specific instructional and
institutional context. This partnership model was realized in this study by providing teachers with
researcher-developed prototypes of proving tasks to modify and implement in their classrooms.

Proof-task prototypes

Six prototypes of proving tasks were developed by the author of this paper in a study of secondary
students’ conceptions of proof. The tasks, which can be used as diagnostic tools and as instructional
activities (Buchbinder & Zaslavsky, 2013), were developed in generic form, so they could be
adjusted for a variety of mathematical topics, while maintaining the original structure and goals,
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such as recognizing the limitation of examples for proving general claims, or understanding the role
of counterexamples. In the context of the PD reported herein, teachers received at least one content
specific version of each type of task, and a generic template highlighting task structure. Figure 1
shows an algebraic version of the task True-or-false; and Figure 2 shows its generic version'.

True or False? For each statement below decide whether it is true or false and justify your answer.

1) Every three numbers a, b, ¢ satisfy the equation: | 4) There exist four numbers a, b, ¢, d that satisfy:
a a a+c a C
= =—+—.
b+d b d

b+c b

There exists a number « =1 that satisfies the

equation: a+| 1+ ! =a-|1+ !
a-1 a-1

2) The (positive) difference between the squares of | 5)
any two consecutive natural numbers is equal to

their sum.

3) Every two numbers n, m satisfy the equation: | 6)
I 1 1
—_—t—=
m n

There exist three distinct positive integers a, b,
a+c a

b+c b

c that satisfy

n+m

Figure 1: Algebraic version of the task True-or-False

The task True-or-false targets multiple aspects of proving and refuting. It requires distinguishing
between universal and existential statements, and recognition that the type of statement affects the
role of examples in proving or disproving it. To successfully complete the task, students need to
construct general proofs, construct appropriate counterexamples to disprove false universal
statements, and come up with supporting examples to prove existential statements.

Type of Truth “Always-Sometimes-Never” . .
] ) Type of justification
statement: | value: True for all |Ture for some| True for required
Statement | U/E T/F values values no values
Refutation by a
v
D U F counterexample
2) U T v General proof
Refutation by a
v
3) U F counterexample
4 E T v Proof by a supporting
example
5) E T v Proof by a supporting
example
6) E F v General refutation

Figure 2: The structure of the task 7rue-or-False

The task Always-Sometimes-Never, builds on the task True-or-false by asking whether the
propositions of the statements in the latter task are true for all, some, or no values of relevant
variables. This often requires construction of additional arguments, e.g., although statement #3 in
Figure 1 can be refuted by a single counterexample, one must construct a general argument to show
that no values of variables satisfy the statement. Sequencing these tasks allows to contrast quantified

! For complete presentation of all 6 types of task prototypes see Buchbinder & Zaslavsky (2013).
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statements, which are either true or false, with non-quantified propositions, which truth-value
depends on the value of a particular variable. Creating a combination of statements to addresses all
these aspects of proving is a complex undertaking, which could be supported by using a generic
version of the task (Figure 2). The goal of this study was to explore the potential of using generic
task prototypes to support the work of mathematics teachers with respect to incorporating
argumentation and proving in their classrooms.

Methods

Participants. The study was conducted with 5 secondary teachers, all female, all from different
schools in a Northeastern area in the United States. Their teaching experience varied greatly from 5
to over 30 years. Since the PD was advertised as explicitly devoted to classroom implementation of
argumentation and proving tasks, all participating teachers were motivated to introduce such tasks
in their teaching, but sought to gain practical skills in this area. Hence, the PD aimed to reinforce
already existing teachers’ motivation, provide ongoing professional support, and foster teachers’
sense of self-efficacy as they transformed their practices.

The setting. The PD consisted of 9, two-hour long weekly meetings which took place on the
campus of a state university in the Fall of 2015. During the sessions teachers interacted with the 6
types of researcher-developed proof tasks in several ways: they experienced the tasks as learners,
examined samples of student work pertaining to these tasks, and analyzed opportunities to learn
about argumentation and proving embedded in the tasks. This was done by comparing teachers’
own experiences and student work with the generic task prototype to examine the extent that the
designer-intended goals have been realized. Throughout the PD teachers were encouraged to try out
at least two types of tasks in their classrooms and share their experiences with others.

Modes of Inquiry and Data Sources. All PD sessions were videotaped. Each teacher submitted the
tasks they had created or modified for their classrooms, sample student work and a two-page report
on the task implementation e.g., the mathematical topic, the number of students, and the modes of
work: group, individual, whole class, or combined. Teachers were also asked to describe what kinds
of learning opportunities they think their tasks afforded, and what challenges they encountered as
they created and implemented the tasks. The teachers also completed a short survey assessing the
perceived effect of the PD on their classroom practices.

Results and discussion
Perceived obstacles for classroom implementation

Although all participating teachers expressed their commitment and motivation to incorporate
proof-oriented tasks in their teaching, they also frequently shared concerns about feasibility of such
shifts in their practices. Their concerns included whether incorporating proof-oriented tasks would
compromise curriculum “coverage”, or would take out from the time originally allotted to test
preparation; whether students would be willing to take social risks associated with sharing
mathematical arguments in public, and to critique the arguments of others; and whether students be
willing to engage in proof-oriented tasks that vary in form and content from what they are used to.
These types of concerns reflect teachers’ professional obligations towards the institution of
schooling and towards individual students’ social and emotional needs (Herbst & Chazan, 2011).

Proceedings of CERME10 110



Thematic Working Group 01

Of the total 11 proof tasks created by the teachers, 2 were of their own design and 9 were
modifications of one of the researcher-designed task types: Is this a coincidence?, True-or-false?
and Always-Sometimes-Never. The tasks addressed a variety of mathematical topics in algebra,
geometry, number and operation, and logical reasoning. The modes of implementation involved:
enrichment activities, practice, exam review, or introducing a new topic. In the following I focus on
one teacher, Alison (a pseudonym), to illustrate how she had modified two tasks to fit her classroom
context. These tasks were chosen because they stood out as one of the most creative modifications
to the researcher-designed task prototypes that occurred within this group of teachers.

Alison’s modification of the tasks True-or-false? and Always-Sometimes-Never

Alison has more than 20 years of teaching experience and is well-respected in her school. Similar to
other teachers she joined the PD with mixed feelings: committed to provide students with proving
experiences but sharing the abovementioned concerns. Alison was inspired to create two proof tasks
when her students performed poorly on a particular item on an algebra test: a word problem about
money invested and interest earned in two bank accounts. The students found it challenging to set
up an equation to represent the total amount of money split between the two accounts, using a single
variable. Alison used students’ test responses to create a sequence of tasks: Always-Sometimes-
Never (Figure 3) and a follow-up True-or-false task (Figure 4).

Abwayz, Samatimaz oo Mavar?

Part L: Tom invested 350000 info two occousts. The fiest ocoomnt eores &% interest and
the other acomunt eorns 11% bnterest. How much money did he dnve st at eoch rate i his fotal
interest earmad fram both mvestments was 54 900,

The followang Cards ane podsible Setups 1o desonbe the ameaint of mandy (o svestied for
Tom's investments desiribed abowve. mdicale whelher the sefups are:

Erue Tor all of walues of x,

Eriie Tor some wiilises of x

ar whether there are mo values of x which saglsfy the ser-up of the application

Explain your ressoning.

| &) L}
1 morasns = Lim moooiunt 5
™ scroussr [ 2 arroum [
Tarsl [Ty Testal o4 800
1 €1 (5]
Bl imary wrewidied Blenes wried
Al [ B 0 o
I~ aioust 550,000 = 1 I~ sotounl [
| Tabil L4 000 | Tatal x & S40 000

E 0]

_______ Eeepeeeny _______ ETeepeeny
1m mroLne i Lir scroasr L
bl L [ I mra w = S50 D
Tt 8 + SR B Tkl SR B
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Part II: True or False?
Given: Tom's investment problem.
1) Decide whether each statement is algebraically true or false and explain your reasoning.
2) Then justify whether the statement could be used to represent and support Tem's investment.

Show algebraic work and / or use complete sentence(s) to support your position.

Tom invested $50,000 into fwo accounts. The first account earns 6% interest and the other account
earns 11% interest. How much money did he invest at each rate if his total interest earned from both

investments was $4,900.

#1 _ Money invested

1st account X
2™ account X
Total 550,000

If x represents the amount of money in each account, then x + x = $50,000 for some values of x.

H2 _ Money invested
1st account X
2™ account %
Total 54,200

If x represents the amount of money in each account, then x + x = $4,900 for all values of x.

Figure 3: Two out of 6 items from Alison’s task True-or-false?

Alison’s goals in developing this sequence of tasks were to confront students with both correct and
erroneous charts for setting an equation representing the money split between the two accounts, and
have students analyze, validate or critique the equation setups. In the Always-Sometimes-Never task
students were to determine whether the equation setups are true for all, some, or no values of x,
where x is the amount of money in one account. In the True-or-false task the same setups were
accompanied by conditional statements. Students were to determine whether each equation is
algebraically correct, and whether it can be applied to the given word problem. The tasks were
implemented with 74 students (4 classes). Students worked in groups of 3 or 4 on the Always-
Sometimes-Never task in class, and then completed the True-or-false task at home.

Opportunities gained and lost through task modification

The design on Alison’s tasks reflects the way she balanced her professional obligations. By using
students’ test responses as a content of the tasks Alison minimized social anxiety associated with
presenting and critiquing mathematical arguments. She also addressed her curriculum goals while
engaging students in proof-oriented tasks. The mathematical affordances of Alison’s tasks
encompass many of the original designer intentions. For example, the task Always-Sometimes-Never
provided students with opportunities to reason through a variety of correct and incorrect equation
setups, and evaluate whether they can be true for all, some or no values of the variable. The use of
precise mathematical language echoes the goals of the original design. The two tasks build on each
other, with True-or-false task emphasizing evaluation of conditional (if not quantified) statements.
The tasks reflected additional learning goals Alison had for the students: to distinguish between
equations that are mathematically correct but are inappropriate in the context of the problem.
Further distinctions could be made between equations that do not account for an implicit problem
requirement: the investment in either account cannot be $0 (equations D, E & F); and equations that
do not account for the explicit requirement: the total interest earned must be $4900, meaning that
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equal sums of money cannot be invested in two accounts? (equation A). These distinctions came up
in students’ written responses to the tasks. Alison was very satisfied with students’ interactions with
the tasks, and indicated that next year she plans to use them to introduce the topic of solving word
problems, rather than a test review.

Despite the important affordances of Alison’s task, many of the original proof-oriented goals of the
tasks, such as the limitation of examples for proving general claims, the distinctions between
quantified and non-quantified, universal and existential statements, were not realized in the tasks
setup. Potentially, Alison’s tasks could be used to highlight other issues related to proving, which
although not intended by researcher design, arise naturally in the context of her tasks. Justifications
for dismissing solutions A, D, E and F (Figure 1) bare resemblance to arguments by contradiction —
a proposed equation, assumed as correct, is rejected because it contradicts one of the problem
constraints. Such interpretation could pave a way to discuss proof by contradiction in algebra class.

Conclusions

This paper described an exploratory study that tested a PD model which aimed to support secondary
teachers’ implementation of argumentation and proving tasks in their classrooms. The researcher-
designed tasks served as prototypes after which teachers could model their own tasks. The generic
versions of the same tasks provided additional support for teachers by outlining the structure of the
tasks and highlighting specific proof-related goals. By using researcher-designed tasks as a starting
point for creating their own tasks, teachers became critical partners in designing classroom
interventions to promote students’ engagement with proving. As teachers collaboratively explored,
modified and shared experiences of classroom implementation of their tasks, they negotiated a new
understanding of what it means to engage students in argumentation and proving. In the post-PD
survey, all participating teachers reported increased confidence in their ability to incorporate
argumentation and proving tasks in their teaching. One teacher, called here Jenifer, wrote:

The [PD] classes gave me great ideas to take back to my classroom, to look at proofs very
differently than what I had always thought of as a proof. Proofs do not need to be the static, two
column proofs from my school experience. They can take a couple of minutes or they could be
something to wrestle with for a majority of the block. I liked that the activities were easily
manipulated to fit a specific time frame or wanted outcome.

