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ABSTRACT: The review highlights the hydantoin syntheses presented from the point
of view of the preparation methods. Novel synthetic routes to various hydantoin
structures, the advances brought to the classical methods in the aim of producing more
sustainable and environmentally friendly procedures for the preparation of these
biomolecules, and a critical comparison of the different synthetic approaches developed
in the last twelve years are also described. The review is composed of 95 schemes, 8
figures and 528 references for the last 12 years and includes the description of the
hydantoin-based marketed drugs and clinical candidates.
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1. INTRODUCTION

Over the past decade, the synthetic and pharmaceutical interest
for imidazolidine-2,4-diones, or hydantoins, has not faded and
has given rise to more than 3000 publications and patents in
methodological and medicinal chemistry. Several reviews have
focused on the synthesis of these five-membered heterocycles,1−3

referencing their preparation methods from the main, historical
ones such as the Read,4 Bucherer−Bergs,5 or Biltz6 syntheses to
more modern ones, such as multicomponent reactions (MCRs),
which enabled libraries of hydantoinic compounds to be
obtained through simple routes.7,8 Since Meusel and Gütschow’s
last review in 2004,3 novel synthetic routes to various hydantoin
structures have been explored, as well as advances brought to the
classical methods in the aim of producing more sustainable and
environmental-friendly procedures for the preparation of these
biomolecules. This paper is updating the progress in the
chemistry of hydantoins and references the publications from
2004 to May 2016. It is organized in a different perspective than
the previous report from 2004: hydantoins are grouped
according to the substitution pattern on the principal backbone
and the synthetic strategies for the preparation of each family of

compounds are highlighted (mono-, di-, or trisubstituted
hydantoins on the C-5, N-1/N-3 positions, fused and polycyclic
systems, spiro-, alkylidene or amino- hydantoins), including their
use as organometallic ligands (Figure 1). One of the advantages

of organizing the review from the point of view of the scaffold
(and not considering the general method to access it) is the
possibility to overview at a glance all of the available procedures
to access a specific family of compounds.
This approach is very valuable not only for synthetic chemists

but also for a broader readership in the field of medicinal
chemistry, where target oriented syntheses is a must. The
preparation of thiohydantoins will not be treated, being usually
obtained similarly to hydantoins, but in the presence of thio-
based reactants, or by transformation of the hydantoin scaffold by
common thionation reactions (e.g., Lawesson’s method).
Reviews on their preparation were already reported.9,10 More-
over, the detailed description of the diverse biological activities
displayed by hydantoin scaffolds is out of the scope of the review,
and it would deserve a separate submission.

2. HYDANTOINS AS CLINICAL CANDIDATES AND
MARKETED DRUGS

Many biological properties have been attributed to compounds
containing a hydantoin moiety, as illustrated throughout the
following sections of this review. Several of them have
demonstrated strong bioactivity and thus have been led through
clinical trials,11,12 and some of them have been commercialized as
pharmaceuticals.13 In this section a short overview of hydantoin-
containing clinical candidates (from 2004 to 2016) andmarketed
drugs is given, the structures of which are depicted in Figures 3
and 4.
2.1. Clinical Candidates

2.1.1. BMS-587101. BMS587101 is a spirocyclic hydantoin
which was developed by Bristol-Myers Squibb and showed

Figure 1. Hydantoin core and the classes of hydantoins.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00067
Chem. Rev. 2017, 117, 13757−13809

13758

http://dx.doi.org/10.1021/acs.chemrev.7b00067
Frédéric Lamaty䅁


Frédéric Lamaty䅁




biological activity as a leukocyte function-associated antigen-1
(LFA-1) antagonist. The method for its preparation is described
in section 12.6.14 This candidate reached clinical phase II in the
treatment of moderate to severe psoriasis. The clinical trial was
however discontinued for unspecified reasons. A second-
generation LFA-1 antagonist spirocyclic hydantoin, BMS-

688521,15 showing a 4- to 8-fold improvement in human in

vitro potency compared to BMS-587101 due to additional

binding interactions with the receptor of interest (Figure 2), was

then found as a potent clinical candidate, but to our knowledge

no clinical trial was conducted on this molecule.