The study also revealed challenges associated with supporting teachers in developing proof-oriented
tasks. Alison’s tasks show that although she created powerful opportunities for students to engage
with argumentation, some of the original researcher-intended goals, specifically related to proving,
seem to have been lost. The available data sources do not provide sufficient information as to which
aspects of proving were explicitly addressed in class, or whether they were completely
overshadowed by discussions of the algebraic content. Hence, future studies should involve
classroom observations. Finally, the results of this study concur with those suggesting that changing
teacher practices is a gradual process which requires structured support (Brodie, 2010) to help
teachers to develop a view of proof-oriented classroom activities as means to balance their
professional obligations and enhance students’ mathematical learning.

2 Investing $25,000 at 6% in one account and $25,000 at 11% in another account would yield a total interest of $4,250.
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The large corpus of research on mathematical reasoning and justification in the mathematics
education literature has yielded a wide range of tasks that require a mathematical argument to be
established. This paper presents the DIVINE framework that classifies justification tasks by their
nature and purpose as well as the expected element to be provided in the justifications. The
framework is then used as a theoretical basis for appraising justifications produced by mathematics
teachers.
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Introduction

Mathematical reasoning plays a crucial role in mathematics learning at all grade levels. It is a useful
tool for exploring, discovering and understanding new mathematical concepts, for applying
mathematical ideas and procedures flexibly to other situations, and for reconstructing previous
knowledge in order to generate new arguments (Ball & Bass, 2003). To probe into the mathematical
reasoning of students, another tool is needed to make such reasoning visible — justification. With the
emphasis in schools worldwide on developing a broad set of competencies that are believed to be an
imperative for success in the workplaces in the 21 century, greater demands are therefore being
placed on students to reason and justify in the learning of mathematics.

Mathematical reasoning and communication are two key process skills in the framework of the
Singapore school mathematics curriculum (Ministry of Education (Singapore), 2012) that have been
advocated for a long time. The notion of communication refers to the ability of using mathematical
language to articulate mathematical ideas and arguments precisely, concisely and logically (Ministry
of Education (Singapore), 2012). In this sense, mathematical justification is considered part of
communication. But very little is known about the justification ability of Singapore mathematics
teachers and students at the secondary level. I am thus interested to find out more about it and
commenced the investigation with a survey of the various justification tasks that secondary school
students had been tested in the national examinations over the past ten years. The survey has found
that the justification tasks are of varied nature and can be classified into different categories.

This paper seeks to address the following questions: What are the different types of justification
tasks given to secondary school students? How might justifications for the different types of tasks
qualify as acceptable? What elements should be present in an acceptable justification? It presents a
theoretical framework for classifying mathematical justification tasks and discusses the expectation
required in each type of tasks. The structure of this paper broadly follows these strands of work: (a)
a perspective of what justification encompasses, (b) a view of justification tasks and the elements
expected in the justifications, and (c) a discussion of justifications produced by Singapore
mathematics teachers.

Proceedings of CERME10 115



Thematic Working Group 01

Theoretical framework

Justification According to Simon and Blume (1996), mathematical justification involves
“establishing validity [and] developing an argument that builds from the community’s taken-as-
shared knowledge” (p. 28). The notion of justification as a means of determining and explaining the
truth of a mathematical conjecture or assertion resonates strongly with many other researchers. For
instance, it is consistent with Balacheff’s (1988) perception of justification as “the basis of the
validation of the conjecture” (p. 225) — a view also supported by Huang (2005) as well. To Harel
and Sowder (2007), justification for validation serves two different roles: to ascertain the truth of a
conjecture, and to persuade others that the conjecture is true. Even these two roles have slightly
dissimilar intention. In Ellis’ (2007) view, ascertaining the truth is meant to remove one’s own
doubts whereas persuading is one’s attempt to remove others’ doubts. As the discussion reveals,
expressing justification for the purpose of ascertaining truth is a cognitive process whilst convincing
others of the truth is a social process.

The notion of justification focuses traditionally on the notion of proof from the primary to the high
school and university levels in the research literature (see e.g., Jones, 2010; Stylianides, 2007). Thus
proof is viewed as a type of justification in this regard. So I think the definitions of proof available
in the literature can help to deepen our understanding of mathematical justification. A prime
example that stands out is Stylianides' (2007) definition of proof as a mathematical argument made
up of a connected sequence of assertions for or against a mathematical claim. This definition echoes
Hanna’s (1989) definition of proof as “an argument needed to validate a statement” (p. 20) and is
considered by far the most comprehensive meaning of proof.

Mathematical justification encompasses a broad range of arguments besides proof. The types of
arguments that students are expected to produce depend on at least two factors: the cognitive
abilities of students and the nature of the task. For primary and secondary school students,
particularly those in the lower secondary grades, a justification does not need to measure up to a
formal proof. This is because providing a theoretical argument for a mathematical result is
sometimes not required in the light of their cognitive level until they reach higher level of study
(Hoyles & Healy, 1999). This is illustrated by the justification task on algebra asking lower
secondary school students to explain why 2n — 1 is an odd number for any positive integer n. This
task presents a mathematical claim (i.e., 2n — 1 is an odd number for any positive integer n) and
requires the students to provide supporting evidence to show why the claim is true. In short, the
nature of such a task is to validate the claim. Therefore a reasoned argument within the conceptual
reach of the students of this grade level could take the form as follows: with n being any positive
integer, forming two groups of n, which can be expressed as 2n in notation, thus generates an even
number, therefore subtracting one from it will result in an odd number. This justification simply
uses everyday language rather than formal mathematical language, and does not draw on any
theorems as in a typical theoretical argument.

Clearly not all justification tasks require a theoretical argument. Some lend themselves well to
experiential justification, which is mainly supported by specific examples and illustrations.
Consider asking students to justify why the rule a™ x a™ = a™*" is true for any positive integers a,
m and n. The students can rely on intuitive reasoning using several concrete numerical examples in
the justification. This mode of argument may be rejected as an adequate and valid justification of
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the rule because it does not cover all cases of the variables a, m and n. Although such an
experiential justification does not involve any theorems and somewhat lacks mathematical
sophistication, it does convey to some extent student understanding of why the mathematical claim
is true, albeit a far less formal argument than a typical mathematical deductive proof (Becker &
Rivera, 2009). But it is such justification that is valued because it “explains rather than simply
convinces” (Lannin, 2005, p. 235).

Aside from presenting an explanation for or against a mathematical claim, a justification can also
take the form of an elaboration of how a mathematical result is obtained, as pointed out by Becker
and Rivera (2009). Consider, for instance, the topic of pattern generalisation. Becker and Rivera
(2009) and Stylianides (2015) had asked students to justify how they established their general rules
for figural patterns. The nature of this type of justification task expects the students to illuminate
clearly the method used in rule construction. Like the validation task described previously, the
justification for the elaboration task can also be articulated in two different modes: written as in
paper-and-pencil tests and verbalised as in face-to-face interviews. Both modes were evident in
Stylianides’ (2015) study.

Justification tasks  Different types of justification tasks are gleaned from the literature on
mathematical reasoning, proof and argumentation. Justification tasks require individuals to make
mathematical arguments, a process which is integral to mathematics learning in order for the
individuals to make sense of the mathematical concepts and procedures, and learn mathematics with
understanding. Additionally, these tasks provide insight into their thinking and reasoning as well.
Justification tasks can be classified into what I call elaboration, validation and making decision
tasks.

Elaboration justification tasks are very popular in the literature and have been widely used in
research studies by many researchers, including Becker and Rivera (2009), Lannin (2005) and
Stylianides (2015). Such tasks (for e.g., Pizza Sharing in Lannin (2005)) require individuals to
elaborate the approach that was used to obtain a mathematical result. Validation justification tasks
are questions that seek arguments to support or refute a mathematical claim. This kind of tasks (for
e.g., Mr. Right Triangle in Chua (2016)) is used to gain insight into how individuals reason about a
mathematical claim. Making decision justification tasks offer options for a mathematical situation
and individuals have to exercise decision-making power to pick one of the options so as to answer
the question. The geometry test item from the study by Kiichemann and Hoyles (2006) is a case in
point.

Apart from the three types of justification tasks discussed thus far, there is one more type which is
seemingly less common in research studies but popular in the Singapore national examinations for
secondary school students. Consider the algebra task in Figure 1 that requires individuals to make
sense of the given context and then infer the significance of the positive solution of the quadratic
equation from the context. Such a task exemplifies what I call an inference justification task. It is
normally set in a real-world context and seeks an interpretation of a mathematical result.
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A stone was thrown from the top of a vertical tower. Its position during the flight is represented by
the equation ¥ = 50 + 21x — x2, where y metres is the height of the stone above the ground and x

metres is its horizontal distance from the tower.

Explain what the positive solution of the equation 0 = 50 + 21x — x? represents.

Figure 1: Inference task on algebra

In summary, this sub-section has highlighted four distinct types of justification tasks. All these tasks
share a common objective, which is to elicit from someone a mathematical argument for a
mathematical claim or result. As they vary in nature from one type to another, the essential elements
to be expected in the argument for each type of task are therefore also not the same. In the next
section, I introduce the DIVINE framework that classifies justification tasks by nature and purpose
as well as the expected element to be provided in the justifications, and describe its usefulness.
DIVINE is the acronym of the four types of justification tasks: making Decision, Inference,
ValldatioN, and Elaboration.

The DIVINE framework

The conceptualisation and development of the DIVINE framework in Table 1 was informed by the
literature on mathematical proof, reasoning and justification in the field of mathematics education,
by analysis of justifications produced by students and mathematics teachers that I had encountered
in the course of my teaching in recent years, and by my own disciplinary knowledge. It describes the
nature and purpose of the justification tasks, and the expected element to be provided by individuals
in their attempt to produce a correct justification.

Nature of Purpose of Expected element in the justification
justification tasks justification tasks
Making Decision Explain whether... a decision about the mathematical claim with evidence to support
Explain which... or refute the claim
Inference Explain what... the meaning of the mathematical result, with the key words in the
task addressed
Validation Explain why... a reason or evidence to support or refute the mathematical claim
Elaboration Explain how... a clear description of the method or strategy used to obtain the

mathematical result

Table 1: The DIVINE framework
The term nature can be described as the cognitive process that an individual undertakes when doing
the justification task. The nature of the tasks places slightly different demands on thinking and
reasoning. Making decision, inference, validation and elaboration are the four kinds of cognitive
processes that have been identified in this paper. The purpose of a justification task refers to the
reason for making the mathematical argument. Finally, the expected element is used to refer to the
details that an individual is supposed to provide in order to give a correct justification.
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It should be pointed out that although the expected element in a justification indicates what needs to
be given for a particular type of justification task, the resulting justification may not necessarily be
accepted as correct. For the justification to be judged as correct, I think it is imperative to also
examine three other elements of a mathematical argument: the mathematics presented, the clarity in
the argument and what Stylianides (2007) termed as the modes of argumentation. The mathematics
presented refers to the mathematical concepts and procedures used in the justification, including the
definitions and theorems that are used, the calculation that is shown and so on. The clarity in the
argument means presenting the argument in a clear, easy-to-follow, and unambiguous way. The
mode of argumentation concerns how a justification is developed. In other words, the form of the
justification (such as a logical deduction, a proof by contradiction, exposition) has to be taken into
consideration. A brief discussion of the potentiality of the DIVINE framework will now follow.