Figure 2. X-ray crystal structures of BMS-587101 (left) and BMS-688521 (right) bound to the I-Domain of LFA-1 (image reproduced with permission
from ref 15. Copyright 2014 American Chemical Society).

Figure 3. Hydantoin clinical candidates.

Figure 4. Hydantoin marketed drugs.
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2.1.2. GLGP-0492. This 3-(3-cyano-2-trifluoromethyl-phe-
nyl)-5-(hydroxymethyl)-1-methyl-5′-phenyl-hydantoin was de-
veloped by Galapagos. The compound was synthesized
according to the Bucherer−Bergs reaction followed by the
double substitution of its nitrogen atoms (see section 6.1).16

GLGP-0492 (Figure 3) went through clinical phase I in 2012. It
was tested as a selective androgen receptor modulator (SARM)
that should help increase the protein synthesis in muscle in the
case of cachexia, i.e., muscle and weight loss, happening for
instance along with cancer, chronic obstructive pulmonary
disease (COPD), or AIDS, after immobilization or due to aging.
The safety, tolerability, and pharmacokinetics of the candidate
drug were also evaluated. Due to insufficient results, the clinical
trial for cachexia was discontinued. However, GLGP-0492
showed interesting preclinical results toward Duchenne
muscular dystrophy (DMD) and should be further developed
in clinical trials in this frame.

2.2. Marketed Drugs

2.2.1. Phenytoin and Fosphenytoin. Phenytoin, or 5,5-
diphenylhydantoin (Figure 4), was first synthesized by Biltz in
the early 1900s from the reaction of benzil with urea (see section
3.3).6 Alternatively, the Read synthesis was also successful by
mechanochemistry17 (see section 3.2). The anticonvulsant and
antiarrhythmic properties of this compound led Pfizer to
commercialize it in 1951 as a sodium salt under the name of
Dilantin. Apart from the already cited activities of this drug, it is
also used as a muscle relaxant. Although the mechanism of action
of phenytoin is unclear, it probably acts on the voltage-
dependent sodium channels of neurons and calcium efflux
from neurons that leads to the raise of normal seizure threshold
and the inhibition of seizure activity. Its use as an antiepileptic
drug is however limited because of its numerous adverse effects
and drug interactions. Its water-soluble prodrug, fosphenytoin,
was marketed under its sodic form by Erfa in 2000 and then by
Pfizer in 2013 under the name of Cerebyx.
2.2.2. Ethotoin. 3-Ethyl-5-phenylhydantoin or ethotoin is

also an antiepileptic drug which was commercialized as Peganone
by Recordati in 1957 and then by Abbott Laboratories. Its major
metabolite is 5-phenylhydantoin, which mechanism of action
may be analogous to that of phenytoin. However, unlike the
latter, ethotoin does not raise the normal seizure threshold but
rather stabilizes it and prevents the spread of seizure activity. Two

recent examples for the preparation of ethotoin, by mechano-
chemistry13 or in solution,14 are described in section 5.4.

2.2.3. Nilutamide. Nilutamide was marketed as Anandron
by Sanofi-Aventis in 1996. Its original synthesis relies on the N-
alkylation of 5,5-dimethylhydantoin with 4-nitro-3-trifluoro-
methyl-phenyl chloride in the presence of cuprous oxide.18

Unlike the previous hydantoins presented, nilutamide does not
exhibit antiepileptic activity but is a nonsteroidal antiandrogenic
drug used in the treatment of prostate cancer. Its affinity for
androgen receptors leads to the blocking of adrenal and prostatic
androgens and thus to the inhibition of cellular growth of the
prostatic tissue.