Usefulness of the framework Recognising whether a mathematical justification is correct is a vital
task for teachers because they often have to evaluate the validity of students’ justifications. But as
Chua (2016) had noted, this task is fraught with difficulties as the teachers might not be clear about
the rigour of justification. They may accept justifications as correct even when certain elements are
missing. Teachers therefore need guidance in teaching justification. So the DIVINE framework
shows them what essential elements to look out for so that they know whether certain details are
still lacking in the justification. Teachers can also discuss the three components of the framework
for the various types of justification tasks with the students to enrich their learning and appreciation
of justification. In this way, students can develop a deeper understanding of constructing
mathematical justification and become more confident in doing it. This pedagogical approach is
particularly useful for those students who do not already have the justifying skill and struggle with
justification. Additionally, for those who get stuck when attempting a justification task, the
framework offers a structure for them to rely on and get unstuck instead of seeking immediate help
from their mathematics teachers.

In the remaining sections, examples of justifications by both pre-service and in-service mathematics
teachers will be discussed to demonstrate the rigour of the DIVINE framework as it currently stands.
The pre-service teachers were Year 2 undergraduates undergoing their first course in mathematics
pedagogy to prepare them to teach secondary school mathematics. The course content covers
problem solving, learning theories and teaching strategies for a range of mathematics topics,
including arithmetic, algebra, probability and statistics. The in-service teachers were from the same
secondary school who attended my professional development workshop. A vast majority of them
have taught mathematics for at least 5 years. The justifications were collected from the various
classwork given to the teachers in my lessons. The names of the teachers are changed to protect
their privacy. The discussion focuses specifically on making decision, inference and validation types
of justification tasks. No elaboration task will be illustrated because the teachers were not given
such tasks to do in my lessons.

Making Decision task: The justifications of Angel, Betty and Carl

The number pattern item in Figure 2 was given to the pre-service mathematics teachers. Before
administering this item, the teachers had learnt the various generalising strategies for deriving the
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general rule for both numerical and figural patterns, but not how to deal with justification tasks.
This item was therefore given to see how they would handle and justify a making decision task.

The first four terms of a sequence are 5,9, 13 and 17.
(a) Find an expression, in terms of #, for the nth term of the sequence.

(b) Explain whether 207 is a term in the sequence.

Figure 2: Making decision task on number pattern

Part (a) was answered correctly by all the teachers. They established 4n 4+ 1 as the general rule of
the sequence. However, the responses for part (b) were more varied, and the justifications produced
by Angel, Betty and Carl are described below.

Angel began with the supposition 4n + 1 = 207 and then solved the equation to obtain n = 51.5.
He concluded: Since n has to be a positive integer, then 207 is not a term. Betty worked out the
difference between 207 and the first term 5 to get 202. Then she wrote: No. All terms in the
sequence are divisible by 4 after being subtracted by 5. 202 is not divisible by 4. For Carl, he started
with the same supposition as Angel and found the value of n. He then stated: n must be a whole
number for the given number to be a term in the sequence. The justifications of Angel and Betty,
but not that of Carl, were considered fully correct. Their justifications contain all the vital elements
for a making decision task: that is, a conclusion supported by evidence. Carl’s justification is
missing the conclusion, thus judged as partially correct. In all the three examples, the justifications
are logical and easy to follow, and the mathematics is correct. Carl’s case is a perfect example to
illustrate the importance of the DIVINE framework. If he had known about the essential elements
that he had to show in his justification, he would have constructed a complete and correct
justification.

Inference task: The justifications of David and Eve

The algebra item in Figure 1 was administered to the in-service mathematics teachers. The item
tested them on their understanding of the significance of the positive solution of the quadratic
equation in the given context. I expected the teachers to explain what the following three parts mean
in the context: (i) y = 0, which in this context means that the stone has hit the ground, (ii) positive,
which represents the forward direction of the throw, and (ii1) the numerical value of the solution,
which refers to the horizontal distance from the tower. However, expecting all three parts was too
demanding, so a reasonable justification should address at least (i) and (iii). The mathematics
teachers were told to construct the justification that would get them the best mark because they were
experienced in-service teachers. The justifications of David and Eve are illustrated below.

David: x metres is the distance of the stone from the tower, when y = 0 (at ground level).
Eve: when y = 0, height above ground = 0, .. stone is lying on ground.

David and Eve showed evidence of their attempt to explain the meaning of the positive solution.
David’s argument was regarded as correct because he justified (i) and (iii) correctly. For Eve, her
justification was not deemed correct since she justified only (i). Her case again underscores the
importance of knowing the critical elements that are needed in the justification, thus manifesting the
usefulness of the DIVINE framework.
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Validation task: The justifications of Faith and George

A geometry item involving a triangle with all three sides provided (15 cm, 8 cm and 17 cm) was
given to the same group of in-service mathematics teachers mentioned above. They had to justify
why the angle opposite the 17-cm side is a right angle. Figure 3 presents the justifications of Faith
and George.

Faith established the condition AC? = AB? + BC* by separately working out the values of AC? and
AB? + BC?, and noticing that both values were equal (see Figure 3a). Subsequently, she inferred
that angle ABC is a right angle. The mode of argumentation is correct, the justification is logical and
easy to understand, but there is a mathematical flaw. The correct warrant to use should be the
converse of Pythagoras’ theorem and not Pythagoras’ theorem. On the other hand, the mode of
argumentation of George’s justification (see Figure 3b) was wrong because he began with the wrong
supposition by assuming angle 4ABC is a right angle, which was what he had to prove. So Faith’s
justification was judged as partially correct whereas George’s justification was wrong.

(a) Faith (b) George

Figure 3: Teachers’ justifications for Validation task on geometry

What’s next and conclusion

The DIVINE framework introduced in this paper is still emerging and will need further testing and
refinement. For instance, it remains to be seen whether the framework can be put into use with
student justifications and justification tasks in other mathematical topics. Furthermore, how do
mathematics teachers judge what qualifies as a correct justification? What elements do they expect
to see in the justifications? How would their judgement differ from peers and mathematics experts?
Such evidence is needed to make the DIVINE framework more robust.
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In this paper, I argue that Habermas’ components of epistemic, teleologic, and communicative
rationality provide insight into the differences in teachers’ support for collective argumentation. 1
examine the teacher’s supportive actions in two different classrooms. In their interactions with
students, the teachers emphasize different components of rationality. I suggest that teachers may act
in ways to support students’ development of components of rationality by asking different kinds of
questions and raise the question of whether it is useful to consider the components separately.

Keywords: Argumentation, proof, geometry, teaching.
Introduction

It is generally accepted that argumentation and proof are crucial to the study of mathematics.
Argumentation has been shown to be particularly important to the learning of mathematics through
social interaction. Numerous examples in the mathematics education literature have unpacked aspects
of arguments in elementary and secondary classrooms (e.g., Krummbheuer, 1995; Pedemonte, 2007);
these cases have focused on the learning of mathematics through participation in argumentation, the
similarity of argumentation to the structure of proof, the analysis of proof as argument, and the role
of the teacher within argumentation. Recent research has examined “successful” argumentation
within classroom discussions (Boero, 2011), argumentation that does not meet expectations (Cramer,
2015), and different aspects of rationality with respect to argumentation (Boero & Planas, 2014).

This paper explores the differences in collective argumentation that can be observed in classrooms.
It addresses a temptation to characterize the argumentation in one classroom as productive and that
in the other as problematic and suggests an explanation for the teacher’s actions in each case can be
found in Habermas’ (1998) constructs of rationality as described by Boero (2006).

Background

In this paper, we explore the teacher’s role in argumentation through the combined lenses of our
interpretation of Toulmin’s (1958/2003) description of arguments in multiple fields, our framework
for teacher support of collective argumentation (Conner, Singletary, Smith, Wagner, & Francisco,
2014), and Boero’s (2006) description of Habermas’ (1998) components of rationality.

Habermas’ (1998) components of rationality have been applied to argumentation in several ways.
Boero (2006) analyzed a seventh grade student’s argument (and the reactions of teachers to the
argument) using three interrelated components introduced by Habermas: epistemic, teleologic, and
communicative rationality. Boero gave the following explanation of these components.

Epistemic rationality is related to the fact that we know something only when we know why the
statements about it are true or false...the crucial requirement is that the person has elaborated an
evaluation of propositions as true and is able to use them in a purposeful way and to account for
their validity. The teleologic rationality is related to the intentional character of the activity, and
to the awareness in choosing suitable tools to perform the activity...The communicative rationality
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is related to communication practices in a community whose members can establish
communication amongst them...rational means that the subject has the intention of reaching the
interlocutor in order that he/she can share the content of communication, with an adequate and
conscious choice of tools to make it possible. (p. 189-190)

Boero concluded that the student acted in a rational way, using all three components of rationality,
while the teachers’ behavior did not meet these criteria for rationality.

Recently, multiple researchers have taken up Habermas’ components of rationality to examine a range
of issues with argumentation (see Boero & Planas, 2014). Within Boero and Planas’ (2014) research
forum report, Douek introduced the construct of rational questioning, suggesting that teachers can
ask students questions in order to “organize the mathematical discussion according to the three
components of rationality” (p. 1-210). The teacher plays an essential role in organizing and supporting
argumentation in classrooms. In this, Habermas’ construct of communicative rationality is key, but
the teacher can also influence the teleologic and epistemic rationality of the classroom community.

We follow Krummbheuer (1995) in adapting Toulmin’s (1958/2003) description of argumentation to
collective argumentation in mathematics classrooms. We define collective argumentation broadly as
any instance in which students or teachers make a mathematical claim and support it with evidence.
Our adaptation of Toulmin’s diagrams (see Figure 1) includes the use of color (line style) to denote
the contributor(s) of components of an argument and the addition of contributions and actions of the
teacher that prompt or respond to parts of arguments (teacher support).

Rebuttal

Pt Y
Data Tou&mu,—..

' Warramt

- - - -

Figure 1: Adaptation of Toulmin’s (1958/2003) Diagram for an Argument

Our framework for teacher support of collective argumentation includes three main kinds of
supportive actions: direct contributions of argument components, questions, and other supportive
actions such as gestures or diagrams (Conner et al., 2014). We defined a teacher’s support for
collective argumentation as any teacher move that prompted or responded to an argument component.
We used Toulmin’s (1958/2003) model to classify the direct contributions of argument components,
and we used an inductive approach to develop categories of questions and other meaningful
supportive actions the teacher used. More details about the development of the framework are
available in Conner et al. (2014).

Methods

The analyses in this paper are based on data collected from a project that investigated the beliefs and
argumentation practices of a cohort of secondary prospective teachers in the southeastern United
States. In particular, the data for this paper include video recordings, field notes, and other artifacts
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from two days selected from a unit of instruction in each of two student teachers’ (Ms. Bell and Ms.
Carr, all names are pseudonyms) classrooms. These days were selected as representative of the variety
of instructional moves observed in each teacher’s instruction. We diagrammed every episode of
argumentation from these days of instruction and categorized every supportive action of the teacher
that we identified. We used Habermas’ (1998) components of rationality to examine the actions of
the teacher within our framework categories.

Episodes from two classrooms

The episodes presented and diagrammed below capture essential qualities of the instruction in each
teacher’s classroom. For each teacher, we present an excerpt of an episode of argumentation, our
interpretation as captured by a partial diagram, and a summary of the teacher’s support for
argumentation in the class. We then examine the teacher’s (and students’) actions using Habermas’
(1998) components of rationality and argue that the teacher’s actions with respect to argumentation
reflect her teleologic rationality. That is, we examine the teacher’s supportive actions as tools to infer
her goals for students’ learning and contributions to class and her classroom norms.

Ms. Carr’s Class

This episode occurred when Ms. Carr and her students were at the beginning of a unit on congruence.
The students had not yet learned any of the triangle congruence theorems. Thus they were proving
figures congruent by their definition of congruence, which required all corresponding sides and all
corresponding angles to be congruent. Ms. Carr posed the problem in Figure 2 to her class; the
students and she worked together to mark relevant parts of the figure, and when we enter the
discussion, they had modified the figure as shown. (They had extended segments BC, AB, and CD,
and they marked angle ABE and angle DCE as angles of interest.)

AB@CD
AB IICD
E is the midpoint of
AB and CD
Prove AAEB @ ADEC
C —» D = D —

Figure 2: Initial Problem in Ms. Carr’s Class and Modification
541 Ms. Carr: Okay. So, what I have marked up here in green, we said are what? What is
their special relationship?
543 Alice: They are alternate interior angles.

544 Ms. Carr: They are alternate interior. Ok. So, let's write that down. ABE, let's call it, and
angle, what is it? Angle DCE...[writes ZABE Z/DCE on board, leaving
space between the two angles] [unrelated conversation/interruption]
Now, I left some space in there. What symbol needs to go, what do we know
about these?

549 Students: {congruent} {congruence}
550 Ms. Carr: Awesome. They are congruent. Why do we know that?
551 Cameron: Because they are alternate interior angles.
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552 Ms. Carr: Alternate interior angles theorem [writes by alt. int. angles thm. on board]

Figure 3 shows the diagram of this excerpt of an argument. Notice that three parts of the argument
were contributed by students with a significant amount of support from the teacher. Ms. Carr asked a
question that prompted each of the argument components, pointed at or wrote something on the board
for each of them, and restated or affirmed each part as well.

Angte ABC and 1
angle DCE are
atermale inbenor

| Angle ABE and
angle DCE are

I
p wg"i‘i | | cmgrwnt(&t!)l-

r~ - -

,«.,,. charmry | Atemate nmonor
o Sagar./ .m(,lcs lmeowm|

I‘t51)

Figure 3: Diagram of First Excerpt of Argument in Ms. Carr’s Class

Argument
COMPONants in
which each
r" of ng l We have thvoe pairs of
¢ —pe  CONGIURNT BNGJES AN I 1 The two tangies are
sides | three pairs of congruent « congruent (658)
angles have .
been recorded | Segments (851-655)

a8 congruent @'

| Definition of I

| congruent trangles
9 G
| (657)

Figure 4: Diagram of Second Excerpt of Argument in Ms. Carr’s Class

A little more than five minutes later, Ms. Carr and her students had compiled all of the information
about the figure into congruence statements. They ended the proof construction by verifying that they
had three pairs of congruent segments and three pairs of congruent angles, warranting the claim that
the triangles were congruent with the definition of congruent triangles. In the diagram for this excerpt
of argument (Figure 4) we see that the teacher contributed the final claim, the teacher and students
jointly contributed the data, and a student contributed the warrant. Ms. Carr prompted both the data
and warrant, and she supported each of these components with actions such as repeating, pointing,
and writing on the board.

Ms. Carr supported her students in making arguments by contributing many argument components,
including approximately one-half of the warrants in her class. In addition, she prompted most
argument component by asking questions (primarily factual answer and elaboration questions,
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Conner, et al., 2014), and she provided additional support for these argument components using other
several kinds of supportive actions (including focusing, evaluating, informing, and repeating actions,
Conner, et al., 2014). The importance of Ms. Carr’s choices in supporting her students’ arguments
becomes clear as we reference Habermas’ (1998) components of rationality. Ms. Carr asked several
questions (line 541, lines 547—-548) that requested a factual answer and then asked for elaboration by
asking the students to justify that answer in line 550. In this interchange we see an assumption by Ms.
Carr of her students’ epistemic rationality. She invited them to participate in the argument and
indicated by her questions that they should have reasons for their statements. This may be an instance
of Douek’s rational questioning, as described in Boero and Planas (2014), although Douek’s rational
questioning seems to presuppose all three aspects of rationality. Ms. Carr seemed to focus on
epistemic rationality for her students, while Ms. Carr’s own statements and actions indicate a focus
on communicative rationality for herself. She repeated or restated (and often wrote the statement on
the board) all of the student-contributed components of the arguments. If we consider the teleological
rationality of Ms. Carr’s actions, they appear to be very goal-directed. Her goal was student
understanding of concepts and procedures. In search of that goal, her goal or focus for students was
on epistemic rationality. She intended to make sure that they knew the reasons for the statements that
were made. Across the class periods, this was evidenced by her many questions prompting argument
components as well as her pervasive prompting and providing of warrants for arguments.

Ms. Bell’s Class

In Ms. Bell’s class, the excerpt exemplifying her instruction involved a task in which students had

measured the interior angles of several polygons. Students were asked to find a formula for the sum

of the interior angles of an n-sided polygon. The brief snippet of class we examine occurred when a

student was presenting his group’s work at the end of class. Prior to this excerpt, a student

representing a different group presented a solution. Martin, the student in this episode, asked to

present his solution because his group found the solution in a different way from the first student.
1444 Martin: All right. T had the chart. This is the sides of the figure. That would be the

sum of the interior angles.

[Martin talks as he constructs a chart containing numbers of sides and
corresponding sums of interior angles for polygons with three to eight sides]

1456 Martin: And then it changes by 180 degrees each time.

1458 Ms. Bell: So Martin, the fact that it changes by the same number each time, when you're
going up by one side, tells you what?

1460 Martin: That it has--that that's the slope.

1461 Ms. Bell: That's the slope. Which means it's? Karin, you said it earlier. What does that
mean when it's?

1463 Martin: Linear.

1464 Ms. Bell: Linear. It's linear, right? If it changes the same amount each time, when you're
going up by 1, it's going to be a linear function.

1466 Martin: So I did f{(s) = 180s

1467 Ms. Bell: What is that 1807

1468 Martin: It's the slope. But that doesn't work out right, because 180 times 3 is like

1470 Ms. Bell: 540
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1471 Martin: [writes 180 x 3 = 540] 540. But then I just subtracted 180 from 540 and it
equals 360. Yeah. So, subtract 360. [Writes f(s) = 180s - 360]
1475 Ms. Bell: So same thing; he got it a different way. When he got to the 540--so he got

this 540 out when he plugging in 3 for his s, and he got 540. We wanted to
get 180 when we plug in a 3. So he said, 'how am I going to get from 540 to
180?" So he found the difference between them and subtracted from this
product. Do y’all see that?

1482 Martin: It works with all of them too.

Figure 5 shows the diagram of this argument. In this argument, Martin (the student) contributed all
of the components except one warrant. Ms. Bell prompted three of the components with questions,
and she supported five of the components by restating or rephrasing Martin’s contributions. In
general, Ms. Bell asked questions of multiple kinds to prompt argument components, and she
contributed some components of arguments, but only about one-eighth of the contributed warrants.
Students in Ms. Bell’s class seemed to contribute more autonomously to arguments, as evidenced by
components that were neither prompted by nor responded to by Ms. Bell.
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Figure 5: Diagram of Argument from Ms. Bell’s Class

We see evidence of Ms. Bell’s teleologic rationality (Habermas, 1998) in her actions and questions
in support of her goal of engaging students in doing mathematics. Ms. Bell modeled actions related
to all three components of rationality, and she seemed to encourage all three components of rationality
in her students. Ms. Bell’s actions show a strong emphasis on developing her students’
communicative rationality, not only in her communication with her students (see line 1475 in which
she restates the student’s argument), but in her encouragement of her student to communicate his
ideas more clearly (e.g., line 1458) and in the student’s instinctive actions and statements (e.g., lines
1444 and following in which he explained the entries in the chart he drew on the board), which
illustrate norms established in this class. Several times after the student gave a claim and warrant,
Ms. Bell seemed to slow down the presentation to make sure it was clear to others, enhancing their
understanding of communicative rationality. But instead of giving all the information herself, she
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asked the student to do so (line 1467). She seemed to be balancing engaging in acts of communicative
rationality herself and encouraging her student to do so. In addition, Ms. Bell assumed epistemic
rationality in her student and encouraged him to express it (line 1458). The beginning and end of the
episode evidence a classroom norm regarding goal-directed behavior and use of appropriate tools
(lines 1444—1455; line 1482). The student indicated by his final statement that he had intentionally
completed his goal of finding, expressing, and justifying the formula for the sum of the interior angles
of'a polygon, showing the teacher’s encouragement of behavior exhibiting teleologic rationality. This
episode illustrates a teacher’s use of rational questioning, bringing the students’ voices into the
discussion and encouraging their implementation and understanding of all three components of
rationality (Douek in Boero & Planas, 2014).

Discussion

The argumentation we observed in the two classes was very different. One classroom was
characterized by a focus on students’ epistemic rationality and the teacher’s communicative
rationality. The argumentation in this class seemed to be both somewhat shallow and more formal
and proof-like. The other classroom was characterized by a more balanced focus on students’
epistemic, communicative, and even teleologic rationality, and we saw the argumentation in this class
as somewhat informal but characterized by student autonomy. The second classroom also illustrated
some intentionality and awareness of components of rationality (although not with those words) in
the interactions, as Douek suggested was necessary (Boero & Planas, 2014). The teachers also used
different kinds of tasks in their classrooms. The choice of tasks in each classroom may also be related
to the teachers’ intentions with respect to the components of rationality; more research is necessary
to examine this question.

Differences were observed in the kinds of questions each teacher asked. Ms. Bell asked a wide range
of questions, while Ms. Carr asked primarily factual answer and elaboration questions. Perhaps the
kinds of questions teachers ask may indicate their focus on a particular component of rationality. It is
an open question as to the significance of these components of rationality in a mathematics class, but
if we want to encourage students to view mathematics as rational and to act in rational ways when
engaging in the study of mathematics, then it seems that it would be helpful for teachers to act in
ways that encourage all components of rationality at appropriate points (as Douek suggested, to
engage in rational questioning, Boero & Planas, 2014). As Boero (2006) suggested, teachers can
model the components of rationality for their students at appropriate times. Perhaps introducing these
components of rationality to teachers could provoke a wider focus. Examining the kinds of questions
teachers ask in conjunction with their argumentation shows promise for revealing which components
of rationality are privileged in their classes. And these components of rationality provide a useful
explanatory mechanism for the differences in support for argumentation observed in classrooms.
Future research will have to examine how important it is for a teacher to engender all components of
rationality and whether it is possible or productive to address each component separately.
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This study discusses the evolution of mathematical proofs in Japanese junior high school geometry
textbooks and the conditions and constraints that have shaped them. We analyse the evolution of
these proofs from their inception in the Meiji era (1868—1912) to the present. The results imply that
features of the Japanese language affected the evolution of proof form in Japan and shaped the use of
proofs in Japan as written, but not oral, justification for mathematical statements.

Keywords: Secondary school mathematics, history of education, textbook analysis.

Introduction

Proving mathematical statements is a very important part of mathematics. However, there were no
proofs in the texts of wasan, the traditional mathematics dominant until the mid-19™ century in Japan.
In wasan, following Chinese tradition, Japanese mathematicians concentrated on elaborating
procedures to solve problems rather than proving statements. As one consequence of the educational
reforms that accompanied the opening and modernization of the country in the Meiji era (1868—1912),
axiomatic Euclidean geometry with mathematical proof was adopted in secondary school
mathematics.

Today, Japanese students learn mathematical proof in junior high school, and often face difficulties
doing so (MEXT, 2009; Kunimune et al., 2009), as do students in other countries (see Mariotti, 2006;
Hanna & De Villiers, 2012). These difficulties vary by country, for two reasons linked to the cultural
and social dimensions of teaching. The first involves what is taught; one recent study compared
France and Japan and showed that proof to be taught, specifically what constitutes a proof and the
functions of proofs, is different between the countries (Miyakawa, 2017). The second reason relates
to how students employ and understand justification and argumentation in their daily life, which
affect how they approach mathematical proof in the classroom and which differ across cultures
(Sekiguchi & Miyazaki, 2000).

The Anthropological Theory of the Didactic (ATD) posits that knowledge taught/learnt in a given
institution (here, the Japanese educational system and culture) is shaped by a process of ‘didactic
transposition’ reflecting the conditions and constraints specific to that institution (Chevallard, 1991;
Bosch & Gascon, 2006). In this paper, we study the didactic transposition of proofs in Japan and the
effects of the cultural and social dimension. We expect that this will help us better understand the
nature of these difficulties and will show the needs for studying this dimension of proof-and-proving
in different countries to improve teaching and learning everywhere.