2.2.4. Nitrofurantoin. Nitrofurantoin is an N-1-amino-
hydantoin (see section 10.1) which was first commercialized by
Shionogi Inc. under the name of Furadantin in 1953. It is an
antibacterial drug prescribed in the case of specific urinary tract
infections. Its mechanism of action relies on its reduction by
enzymes such as bacterial flavoproteins to produce reactive
intermediates that damage DNA and proteins. It is efficient
against both Gram-positive and Gram-negative organisms.

2.2.5. Dantrolene. This 1-aminohydantoin is a structural
analogue of nitrofurantoin, and its synthesis, as well as its
derivatives, has been reported several times in the past decade
(see section 10.1). It was marketed as Dantrium by Norwich
Eaton in 1979 and is used as a muscle relaxant and to prevent
malignant hyperthermia.

3. 5- AND 5,5-DISUBSTITUTED HYDANTOINS

The first methods developed for the synthesis of hydantoins were
devoted to the preparation of 5- and 5,5-disubstituted
hydantoins. Mainly, three different synthetic pathways are
known: (i) the Urech or the Read synthesis,4 consisting in the
reaction between amino acid derivatives and isocyanates; (ii) the
Bucherer−Bergs reaction,5 starting from carbonyl compounds,
potassium or sodium cyanide and ammonium carbonate; or (iii)
the Biltz reaction,6 the historical procedure for the synthesis of
the antiepileptic drug phenytoin from benzil and urea. They are
still widely used nowadays, following the initial conditions or
improving the methods by the use of modern technologies and
ways of thinking synthetic chemistry (Scheme 1). Since 2004, the
range of application of these methods, particularly the Bucherer−
Bergs reaction that affords the widest diversity of hydantoin
structures, is very broad, especially in the field of medicinal

Scheme 1. Three Main Routes to 5- and 5,5-Substituted Hydantoinsa

aImage reproduced with permission from ref 17. Copyright 2014 American Chemical Society.
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chemistry, in which the synthesis of hydantoins enables the
access to numerous potent biological compounds.
Considering the large number of references concerning the

preparation of hydantoins as bioactive compounds, we will focus
in this section on the improvements or variations of the synthetic
conditions, as well as on interesting or specific applications of the
prepared compounds.

3.1. Bucherer−Bergs Reaction

Usually, the Bucherer−Bergs reaction was carried out in classical
thermal conditions in a 1:1 mixture of EtOH and water at reflux
for several hours, in a sealed tube to prevent the escape of volatile
ammonium carbonate. In the presence of the latter, the carbonyl
compound formed an imine intermediate on which cyanide
reacted to obtain an amino nitrile. Subsequent carbamoylation
with carbon dioxide issued from (NH4)2CO3 and cyclization
followed by rearrangement of the five-membered ring afforded
the targeted hydantoin (Scheme 2).
This reaction is a valuable method to obtain various 5- and 5,5-

disubstituted hydantoins and was applied, as just mentioned, in
many works (not referenced herein) focusing on the preparation
of bioactive molecules19−23 and antibacterial polymers.24,25

Notably, an interesting and well-known application of obtaining
such hydantoins is the access to quaternary non-natural amino
acids or analogues of natural ones.26,27 The quaternary amino
acids could then be used in bioactive peptide analogues28 to
induce a specific secondary structure.29 Moreover, resolution of
the mixture of hydantoins can afford the enantiopure amino acids
(see also section 13).30

Variations of the Bucherer−Bergs method were explored and
broadened the array of reactants that enter in the reaction
procedure. Montagne et al. proposed to generate the imine
intermediate from the nucleophilic addition of organolithium or
Grignard reagents on either methyleneaziridines31 or nitriles.32

This procedure would permit the variety of 5,5-disubstituted
hydantoins to be extended. Another variant of the reaction was
developed by Murray et al., in which the amino nitriles were
generated from the Ga(OTf)3-catalyzed reaction, at −78 °C in
CH2Cl2, of liquid ammonia on ketones followed by the addition
of hydrogen cyanide. The introduction of gaseous carbon dioxide
in the presence of N,N′-diisopropylethylamine afforded the
hydantoins.33 As put forward by the authors, the use of organic
solvent instead of a mixture of ethanol and water may
advantageously offer better solubility of the reactants; however,
this procedure required the use of a gallium-based Lewis acid and
hazardous gaseous CO2 in strictly anhydrous conditions that may
represent some drawbacks to the method. Kondo et al. recently
developed an enantioselective synthesis of α,β-diaminoacetoni-
triles, which they used in the Bucherer−Bergs reaction without
loss of enantiopurity.34