Methodology

We adopted ATD to frame our research question and determine what should be investigated so as to
better understand the cultural and social dimension of proof. The research question we focused on is
as follows: What cultural and social conditions and constraints shape the nature of proof to be taught
today in Japan? To identify these conditions and constraints, we conducted a historical study of the
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evolution of the proof in Japanese junior high school geometry textbooks from its first appearance
during the Meiji era to the present.

From out of the many textbooks published since the Meiji era in Japan we selected those that were
widely used, to construct a representative corpus. Textbooks from the Meiji and Taisho (1912—-1926)
eras were more important than later ones, since proofs in geometry first appeared in Japan during
these periods and since the way they were presented and taught changed more than in later periods.
For the Meiji period, we identified major textbooks by consulting prior research (Neoi, 1997; Tanaka
& Uegaki, 2015); however, for the Taisho era and up to the Second World War, we had no statistics
on the use of textbooks, and so we selected textbooks that remain relatively well known today and
that have been the topic of historical studies (Nagasaki, 1992). For the post-war era, we selected one
or two textbooks that were widely used from the period following each successive reform of the
national curriculum. The current system of selection of textbooks was firmly established by 1965
(Nakamura, 1997, p. 90) and the market share of each textbook series is known thereafter. From that
point to the present, the most widely used textbooks have been those published by Keirinkan and by
Tokyd Shoseki.

The process of analysis we followed had three steps. First, we determined the role of the proofs in the
geometry teaching approaches employed by the textbooks: Did the textbooks reflect a general
strategy concerning proof learning? If yes, what was it? Were proofs important in geometry learning?
Second, for each textbook, we analysed the forms (including intermediate steps) of sample proofs
(worked examples) related to parallelograms, which were found in most of the textbooks, for overall
formatting or organization, use of symbols, and formulation of properties (theorems, definitions,
axioms, etc.) and statements. We use the terms paragraph and semi-paragraph to reflect the extent of
sentences versus symbols in a proof, with paragraphs being all written language and semi-paragraphs
a mix of words and symbols. Third, we looked at the authors’ comments on the proof or on proof
learning.

Below, we first describe the proofs one finds in Japanese mathematics textbooks today, and then
show what they evolved from and how. However, as this work is currently only at a preliminary stage,
our analysis remains general on the evolution of proof form in Japan.

Proof in Japanese mathematics textbooks today

Nowadays, the term ‘proof” is introduced in Japanese junior high school mathematics, specifically in
grade 8 geometry. Figure 1 shows a sample proof taken from a grade 8 textbook from Keirinkan,
proving a property of parallelograms: ‘“Two pairs of opposite sides in a parallelogram are equal’. The
figure provides an image of the proof with our own translation; the translation is quite literal, to
maintain data integrity. One may first note the use of mathematical symbols for equality, parallelism,
triangles, and angles. Statements (not properties) used as conditions or deduced as conclusions in a
deductive step are written all in symbols (e.g. ZBAC = £ZDCA). Deduced statements are given
separately from other statements and properties, and some are numbered for use in later steps. In
contrast, properties used in deductive steps, such as the condition for congruent triangles, are given as
written Japanese phrases, without symbols—not in if-then form as in French mathematics textbooks
(Miyakawa, 2017). The proof presented here thus represents the semi-paragraph type, with a mix of
natural sentences and symbols; below, we consider the origin and history of such proofs.
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(Our translation) Draw the diagonal AC.

& D waARACEDS In AABC and ACDA,
AABC &£ ACDA T, since the alternate-interior angles of parallel
TR AILE l,(,\aj’( o lines are equal,
AB/DC 5, from AB // DC,
B ¢ /BAC= ZDCA  ® ZBAC = ZDCA ... (1)
AD//BC ", o o from AD // BC,
 JBCA=ZDAC  ® /BCA = ZDAC ... (2)

S S And, since AC is common,
- &fe, ACHRERDS, AC=CA ...(3)

R AC=CA ® From (1), (2), and (3), a pair of sides and the
O, @ @5, | MOTEZDTRNAD, TNENELLOT, angles of both sides are equal,
AABC=ACDA ; - AABC = ACDA
BREEMTE, HKTHAL, TNENELLOT, since corresponding sides of congruent figures
AB=CD, BC=DA are respectively equal,

AB=CD,BC=DA

Figure 1. A sample present-day proof from a Keirinkan textbook (Okamoto et al., 2016, p. 133)

Proofs in geometry textbooks from the Meiji era to the present

Before the Meiji era—that is, before the modernization of Japan—geometry teaching was based on
wasan, and centred on problem-solving: questions about the measurement of geometric figures were
asked, and procedures (sometimes employing algebraic or analytic tools) were applied to acquire the
correct answer. Although some wasan mathematicians questioned the accuracy of the results yielded
by this method, proofs were not used in mathematical texts until the mid-19" century, at the
beginning of the modernization movement began (for a general view of the evolution of Japanese
mathematics and its teaching, see Ueno, 2012, and Baba et al., 2012).

With the Decree on Education (Gakusei, 1872), the Japanese government abandoned wasan teaching
and imposed learning of Western-style knowledge and teaching methods (for example, one-on-one
teaching was replaced with lecture-type classes in groups). Western textbooks were translated to
provide teaching materials for schools of this new type, and the first geometry proofs in Japanese
appeared in this context. Since proofs were new to Japan, no convention and no stipulation in the
curriculum constrained how they were written or formatted, and the forms used by Western authors
and their Japanese translators varied widely. The situation can be quite confusing. For example, in the
Japanese translation of an American version of Legendre’s textbook (Nakamura, 1873), proofs were
written in paragraph form only, whereas in translations of other American textbooks (Miyagawa,
1876; Shibata, 1879), symbolic expressions were also mobilized. This situation, and the fact that no
author-translators provided any remarks on proofs or reasoning in geometry and sometimes even
removed remarks on the nature of mathematical statements that had been present in the original
textbooks (see Cousin, 2013) betrays the lack of importance attached by Meiji-era scholars and
authorities to proof learning; it also may have occurred partly because of the need for rapid translation
of textbooks to meet new requirements, which led translators to focus on developing a basic
vocabulary for the new geometry in Japanese and producing textbooks understandable enough for use.
We also encountered textbooks from this period in which some functions of proofs were obscured
compared to the original source: for example, while the axiomatic systematization function of proofs
is emphasized in Davies (1870), the abridged Japanese version of this textbook (Nakamura, 1873)
does not preserve this emphasis (see Cousin, 2013).
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During the 1880s, Tanaka Naonori (1853—?) compiled works by English, American, and French
authors as well as Chinese and Jesuit translators to produce a series of textbooks that were adopted
widely in Japanese junior high schools (see Cousin, 2013, pp. 277-282). Tanaka was better trained in
Western mathematics than the 1870s author-translators and had teaching experience as well. His
proofs used few formulas and provided exposition (the part of the proof where the hypothesis is
expressed using specific names for the elements considered in the proposition) and determination (the
conclusion expressed using these names) using only symbolic expressions. Moreover, unlike
previous authors, Tanaka gave after each statement a reference number corresponding to the property
he used to justify it, highlighting the need for systematic justification of every statement in a proof.
He was also the first Japanese author to discuss the nature of proof per se, explain its role in geometry
(see Cousin, 2013, pp. 305-310), describe inductive and deductive ways of proving, and emphasize
that we ‘prove the propositions thanks to the axioms, the postulates and the propositions that already
have been proven’ (Tanaka, 1882, p. 15).

In the late 1880s, the publication of textbooks by Kikuchi Dairoku (1855-1917) marked a new stage
in Japanese geometry textbook production, and Kikuchi fixed a new Japanese mathematical language
and proof form that would remain for decades, as his textbooks were used until the beginning of the
Taisho era. In his view, it was important to create a Japanese mathematical language that unified oral
and written expression so that geometry proofs could be written in paragraph form, without relying on
symbols. Moreover, like Tanaka, he highlighted the systematic aspect of proof by putting on the
right-hand side the number of properties used in each deductive step (Figure 2). Kikuchi was clearly
influenced by his education in England, where the aim of geometry teaching was to cultivate young
spirits to reasoning: ‘Wherever Mathematics has formed a part of a Liberal Education, as a discipline
of the Reason, Geometry has been the branch of mathematics principally employed for this purpose.
[...] For Geometry really consists entirely of manifest examples of perfect reasoning: the reasoning
being expressed in words which convince the mind, in virtue of the special forms and relations to
which they directly refer’ (Whewell, 1845, p. 29). Kikuchi provided extensive explanation of

(Our translation)
Let ABCD be a parallelogram and AC be its diagonal;
Then (1) AC divides it into two completely equal triangles;
(2) AB is equal to DC, BC is equal to AD;
(3) The angle ABC is equal to the angle CDA, the angle BCD is equal
to the angle DAB.

Because the line AC intersects with the parallel lines AB and CD,
alternate-interior angles BAC and ACD are equal; 1, 7.
And because the line AC intersects with the parallel lines BC and
AD, the alternate-interior angles BCA and CAD are equal; I, 7.
Now, in the two triangles ABC and CDA, two pairs of angles are
respectively equals, and the side AC between them is common to
both figures.
So (1) the two triangles are completely equals; I, 10.
(2) AB is equal to CD, and BC is equal to DA;
(3) The angle ABC is equal to the angle CDA: and because the angle
BCD is the sum of the angles BCA and ACD, it is equal to the sum of
the angles CAD and BAD, which is the angle DAB.

Figure 2. A sample proof from Kikuchi’s textbook (Kikuchi, 1889, pp. 53-54)
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geometric reasoning, and paid particular attention to the language used and the organization of
geometric properties; in doing so, he tried to highlight the importance of the systematization and
justification functions of proofs.

However, the form of Kikuchi’s proofs (Figure 2) soon came in for criticism by his contemporaries,
for being difficult to teach. Nagasawa Kamenosuke (1861-1927), in his own textbook, criticized the
paragraph form of Kikuchi’s proofs in strong terms: ‘Writing proofs of theorems with sentences in a
complete and perfect manner is the vice of those who agree with the Euclid movement that came from
England’ (Nagasawa, 1896, pp. 3—4). Nagasawa instead wrote proofs in a semi-paragraph form very
different from Kikuchi’s, especially in terms of the use of symbols, as seen in Figure 3. In particular,
Nagasawa put more importance on the proof as a written form, and in fact his proofs cannot be used
for oral justification due to certain features of the Japanese language and the use of symbols. For
example, the statement ‘AB || DC’ would usually be read or spoken aloud in Japanese as ‘AB h&ko
DC’ (‘AB parallel DC’). However, this is just a pronunciation of each symbol in succession and not a
grammatically sound phrase; to be grammatical, it should instead be pronounced as ‘AB wa DC ni
hekd’ (‘AB is parallel to DC’), whose shortened version would be ‘AB DC |, as an adjective with a
be-verb should always be placed at the end of a phrase in Japanese. Beginning around the end of the
Meiji era, proofs written in semi-paragraphs appeared in many Japanese geometry textbooks (e.g.
Nagasawa, 1896; Kuroda, 1917), even Kikuchi’s (Kikuchi, 1916), and Kikuchi’s goal of a language
that unified oral and written expression was abandoned.

(Our translation)
Theorem 28. Two pairs of opposite sides of a parallelogram are equal
to each other, and its diagonal divides it into two equal parts.
[Exposition] In Z/ABCD, AB = DC, AD = BC, and AABC = ACDA.
[Proof] Connect A and C,
insuchacase, AB]| DC [Hypothesis]
and because AC intersects with these two parallel lines,

alt. int. ZBAC = alt. int. ZACD. [Theorem 22]
And because AD || BC [Hypothesis]

alt. int. ZBCA = alt. int. ZDAC, [Theorem 22]
SO in AABC, ACDA,

Z/BAC = ZDCA,

/BCA = ZDAC,

the side AC is common,

.. AABC =ACDA, [Theorem 7]

So, AB =DC,

AD =BC,

AABC = ACDA.

Figure 3. A sample proof from Nagasawa’s textbook (Nagasawa, 1896, p. 53)

Moreover, until the end of the 19" century, although various ways of writing proofs were seen, all
textbooks nevertheless followed a classic pattern in the teaching of geometry: theorems and problems
were stated one after the other and, beginning in the 1880s, statements in proofs were justified with
the reference number of the relevant property. Beginning in the Taisho era, however, the ‘practical’
approach, meaning one that tried to be more related to ordinary life, gained more and more success,
influenced by the work of Treutlein (e.g. 1911), and Japanese authors distanced themselves from the
classic pattern. For example, in the first quarter of Kuroda’s textbook (1917), measuring instruments
were presented and geometric matters were treated without theorems or proofs, while in the latter
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part, several practical questions were asked. This evolution of geometry teaching also had an
influence on proof form. In Kikuchi (1889), all the statements were expressed without using symbols
and the justifications were expressed only by presenting reference numbers for properties (Figure 2),
whereas in Yamamoto (1943), new statements were expressed with symbols and the justifications
were expressed using literal expressions, without using numbers to refer to properties. Under this
practical approach, the systematic aspect of justification in geometry came to be less emphasized.

With the 1942 curriculum reform, the national curricula explicitly adopted this practical approach.
The general axiomatic system became less and less explicit in the textbooks, and more and more
problems appeared that were related to everyday life. For instance, no proofs at all appeared in 1947’s
Secondary Mathematics (Chiito siigaku), published by the national Ministry of Education
(Monbushd, 1947). Nevertheless, between 1949 and 1955, proofs gradually reappeared in geometry
textbooks.

Since the 1960s, proofs have been introduced beginning in the 8" grade; however, although the
concepts used in geometry teaching in Japan have not changed much in this period, proof form has
continued to change, a little. For example, in Kodaira et al. (1974), in the New Math period,
properties were always given on the right hand-side, in brackets, and symbols were frequently used
(more than in any previous or later textbooks). Later, in Kodaira et al. (1986), the same authors
returned to a strategy similar to that observed in the 1940s but also to that used today: symbols were
used to express statements in the proofs, but natural language sentences were used to express the
properties justifying these statements.

Discussion and conclusion

The proofs in Japanese mathematics textbooks take the forms they do as a result of the process of
didactic transposition, which involves their exposure to different conditions and constraints that
affect their nature as proofs. For instance, this study on the evolution of proofs in geometry education
in Japan has shown that one factor that significantly affected proof form was certain features of the
Japanese language. As mentioned above, Kikuchi tried to develop a Japanese mathematical language
unifying oral and written expression, in order to help train students in rigorous logical thinking,
adopting the approach of structuring proofs in paragraph form as part of this project; however, our
study has shown that Kikuchi’s paragraph-form proofs disappeared, as they were viewed as too hard
to teach. It was replaced by the semi-paragraph form, which is still used for proofs in Japan today.
One consequence is that the distance between the forms of the written proof and the oral justification
is still bigger in Japanese education than in English or French, and statements written with symbols
cannot be directly used in the oral justification. This leads us to think that Japanese students may
experience a proof as a particular written object (like an algebraic equation), a formalism with little
relationship to ‘actual’ oral justification or argumentation. As such a distinction implies, it will be
useful to investigate the distance between written proofs and oral justifications across countries,
which will help us benefit more fully from existing research results on argumentation and
mathematical proofs.
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The purposes of this study are to investigate pre-service middle school mathematics teachers’
interpretations of logical equivalence in proof by contrapositive and the reasons for their incorrect
interpretations. Data analysis indicated that pre-service middle school mathematics teachers were
considerably unsuccessful in interpreting logical equivalence of statements. Lack of knowledge
related to indirect proof methods, accepting a true statement as false, suggesting to apply direct proof
instead of selecting given choices, and thinking contrapositive statements as unrelated could be
regarded as the reasons for their incorrect interpretations.

Keywords: Contrapositive, logical equivalence, pre-service middle school mathematics teachers.
Introduction

Proof does not have simple roles in mathematics and mathematics education; it is a fundamental
component and includes different forms and methods (Jones, 1997). A review of the literature
indicated that there are limited number of studies focusing on particular proof methods (Antonini &
Mariotti, 2008; Baccaglini-Frank, Antonini, Leung, & Mariotti, 2013; Bedros, 2003; Stylianides,
Stylianides, & Philippou, 2004). According to Stylianides, Stylianides and Philippou (2004), the least
attention has been given to proof by contrapositive compared to other proof methods such as
mathematical induction, proof by contradiction, and direct proof. Thus, in this study the focus is given
to proof by contrapositive. According to Bedros (2003), proof by contrapositive is a method of
indirect reasoning. Since a conditional statement p=q and its contrapositive q'=p' are logically
equivalent, in order to prove a given statement p=(q, the statement q'=p' can be proved by using
direct proof (Bloch, 2000). In other words, when a statement is proved, its contrapositive is also
proved (Antonini, 2004). This study focused on the logical equivalence of contrapositive statements,
which is the key idea of proof by contrapositive method.

According to Bastiirk (2010), students have difficulty in deciding which proof method to use and in
applying the selected method. Moreover, students have many more difficulties in indirect proof
methods rather than direct proof methods (Antonini & Mariotti, 2008). For example, Dickerson
(2008) commented that undergraduate and graduate students have difficulty in understanding the
language and logic of indirect proof methods. In the study by Stylianides, Stylianides and Philippou
(2004), it was stated that some undergraduate students had difficulty in understanding logical
equivalence in contrapositive and used incorrect equivalences such as p=q=p'=q' in their
explanations. Similarly, many students could not distinguish proof by contradiction from proof by
contrapositive (Goetting, 1995).

As seen, indirect proofs such as proof by contrapositive have the potential to reveal many difficulties
that students possess in relation to proof (Bedros, 2003). Teachers’ knowledge of proof plays an
important role in developing students’ understanding in proof. For instance, when mathematics
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teachers present various proof methods in the class, it helps students to enhance their logical thinking
and proof abilities (Altiparmak & Ozis, 2005). Therefore, mathematics teachers should have
necessary knowledge and experience concerning different proof methods. Since pre-service middle
school mathematics teachers are future teachers, their interpretations related to the logic of particular
proof methods such as proof by contrapositive are important to investigate. Thus, to examine pre-
service middle school mathematics teachers’ interpretation of logical equivalence in proof by
contrapositive and the reasons for their incorrect interpretations were determined as the purposes of
the present study. Moreover, in the teacher education program, pre-service teachers take various
mathematics courses and their ability in interpreting proof related concepts might depend on these
mathematics courses since some of which place more importance on proof. In relation to this, how
pre-service teachers’ success levels differ by year level in the program was also investigated. By
considering these purposes, the research questions were stated as follows:

1. To what extent are Turkish pre-service middle school mathematics teachers successful in
interpreting logical equivalence in proof by contrapositive, and how does their success differ by year
level?

2. What are the reasons for Turkish pre-service middle school mathematics teachers’ incorrect
interpretations?

Method

Since data were collected at just one point in time from a selected sample in order to describe certain
characteristics of the population by asking questions (Fraenkel & Wallen, 2005), this study was
designed as a cross-sectional survey. Using convenience sampling methods, the sample for this study
was determined as 115 pre-service middle school mathematics teachers attending a state university
in Ankara, Turkey. In terms of their year level, 19 were freshmen (16.5%), 25 were sophomores
(21.7%), 39 were juniors (33.9%), and 32 were seniors (27.8%).

In Turkey, the middle school mathematics teacher education programs offer mathematics courses
such as Calculus, Algebra; mathematics education courses involving Methods of Teaching
Mathematics, Practicum; education courses such as Classroom Management; general courses
involving Academic Oral Presentation Skills, and elective courses. The first two years of the program
mainly consist of mathematics courses while the last two years put more emphasis on education,
mathematics education, and elective courses.

This study was conducted as part of a larger study focusing on pre-service middle school mathematics
teachers’ interpretation of the logic behind proof methods. In this study, the answers given by pre-
service teachers to three questions related to the logical equivalence of contrapositive statements were
analyzed. These questions were prepared by reviewing the related literature (Knuth, 1999; Saeed,
1996). In more detail, Question 1 (Q1) and Question 2 (Q2) were prepared by the researchers by
considering the format of the multiple choice questions in the study undertaken by Knuth (1999). The
students were asked to select the correct statement that can be used to start to prove the given
statement and explain their answers. The correct choice involves the proposition q'=p' as the starting
point to prove the proposition p=q which is known as proof by contrapositive. The other choices
were not appropriate to start any proof. The correct choices were identified as (d) for Q1 and (c) for
Q2. Questions 1 and 2 are presented below.
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Q1. Assume that m and n are positive mtegers. If mn=100, then m=10 or n=10.
To prove the given statement, which statement can you begin with?

a) Assume that m and n are positive integers. If m>10 or n=10, then mn=100.
b) Assume that m and n are positive integers. If m=10 or n=10, then mn=100.
¢) Assume that m and n are positive mtegers. If m=10 and n=10, then mn=100.
d) Assume that m and n are positive integers. If m>10 and n>10, then mn=t100.
e) None of the above

e) None of the above

- Why? State your reasons. - Why? State your reasons.

To prove the given statement, which statement can you begin with?

a) Assume that a, b and ¢ are real numbers and a>b. If ¢=0, then ac<bc.
h) Assume that a, b and ¢ are real numbers and a=b_ If =0, then ac<hc.
¢) Assume that a, b and c are real numbers and a=b_ If ¢=0, then ac=bc.
d) Assume that a_ b and c are real numbers and a>b. If c=0, then ac=bc.

Q2. Assume that a, b and c are real numbers and a>b. If ac<bc, then c=0.

Figure 1: Question 1 and Question 2

Question 3 (Q3) was adapted from the study of Saeed (1996) and involves a discussion about the
proofs of two contrapositive statements. In the question, the participants were asked to select the
person they agreed with and explain the reasons for their choice. The students’ answers were accepted

as incorrect if they agreed with Pinar and correct if they agreed with Ahmet.

Q3. Statement A: Ifn?is anoddinteger, thennis anoddinteger
Statement B: Ifnis aneven integer, then n’is even integer.

Ahmet: I think statement Ais true, Pinar.

Pmar: Let me see, if n?=0,then n== 3 is odd;if n?=23, thenn=3 is odd. S0, statement A seems to be trus Ahmet.

Ahmet: I alzo think that statement Biz true, Pinar.
Pmar: Why?
Ahmet: Since nis even, then n=2k where k iz some integer.

Therefore, n? =4k = 2 (2k%) is also even.

Pmar: But Ahmet, this only show the statement Bis true, but does not show that statement Ais true.

Ahmet: This argument also shows that statement Ais comect.

Questions;
- Considenng the discussion above, who do you agree with?
Ahmet Pinar

- Why? Explain your reasons.

Figure 2: Question 3

To investigate the research questions, descriptive statistics and item-based analysis were conducted.

Firstly, pre-service middle school mathematics teachers’ interpretations of logical equivalence in
proof by contrapositive were analyzed based on the rubric given in Table 1. Then, the reasons for

their incorrect interpretations were examined qualitatively by generating themes.

Answer types in Q1 and Q2 Answer types in Q3

No answer No answer

Incorrect choice was marked, no explanation was

Agreed with no one or both of them

;rlllcs:vr:ct stated Agreed with Pinar, no explanation was stated
Incorrect choice was marked, explanation was stated Agree with Pinar, explanation was stated
Correct choice was marked, no explanation was stated Agreed with Ahmet, no explanation was stated
Correct Correct choic.e was markeq, explar}ation was given Agreed With Ahmet, e).(planati(.)n was given but
answer but not referring to the logical equivalence not referring to the logical equivalence

Correct choice was marked, explanation was given
referring to the logical equivalence

Agreed with Ahmet, explanation was given
referring to the logical equivalence

Table 1: Rubric for questions
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Findings

In order to investigate the first research question, pre-service middle school mathematics teachers’
answers to Q1 and Q2 were analyzed. The results of 115 pre-service middle school mathematics
teachers’ answers are presented in Table 2.