Improvements in terms of reaction times, yields, and
environmentally friendly conditions were also described. A
catalyzed Bucherer−Bergs reaction was reported, in which Fe3O4
nanoparticles were employed as a reusable (up to four times)
Lewis acid to promote both the amino nitrile formation and the
carbon dioxide addition steps.35 Neat conditions, easy removal

and recyclability of the catalyst, and short reaction times are
obvious advantages to this method. The microwave technology
enabled the reaction times to be reduced as well, as shown by
Faghihi et al.36 The authors compared thermal heating and
microwave irradiation for the synthesis of several 5,5-
disubstituted hydantoins, the microwave procedure providing
the desired compounds within minutes of reaction in twice as
high yields compared to thermal conditions. Very recently an
intensified procedure of the Bucherer-Bergs reaction was
reported using continuous-flow technology that shortened the
reaction times to less than an hour.37

3.2. Use of Isocyanates and Formation of Urea Derivatives

Compared to the numerous examples of the Bucherer−Bergs
reactions presented in the literature since 2004, few papers report
the formation of hydantoins from isocyanates. The Urech or the
Read synthesis, i.e., the reaction between amino acid derivatives
and potassium or sodium cyanate to form an ureido derivative
that is then cyclized in acidic conditions (Scheme 1), was applied
to the synthesis of a variety of 5- and 5,5-disubstituted hydantoins
that served for screening as potent bioactive compounds38 or as
intermediates in the preparation of biomolecules containing
enantiopure amino acid moieties.39,40 [14C]-labeled hydantoin
SCH900567, a potential tumor necrosis factor-alpha converting
enzyme (TACE) inhibitor, was synthesized from the hydrolysis
of its unlabeled analogue and the reaction of the resulting amino
acid with KO14CN after esterification of the acid moiety (Figure
5).

The [13C, 15N] analog was prepared from labeled starting
materials, leading to a methoxycarbonyl-protected amino methyl
ester derivative that was cyclized in the presence of a 7 M
ammonia solution.41 Recently, Konnert et al. developed a
mechanochemical solvent-free procedure for the preparation of
various structures from natural amino methyl esters.17 These
conditions enabled the general reaction in terms of yields and
reaction time to be improved and afforded an alternative
synthesis of phenytoin (see next section).
Apart from the Read synthesis, an interesting method for the

formation of quaternary 5-allyl-5′-substituted hydantoins was
reported by Hupp et al. in the course of the synthesis of a marine
indole alkaloid.42,43 The procedure involved an oxazole
rearrangement from thiourea derivatives and 1-ethyl-3-[3-
(dimethylamino)propyl]carbodiimide (EDC). The thiourea
derivatives were prepared by the reaction of amino allyl esters
and ethyl isothiocyanatoformate (Scheme 3). Desulfurization of
the thiourea derivative in the presence of EDC led to the

Scheme 2. Bucherer−Bergs Reaction

Figure 5. Hydantoin SCH900567.
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formation of a carbodiimide intermediate. The carbodiimide was
attacked intramolecularly by the carbonyl of its allyl ester moiety
to afford an oxazole intermediate that underwent a Claisen
rearrangement into a quaternary oxazolone.
Treatment of the oxazolone with an excess of sodium

methoxide led, after several transformations, to the 5-allyl-5′-
substituted hydantoin. This reaction afforded 5-allyl-5′-aryl-
hydantoins in good yields, but limited reaction was observed with
methyl and benzyl substituents, i.e., alanine and phenylalanine
substrates.
Urea derivatives could be also obtained by other strategies.