Answer types Question 1 Question 2

No answer 4 (3.5%) 4 (3.5%)

Incorrect choice was marked, no

I explanation was stated 12 (10.4%) 12 (10.4%)
a?l‘;gvr:“ | Lo o 50 (43.4%) 55 (47.8%)
ncorrect choice was marked, 38 (33.0%) 43 (37.4%)

explanation was stated

Correct choice was marked, no 43 (37.4%) 33 (28.7%)

explanation was stated e e

Correct choice was marked, explanation

. . . o 0

Correct was given but not referring to the logical 7 (6.1%) 61 (53.1%) 9 (7.8%) 56 (48.7%)
answer equivalence

Correct choice was marked, explanation

was given referring to the logical 11 (9.6%) 14 (12.2%)

equivalence

Table 2: Frequencies of the answers to Q1 and Q2

Table 2 shows that 4 students (3.5%) did not answer to Q1 and Q2. When the answers of the students
to Q1 were investigated, it was seen that 50 students (43.4%) answered incorrectly and 61 students
(53.1%) selected the correct choice. In addition, 43 students (37.4%) marked the correct choice
without stating their reasons and the answers of 7 students (6.1%) were correct but their explanations
were not related to logical equivalence. The remaining 11 students (9.6%) answered correctly by
providing an explanation based on logical equivalence of contrapositive statements. In terms of year
level in the program, freshmen (73.7%) had the highest percentage of correct answers and seniors
(40.6%) had the lowest percentage of correct answers in Q1. As an example of a correct answer with
an explanation referring to logical equivalence, Participant 52 stated as follows:

p: mn=100 p"mn#100 p=>q=p'Vq=qVp'=q'=p'
q: m<I0Vn<l0 q:m>10An>10
q'=p' (If m>10 and n>10, then mn#100) (Participant 52, junior)

The analysis of the answers to Q2 showed that 55 students (47.8%) answered incorrectly whereas 56
students (48.7%) answered correctly. Thirty-three students (28.7%) marked the correct choice in the
question but did not substantiate their ideas. Moreover, 9 students (7.8%) answered correctly without
referring to contrapositive statements, and 14 students (12.2%) answered correctly by referring to the
logical equivalence of contrapositive statements. While sophomores (64.0%) had the highest
percentage of correct answers, freshmen (36.8%) and seniors (37.4%) had the lowest percentages of
correct answers in Q2. To illustrate, Participant 97 answered correctly and explained by referring to
logical equivalence in proof by contrapositive.

p:acsbe  q:c<0
Then, proof by contrapositive, p=>q = p'Vq = qVp' = q'=p' (Participant 97, senior)

Since Q3 has a different rubric from the multiple choice questions, pre-service middle school
mathematics teachers’ answers to Q3 are presented in Table 3.
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Answer types Question 3
No answer 4 (3.5%)
Agreed with no one or both of them 3 (2.6%)
Incorrect Agreed with Pinar, no explanation was stated 16 (13.9%)

75 (65.2%)

answer Agree with Pinar, explanation was stated 59 (51.3%)
Agreed with Ahmet, no explanation was stated 5 (4.3%)
Correct Agrfaed with Ahmet, explanation was given but not referring to the logical 24 (20.9%) .
equivalence 33 (28.7%)
answer
Agreed with Ahmet, explanation was given referring to the logical 4 (3.5%)
. o

equivalence

Table 3: Frequencies of the answers to Q3

According to Table 3, 4 students (3.5%) did not answer Q3. The answers of 3 students (2.6%) showed
that they agreed with neither Pinar nor Ahmet but did not explain their rationale. Moreover, 75
students (65.2%) agreed with Pinar, which is accepted as incorrect answer and 33 students (28.7%)
agreed with Ahmet, which is accepted as correct answer. Five students (4.3%) agreed with Ahmet

without giving any explanation, 21 students (20.9%) agreed with Ahmet and explained without
referring to logical equivalence, and 4 students (3.5%) explained their agreement with Ahmet by
referring to logical equivalence of contrapositive statements. Moreover, juniors (38.4%) had the

highest percentage of correct answers and sophomores (4.0%) had the lowest percentage of correct
answers to Q3. An example of a correct answer, Participant 52 agreed with Ahmet and her explanation
was related to logical equivalence used in proof by contrapositive.

p: nis even q: n® is even
p=q was proved
p=q=p'Vq=qVp'=q'=p'
Thus, if n? is odd then n is odd. Therefore, Ahmet is right. (Participant 52, junior)

For the second research question, pre-service middle school mathematics teachers’ explanations for
their incorrect answers were analyzed. As presented in Tables 2 and 3, 50 students (43.4%) answered
Q1 incorrectly and 38 of them (33.0%) gave explanations for their answers. Fifty-five students
(47.8%) answered Q2 incorrectly, of whom 43 (37.4%) explained their answer. Lastly, 75 students
(65.2%) answered Q3 incorrectly and 59 of them (51.3%) suggested explanations for their answers.
Table 4 shows the reasons behind the students’ incorrect interpretations grouped under four

categories.
Reasons Q1 Q2 Q3
R1 Lack of knowledge related to indirect proof methods 30 (26.1%) 35 (30.4%) -
R2  Accepting a true statement as false 5(4.3%) - -
R3  Suggesting to apply direct proof instead of selecting given choices 3 (2.6%) 8 (7.0%) -
R4  Thinking that contrapositive statements are unrelated - - 59(51.3%)

Total

38 (33.0%)

43 (37.4%)

59 (51.3%)

Table 4: Reasons for students’ incorrect interpretations

The first reason for the incorrect interpretations is students’ lack of knowledge related to indirect
proof methods. As a result of this inadequacy, students thought that one of the choices in the question
was related to contradiction or contrapositive; however, this choice was not related to these methods.
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For example, in Q2, Participant 7 selected one of the incorrect choices and explained it as an
assumption for contradiction.

To prove by contradiction, we have to prove the converse situation. The choice b can be used in
this situation. (Participant 7, freshman)

The second reason behind students’ incorrect interpretations is that they accepted the given statement
as false even though it was true and tried to find counterexamples to refute it. For instance, in Q1,
Participant 114 could not see that the given statement was true.

The given statement ‘Assume that m and n are positive integers. If mn=100, then m<10 or n<10.’
is not true.

As counterexamples, m=12 and n=12 can be used.

Then, mn=12.12=144#100

Therefore, ‘if mn=100 then m<10 and n<10’ is a true statement. (Participant 114, senior)

The third reason is that students mentioned using direct proof instead of selecting one of the given
choices. For instance, the answer of Participant 106 to Q1 is given below:

Firstly, we can assume that mn=100; we can try to deduce m<10 or n<10. We cannot start with
the sentences given above. (Participant 106, senior)

The last reason for incorrect interpretations is that students thought that there was no relation between
the given contrapositive statements A and B. For example, in Q3, Participant 30 cited that statements
A and B were different.

Because the statements are different, one of them starts with an even number and the other one
starts with an odd number. The proof of statement A can’t be the same with the proof of statement
B. (Participant 30, sophomore)

Discussion

According to the results of pre-service middle school mathematics teachers’ answers to questions, it
was found that nearly half of the sample answered Q1 and Q2 correctly and almost one third answered
Q3 correctly. In other words, students’ achievement levels in interpreting logical equivalence in proof
by contrapositive were found to be considerably low. The findings revealed that freshmen had the
highest achievement level for Q1, sophomores had the highest achievement level for Q2, and juniors
had the highest achievement level for Q3. Although seniors were expected to have been the most
successful group by considering the number of mathematics courses they took in the program, they
were not the most successful in terms of all questions. This result might stem from the fact that seniors
did not take any mathematics course in their last year of the program. Therefore, seniors might not
remember the details of the logical equivalence used in proof by contrapositive. To avoid this
situation, teacher educators could offer elective courses related to logic and proof to enhance
prospective teachers’ reasoning skills.

Four reasons for the incorrect interpretations were detected from three questions. The first reason is
preservice teachers’ lack of knowledge related to indirect proof methods. This finding is consistent
with the results of Atwood (2001), who stated that students had difficulty in using the words converse,
contrapositive, contradiction, and counterexample, and that they might use them interchangeably,
which is not correct. Moreover, in the case that where students generally memorize proof methods
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instead of understanding the structure of the proof might cause them to have difficulty in related proof
methods. Therefore, the participants in this study might use proof by contrapositive and proof by
contradiction inaccurately and interchangeably. The second reason why students answer incorrectly
is accepting a true statement as false and trying to find counterexamples based on this idea. Some of
the terms and signs involved in the given statement in Q1 such as ‘or’ and ‘<’ might cause students
to misunderstand the statement. Thus, students might have had trouble in deciding whether the given
statement was true or false and evaluate it as false. The third reason is that students suggested proving
the given statement with direct proof instead of selecting one of the given choices in the question.
This situation may result from the fact that the majority of the proofs in the textbooks are given as
direct proofs (Atwood, 2001). Therefore, students may have a tendency to use direct proofs since they
are more familiar with this method. The last reason is that students thought that statements A and B
given in Q3 were unrelated. In this study, students might fail to see the relation between proofs of
given two contrapositive statements. Therefore, they might think that statement A which involves
p=q and statement B which involves q'=p' should be proven separately.

In mathematics teacher education programs, proof should be considered as an important theme. Thus,
the content or place of mathematics courses in teacher education programs might be revised and
developed in order to enhance preservice teachers’ understanding of reasoning, proof, and logical
rules behind proof methods. For example, mathematics courses might be taught by paying attention
to logical rules behind proof methods. This study pointed out the importance of having knowledge of
logical rules in reading and interpreting a given proof statement or conducting proof by using
particular proof methods. Moreover, similar findings related to the interpretation of logical
equivalence used in proof by contrapositive might be achieved with pre-service mathematics teachers
in different countries. Therefore, to compare and to gain a global perspective about pre-service
mathematics teachers’ understanding of logical rules behind proof methods, cross-cultural studies
could be conducted. Based on the findings of such studies, teacher educators might develop strategies
to overcome pre-service mathematics teachers’ current difficulties in logic and proof by considering
the characteristics of their teacher education programs.

The results of the study are limited to the data collected with three questions. For further studies, pre-
service middle school mathematics teachers’ interpretations of logical equivalence used in proof by
contrapositive might be investigated by using alternative questions in various formats. An
investigation of the effect of pre-service mathematics teachers’ knowledge of logic on their ability to
prove might also be undertaken. Moreover, to analyze the answers of the pre-service mathematics
teachers and to determine the reasons for their incorrect interpretations regarding logic in-depth,
follow-up interviews might be conducted in future studies.
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Issues of a quasi-longitudinal study on different types of
argumentation in the context of division by zero

Christian Fahse

Institute of Mathematics, University of Koblenz-Landau, Campus Landau; fahse@uni-landau.de

In this study we explore students’ ways of argumentation concerning division by zero. The answers
of 365 students of four different grade levels in a German secondary school were analyzed on the
basis of written texts of the students explaining their results of 7:0. Applying qualitative content
analysis (Mayring, 2000), we were able to distinguish three different types of argumentation. The
relative frequencies of these different types vary with the increasing age of the students: rich
argumentations stagnate, apodictic references to an authority increase.

Keywords: Argumentation, reasoning, communication model, division by zero.

Motivation and interest of research

Argumentation, besides for instance modelling and problem-solving, is one of the main issues
especially characterizing mathematical education. The aim to develop argumentative abilities in
mathematics has been reinforced by German authorities since 2003. Consequential, there is a need
to measure progress in this field on the level of learning groups and educational systems. Tests like
PISA and other test series claim to perform this measuring (OECD 2015, p. 32), even though they
are subject to partly strong criticism (e.g., Jahnke & Meyerhofer, 2007). The tasks used in these
tests, pretending to measure argumentative skills, necessarily are very restricted in regard to content
and time on task, compared to a creative argumentation process performed in classroom.
Furthermore, the dichotomous focus on right or wrong does not seem to be suited for an observation
on argumentation.

The notion of “probe” in educational research

The idea of the main study is to use a so called “educational probe” (Ger. “Sonde”). This can be best
described by an analogy: Car insurances ask if the car is parked in a garage. If so, the insurance fee
is reduced. This is not done due to causal inference, but for statistical reasons (information from the
insurance company HUK-Coburg, Coburg, by telephone, 2011): there is a robust (negative)
correlation between parking in a garage and the probability of an accident. A “probe” for detecting
abilities is a small bundle of easily carried out measurements, observing the patterns of reactions of
learners to some standardized impulse together with an established correlation of those patterns to
the intended ability of the learning group.

It 1s an open question if educational probes exist. As a first step, we try to find candidates for a
“probe” on the ability of argumentation; in a second step, we have to validate these probes. A
variety of measurements can be taken into account (e. g. videography), but here we concentrate
simply on tasks given as impulses and evaluate written texts, thereby e. g. ignoring any social
interaction. Several groups of tasks, all roughly of the form “Give your opinion and justify it”, were
given to the same students. In this article we consider only the task concerning division by zero (in
short: “7:0=? Justify your opinion.”). This special task was included in the study because of the
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variety of possible justifications discussed in the literature (Knifong & Burton, 1980) and observed
in classroom practice (author’s experiences with eight classes of 6™ graders).

Basic assumptions and research questions

Argumentative abilities are considered to be of general importance beyond mathematics. Therefore,
this study does definitely not focus on proving, and argumentation is not considered as a preliminary
step to establish a proof. This decision was a consequence of both, the observed argumentations of
the students and a certain communication model which has shown to be compatible with the data.

Furthermore, argumentative and mathematical abilities are considered as different constructs.
Therefore, the correctness of the solution of the problem cannot be a primary criterion to discern
different types of argumentations. Mistakes have to be tolerated, “misconceptions” can be of a
distinct rationality (Prediger, Gravemeijer, & Confrey, 2015, p. 881). This pedagogical view is
supplemented by a historic mathematical fact: It is not true that division by zero is not possible or
not to define. E. g. the inversion (holomorphic extension of 1/z) on the Riemann Sphere is a
continuous function which imposes 1/0=co.

On first sight, one can wonder if short written answers to tasks really make a difference compared to
the testing in PISA. The described preponderant disregard of “correctness” of the given result and
the completely different evaluation by a qualitative content analysis (QIA, see below) are
characteristics of this study, distinguishing it from PISA. The resulting category system is developed
by an approach which is in a first step “grounded”, that is, constructed without reference to other
theories. This methodical choice was taken because the interest of this study lies in the opportunity
to compare our findings to other category systems found in the literature. However, in order to
narrow the scope of this article we have to make two limitations: First, we will not report on a
comparison between different category systems. Second, neither the analysis of misconceptions of
division by zero nor suggestions for classroom practice are points of interest here, but presented in
Fahse (2014).

Taking the hypothesis that the ability of deploying argumentation develops over time, an
appropriate probe should provide different results for different ages of the learners. The research
questions in this mainly descriptive study are:

e What types of mathematical argumentation can be found?

e Does the percentage of these types differ from grade level to grade level?

Theoretical background

In this section we concentrate on literature about types of argumentation and leave aside that on
divisions by zero with the following exception: In congruence with our study, Tsamir and Sheffer
(2000) analyze argumentation in regard to division by zero. They distinguish between concrete and
formal (algebraic) arguments, and favor the formal ones (Tsamir & Sheffer, 2000, p. 94). In contrast
Fahse’s (2014, p. 24) empirical examples show that the use of concrete models of division can give
insight into the problematics of division by zero, even if a “wrong” result is given (different from
“division is impossible”, caveat see above). Therefore, in our system, the distinctions of Tsamir &
Sheffer can only be considered as subcategories, not as main categories.
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Different classifications of argumentation schemes without reference to any special mathematical
topic can be found in the literature. Argumentation can be set in contrast to proof (Duval, 1991), or
these phenomena can be treated in regard to their mutual relationship. The latter can e.g. be done by
analyzing the process that leads to a proof, wherein argumentation is conceived “as a process of
producing a conjecture and constructing its proof” (Boero, Douek, Morselli, & Pedemonte, 2010, p.
183). Following Pedemonte (2007), argumentations are based on a system of conceptions and
related to conjectures either as “structurant” or as “constructive” argumentation. Furthermore, an
argumentation can be abductive, inductive, or deductive (Pedemonte, 2007). These characteristics
could be applied to our data, but since our study does not focus on proof they do not adequately
describe the variety of justifications found in our study.

Harel & Sowder (1998) use the term “proof schemes” which refers to “what the person offers to
convince others” (p. 275). This fits well into the model of argumentation given below. Their way of
classification scheme (externally conviction, empirical, and analytical proof schemes as
superordinate categories; “analytical” is changed into “deductive” in Harel, 2008, p. 491) will be
compared to the findings of our study in another article.

Communication models and specification of concepts

Since essentially different (Brunner 2014, p. 231) definitions exist of the notions argumentation,
reasoning (regarded here as synonymous to justification, if referring to one fixed claim), proving
and explaining we have to specify these terms. They are not conceived with regard to proof, but to
the argumentations notated by the tested students.

Our study uses a model of argumentation that is based on communication theories (Biihler, 1934;
Kopperschmidt, 1980, following Habermas (1984)). The sender and receiver refer to a knowledge
(and communication) basis assumed to be shared. The objects of justifications are statements that
have different grades of plausibility for the two interlocutors. The act of justification performed by
the sender is an attempt to augment this grade, conceived as an ordinal structure, on the receiver's
side. Therefore, this concept of argumentation is genuinely dialogic. Nevertheless, the receiver can
also be an internal entity within the sender, or a universal audience.

In the following, short definitions of the principal terms used in this article are given. The
discussion and the comparison of these definitions to those found in the literature go beyond the
scope of this article. But for reasons of practicability we suggest to accept these definitions in the
frame of this article despite a lacking consensus in the wider scientific community (Brunner 2014, p.
231).

Argumentation is conceived as a generic term (Bezold, 2009), including the process of finding
hypotheses, and checking common bases of knowledge and communication. Reasoning or
justification is a communicative reaction to a questioning of a statement. The aim of reasoning is to
increase the degree of the receiver’s acceptance (his attributed epistemic value) of the statement by
relating the statement under discussion to the basis of knowledge and communication assumed to be
shared (Kopperschmidt, 1980, p. 73). Proof is a sequence of argumentative steps relying on an
accepted basis of statements approaching the ideal of a complete logical chain of deductive steps
(Duval, 1991). A proof can be a justification, but does not necessarily be one. Explanation (of
“why”, not “how” or “how to do”) is an addressee-oriented justification by the sender with the aim
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of creating an ‘“understanding”, which in turn is conceived as a fitting to the (possibly
accommodated or enlarged) factual knowledge of the addressee (Kiel, 1999, p. 72; Hanna, 2016,
“pedagogical explanations”, p. 2).

Justifications can attempt to explain, but also aim to refer to reliable sources. Furthermore, in this
framework, a mathematical proof is only one method of justification and not necessarily effective,
depending on the mathematical ability of the sender and receiver. E. g. an algebraic transformation
7:0 =x |0 — 7 = 0 performed by a student does not really convince another student if their
interpretation of the variable x is uncertain and the concept of equivalence transformation is known,
but insufficiently familiar.

The study

The analysis of the data is not fully completed yet, but we can report first results on selected parts of
the study. We asked the students to give the result of the division 7:0 and to “justify [their] opinion
in a way that someone who doesn't know the answer is able to understand [the result]”
(Unabbreviated original task, translated from German). The written answers of a group of N=365
students in grade 7, 9, 11, 13 were analyzed. In regard to the relative abundance of argumentation
types we report data from a subgroup of N=300 pupils which did not take part in interventional
courses. These were N=73, 86, 78, 63 students in the four grades resp.. In this convenience sample
all students were of the same secondary school (“Gymnasium”), and all students of the four chosen
grades were tested (absence of students < 5%, no denial).

Method of analysis

First we applied a qualitative content analysis (QCA, Mayring, 2000) with inductive category
development. Therefore, we analyzed the student’s written justifications in several steps. The first
step was to classify the texts only by similarity without any recourse to theory. In the next steps we
aggregated items with an increasing level of abstraction (“feedback loops”™) leading to the different
types of argumentation described in our coding manual. To ensure reliability this manual was used
to perform a separate “deductive category application” (Mayring, 2000, sec. 4.2) by a pair of
university students in a second step (Interrater Reliability k=.967, N=365).

Results - Three different types of argumentation

We found three types of argumentation: rich, pseudo-factual, and apodictic. A summary is given in
Table 1. All examples of student justifications have been translated from German.

Rich justifications

In this category the content and the way of reasoning are essentially reasonable (see below) even if
the results might be wrong, or the justification is partly false or incomplete. The statement of
justification is connected to a domain which is relatively complex. Therefore, operations (e.g.
changing the mode of representation, calculations) are more likely to be found.

“Essentially reasonable” means that with the same idea a correct argumentation is possible. “7 : 0 =
7. So, if you have 7 apples and you divide them among 0 persons, you still have 7 apples.” The
usage of a model for division in the warrant (Toulmin, 1958) can be regarded as an operation in
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which the representation of division is changed from the “algebraic view” to “partitive distribution”.
This latter domain is sufficiently complex: it is simply not possible to distribute 7 apples to nobody.
The mistake in the original quote, disregarded for the type of argumentation, can be interpreted in
the following way: the result of the division does not show what is left, but how much each person
gets. Beside partitive interpretation using concrete objects, measurement interpretations of the
division: “0 fits infinitely often into 7”, and algebraic calculations are typical examples of rich
arguments.

m Pseudo-factual Apodictical

Linked to a

mathematically Unapt or poorly No mathematical
appropriate, well  structured domain, = domain or
structured weakly linked tautological
domain

M No mathematical

Egg?g:g:zeuséw Essentially wrong  but social warrants
P (authorities)

Operations e. g.
Operations e :lls[=Xeli Few operations No operations
representation

Need for e . Reliable authority/
Mathematical justification saiifce

Value £l (Similarity) Informational

(X LN (Proof: Logical)

Table 1: Characterization of justification types
Pseudo-factual justifications

Mathematical warrants (Toulmin, 1958) are quoted, but these are profoundly incorrect, e.g. if the
link to a domain of the common knowledge basis is not reliable (one student used the analogy of
7°=1 - not an appropriate domain (power calculations), and weakly linked by analogy). In others, the
cited domain has no sufficient structure, e.g. when including “invented” calculation rules (“all
calculations with 0 produce 0 as result”), or making statements about the nature of the task or
objects (“there's nothing to calculate”, “0 has no significance”). Because of the lack of rich structure
in the used domains only few other acts or operations besides generalizations and analogies can be
found. Other texts seem to imitate the logical and symbolic structure of a mathematical justification,
or use invented terms.

Apodictic justifications

Mathematical warrants are not used, but rather references to authorities like the teacher, the
calculator, the textbook, or the world-wide-web given instead. A simple tautological repetition of a
statement is interpreted as a reference to one's own ultimate knowledge and thus seen as an authority
in the sense of: “That's how it is, I know it.” Sometimes it is even stated that no justification is
necessary. This shows a utilitarian understanding of mathematics, which can be convenient, e.g. for
engineers in the course of their everyday work. Because there is no need for mathematical warrants,
there are no domains and consequently no operations found. Typical examples: “[...] There is
nothing to explain, that's the way it is”, or “The rule says you cannot divide by zero. You just have
to learn and remember it.” This type seems to be very close to the authoritative type of Harel &
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Sowder (1998). Precautionary it was given a different name, to be able to compare thoroughly the
two types.

Quantitative results

Looking at the increasing grade level of the students, the relative abundances of the used
argumentation types accordingly develop as follows: 1