Agrawal et al. synthesized them by treatment of N-cyano amino
esters with dibutylphosphate for 30 min at reflux of toluene.
Extending the reaction time led to the formation of the
corresponding hydantoins.44 The method was efficient and
versatile as it gave access to various heterocycles. Starting from
methyl (aminocarbonyl)carbamate, Shaddy et al. obtained an
ureido derivative of diphosphonate that cyclized to afford the
corresponding 5,5-bis(diethylphosphonate)-hydantoin with po-
tential therapeutic applications.45

3.3. Biltz-Type Synthesis, Preparation of Phenytoin
Derivatives

Apart from few papers reporting the preparation of phenytoin
and its derivatives from alternative methods46 like the Bucherer−
Bergs reaction20,47 or carbonylation of α,α-diphenyl-amino
amide,48 the major pathway to access the antiepileptic drug
remains the Biltz synthesis, consisting in the double
condensation of urea on benzil in strong acid or basic conditions
(Scheme 4).
Recently, many advances were brought to the original

procedure. Indeed, novel conditions were reported, using
heterogeneous catalysts49,50 or modern technologies such as

microwave irradiation51,52 or ultrasonication.53−55 Solvent-free
procedures were also developed and notably one solvent-free
route in which a mixture of benzil, urea, and NaOH were ground
with a mortar and a pestle.56 However, this method was found to
be not applicable to ball-milling technology,17 and phenytoin was
obtained by the Read procedure using activated trimethylsylili-
socyanate (Scheme 4). All of these alternative procedures have
the advantages of affording phenytoin derivatives in excellent
yields and to be much faster and greener than the original version
of the reaction. The access to benzil derivatives was moreover
widened by the development of a DMSO-PdI2-promoted
oxidation of diaryl alkynes into the corresponding benzils.57

More generally, the condensation of glyoxal derivatives with urea
served for the synthesis of diverse 5- and 5,5-disubstituted
hydantoins.58−60

3.4. Substitution at Position C-5

Substitution at the C-5 position of 5-bromohydantoin was the
main strategy in the few examples reported since 2004. Arylation
could take place through Friedel−Crafts reaction, involving
recoverable and recyclable heterogeneous Lewis acids such asMg
and Yb on solid supports61 or phosphates.62 The reactions
generally afforded excellent selectivities, except in the case of
phenol for which para- and ortho-hydroxyphenylhydantoin were
obtained. Phenylene-1,4-oxy-bis-hydantoins with antimicrobial
properties were synthesized from the reaction of substituted
quinols on 5-bromohydantoin in the presence of K2CO3
(Scheme 5).63

3.5. Metal-Catalyzed Procedures

Various 5-aryl-hydantoins were prepared from methyl arylace-
tates or β,γ-unsaturated methyl ester, via their copper-catalyzed
α-amination with di-tert-butyldiaziridinone.64 The obtained

Scheme 3. Hydantoin Formation from Claisen Rearrangement of Oxazolones

Scheme 4. Biltz Synthesis

Scheme 5. Preparation of Phenylene-1,4-oxy-bis-hydantoins
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hydantoins could be easily and selectively deprotected with
methanesulfonic acid, with possible further substitution to give
various 1,3,5-trisubstituted structures (Scheme 6).

4. 1- AND 1,5-DISUBSTITUTED HYDANTOINS

4.1. Use of Isocyanates and Ureas

Reactions involving isocyanates are some of the oldest pathways
to prepare hydantoins.65 More specifically, N-1-substituted
hydantoins were obtained by the reaction betweenN-substituted
amino acid derivatives and alkali cyanates or analogues such as
chlorosulfonyl or trimethylsilyl isocyanate.
Two strategies were adopted to synthesize the N-substituted

amino acid derivatives (Scheme 7). The first one is the
substitution of the free N-terminal moiety of amino acids
(usually glycine) by alkylation or reductive amination of
aldehydes. This procedure enabled diarylether-derived 1-
substituted hydantoins to be prepared that were found to be
potent non-nucleoside reverse transcriptase inhibitors
(NNRTIs) for HIV treatment,66 as well as 1-[(1-benzyl indol-
3-yl)-carbomethyl]hydantoin which was evaluated as antimicro-
bial and anticancer agent.67

The second strategy, equally effective, consisted in the N-
alkylation of amines, including free N-terminal moiety of amino
acids, with ethyl bromo or chloroacetate.68 The corresponding
N-substituted glycine ethyl esters were thus obtained and then
reacted with isocyanate to afford the 1-substituted hydan-
toins.69−71

To synthesize 1,5-diaryl-hydantoins, Kwon et al. esterified and
brominated commercially available phenylacetic acids which
served for the N-alkylation of aniline.72

A variant to this reaction has been described by Pevarello et al.
They prepared in a one-pot manner an N-1-arylhydantoin by
reacting methyl 4-aminophenylpropionate as the amine with
chloroacetyl isocyanate in the presence of DBU (Scheme 8).73

The reaction between amino acid derivatives and isocyanates
consists in the formation of the ureido derivatives as
intermediates that are then cyclized to afford the hydantoin. In
their work on the preparation of human β2 adrenoceptor

agonists,71 and in parallel of the synthesis already described
above, Procopiou et al. prepared this intermediate starting not
from an isocyanate but directly from the urea of 3-iodo-aniline
and ethyl chloroacetate, the cyclization occurring in the presence
of NaH (Scheme 9).
This alternative to the reaction with isocyanates using urea was

also reported by Babaeva et al.74 They described the synthesis of
oxa- and thiazolidine-1,3-diones in which they prepared in one-
pot the N-substituted glycine from 4-chloro or bromo-aniline
and chloro acetic acid, which reacted in situ with urea at 120−130
°C to afford the corresponding 1-(4-halogenophenyl)-hydantoin
(Scheme 9). The advantage of this method was the neat
conditions employed; however, compared to Procopiou’s
method they needed the amine as an extra reactant and gaseous
ammonia was released.
4.2. Biltz Synthesis

Urea is besides one of the components of the Biltz synthesis.
Modified procedures of the original reaction using substituted
ureas and/or glyoxal derivatives enabled the access to 1- and 1,5-
disubstituted hydantoins.
Baccolini et al.60 recently reported the use of phosphorus

pentoxide as a catalyst for the reaction between unsubstituted
urea (or thiourea) or methylurea and glyoxal or its simple
derivatives. The reactions were carried out at room temperature
in aqueous media, offering mild and green conditions for the
obtaining of methyl-substituted hydantoins (Scheme 10).
Aryl-substituted hydantoins were also synthesized following a

modified Biltz reaction, starting from aryl methyl ketones,

Scheme 6. Copper-Catalyzed Synthesis of N,N-Di(tert-butyl)-hydantoins

Scheme 7. Formation of N-Substituted Amino Acid Derivatives and Their Reaction with Isocyanates

Scheme 8. Use of Chloroacetyl Isocyanate for the
Construction of the Hydantoin Ring
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oxidized with selenium oxide into their corresponding glyoxal
and arylureas. The reactions were catalyzed either by HCl in
acetic acid under reflux for 4 h (Scheme 11, method A)75,76 or by
acidic alumina in short reaction times under MW irradiation
(Scheme 11, method B),77 the latter procedure offering a greener
synthetic route to 1,5-arylhydantoins.

4.3. Alkylation/Acylation at N-1 Position

Derivatization of the N-1 position of unsubstituted hydantoins
could be performed by alkylation methods78,79 or Mitsunobu
reaction.80 The different acidity of both nitrogens of the
hydantoin ring was highlighted by Kashif et al. in their synthesis
of 1-arylsulfonylhydantoins by alkylation of 5,5-dimethylhydan-
toin.81 When reacting with aryl sulfonyl chlorides in the presence
of triethylamine and DMAP, the 1,3-unsubstituted hydantoin
was substituted in its more acidic positionN-3. In the presence of
sodium hydride, the 3-arylsulfonyl-5,5-dimethylhydantoin
underwent a rearrangement into 1-arylsulfonyl-5,5-dimethylhy-

dantoin (Scheme 12). The obtained compounds were
successfully tested for their in vitro hypoglycemic activity.
The selective N-1 or N-3 substitution of hydantoins not only

relies on the difference in acidity but also on the bulkiness of the
C-5 substituent of the hydantoin ring. The Boc-protection ofN-1
and N-3 positions of the hydantoin core was described by
Kruger.82,83 Mono or bis-N-acylation reactions were studied and
compared for 5-methylhydantoin, 5,5-dimethylhydantoin, and
the cage-like molecule trishomocubane hydantoin (Figure 6),
highlighting the essential role of steric hindrance of C-5 position
in the regioselectivity of the Boc-protection and the competitive

Scheme 9. Hydantoins from Ureas and Ethyl Chloroacetate

Scheme 10. Biltz-Type Reaction with Glyoxals

Scheme 11. Catalyzed Pathways to 1-Arylhydantoins

Scheme 12. Illustration of the Different Acidity of Positions N-1 and N-3

Figure 6. Trishomocubane Hydantoin.
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reaction between N-1 (more hindered but stronger nucleophile)
and N-3 (less hindered but weaker nucleophile) positions.
Boc-deprotection with K3PO4.H2O in methanol of positionN-

1 has been performed by Dandepally et al.84 Although
substitution at the N-3 position can enhance the pharmaceutical
activity of hydantoins, this same position can as well be
deprotected. The ruthenium-catalyzed deprotection of N-3
allylic hydantoin was reported,85 along with other examples of
amide-like moieties that are lactams, imides, or oxazolidinones.
This procedure has the advantage to promote the allylic function
as a convenient protecting group, as its orthogonal deprotection
is tolerant toward many functionalities.

4.4. Miscellaneous

A convenient route for the synthesis of 1-substituted hydantoins
was described by Kumar et al.86 Using an amine as a cheap and
versatile starting material, the corresponding cyanamide was
formed by reaction with cyanogen bromide. The N-alkylation of
this cyanamide was then performed with methyl bromoacetate in
the presence of NaH to afford the methyl N-cyano-N-alkyl/
arylaminoacetate, which was then cyclized into the N-1-
substituted hydantoin in the presence of 50% sulfuric acid
(Scheme 13, method A). Later, they used DBP (dibutylphos-
phate) to perform the cyclization of these N-cyano-N-alkyl/

arylaminoacetates (Scheme 13, method B).87 The authors
extended the two described procedures to a bis(hydantoin)
compound, enhancing the possibility to include hydantoin
moieties in bigger structures.
Olimpieri et al. prepared 1-alkyl/aryl-5-substituted hydantoins

through an innovative two-step protocol involving N-tert-butyl-
orN-trityl-carbodiimides and α,β-unsaturated carboxylic acids or
α-bromoaryl acetic acids.88

The described domino condensation/nucleophilic substitu-
tion/O → N acyl migration afforded 1-alkyl/aryl-3-tert-butyl/
trityl-hydantoins with high regioselectivity. The occasional
byproduct N-acylurea could be easily cyclized into the desired
hydantoins with 2 M NaOH. The 3-substituent was then
removed to access the 1,5-disubstituted compounds (Scheme
14). The proton transfer during the reaction of phenyl urea and
ethyl chloroacetate to form 1-phenylimidazolidine-2,4-dione was
studied through DFT calculations.89 The authors found that
intermolecular proton transfer was the main transfer at 300 K,
and thus that both negative N-1 and N-3 coexisted, the
phenomenon being very fast in concentrated solutions.

4.5. Hydantoins Derived from Guanosine and Analogues

DNA oxidation, also called oxidative stress, is mainly due to the
easily oxidized nucleobase guanosine. To understand this

Scheme 13. Methods for the Synthesis of Hydantoins from N-Cyano-N-alkyl/Arylaminoacetate

Scheme 14. Regioselective Reaction of Carbodiimides and α,β-Unsaturated Carboxylic Acids or α-Bromoaryl Acetic Acids

Scheme 15. Decomposition of Guanosine by Singlet Oxygen Oxidation
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phenomenon, many studies on the singlet oxygen oxidation of
guanosine enlightened the many products derived from the
oxidation of the main metabolite of guanosine, 8-oxo-7,8-
dihydro-22-deoxyguanosine. Among the structures found in the
products of decomposition there are hydantoins, namely
spiroiminohydantoin (found at neutral or basic pH) and
guanidinohydantoin (found at acidic pH) (Scheme 15), and
their characterization and mechanism of formation were largely
studied.90−96

The synthesis of derivatives of spiroiminodihydantoin was also
described,97,98 as well as the oxidation mechanisms of two oxo
analogues of guanosine, 5-hydroxyisourate,99−101 and caffeine.102

The oxidation process of cytosine was demonstrated toward the
formation of 5-hydroxyhydantoin nucleosides (Scheme
16).103−105

Oxidative sources leading to hydantoins, other than singlet
oxygen, were also reported, including chromium(V) com-
plexes,106 azo-compound derived radicals,107 hydrobromous
acid,108 or Fenton-like systems with Cu(II)109 or Fe(II).110

5. 3- AND 3,5-DISUBSTITUTED HYDANTOINS

5.1. Alkylation/Acylation at the N-3 Position

The most usual way to substitute the N-3 position of hydantoins
is alkylation with halides in the presence of a base (usually
potassium carbonate). This strategy was largely adopted for the
preparation of 3-substituted hydantoin-containing compounds
with potential biological activities.16,111−124 Notably, 5,5-
dimethylhydantoin derivatives were synthesized by this means

for applications in antimicrobial polymer coatings,125−127 as well
as phenytoin derivatives.128−131

Besides, 3-substituted phenytoin derivatives were also
obtained by nucleophilic addition on formaldehyde132 and by a
solvent-free procedure relying on the aza-Michael addition of
phenytoin on α,β-unsaturated esters under ultrasonication.133 In
the latter case the presence of the ionic salt tetrabutylammonium
bromide (TBAB) had an effect on the efficiency of the reaction as
it acted as a solvent for both organic compounds and inorganic
base.
Other pathways to substitute nitrogen N-3 are nucleophilic

substitution of oxirane derivatives that led to 3-β-hydroxyhy-
dantoins134,135 and Mitsunobu reaction.136−138 Hügel et al.
circumvented the classical alkylation methods and developed, for
the N-arylation of hydantoins, a copper-promoted coupling
reaction with triarylbismuthanes and aryl boronic acids,139 the
latter being better agents of arylation in the procedure (Scheme
17). Shinde et al. prepared a 3-(2-oxo-phenylethyl)-hydantoin
from 5,5-dimethyl-1,3-dibromo-hydantoin to illustrate their N-
bromosuccinimide promoted synthesis of α-imido ketones from
styrenes.140

5.2. Use of Isocyanates

3-Substituted hydantoins can be obtained by cyclization of the
corresponding ureido derivatives. To synthesize these derivatives
from amines, several reported procedures of these recent years
involved the use of ethyl isocyanatoacetate with benzylamine71

or aniline derivatives.73,141 The cyclization of these intermediates
in acidic conditions afforded the 3-substituted hydantoins
(Scheme 18).

Scheme 16. Oxidation Process of Cytosine

Scheme 17. Substitution at the N-3 Position of Hydantoins

Scheme 18. Ureido Derivatives from Ethyl Isocyanatoacetate
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Apart from amines, other compounds were found to be
starting materials for the synthesis of 3-substituted hydantoins
using isocyanates. Fresneda et al. found that the reaction between
E-phosphazidoester derivatives, obtained by the Staudinger
reaction, and isocyanates could lead to 3-substituted hydantoins
(Scheme 19).142

The use of aminonitriles was described as well, the cyclization
occurring in the presence of H3PO4, hydrolyzing at the same time
the iminohydantoin intermediate.143

5.3. Miscellaneous

The Biltz synthesis was employed by Muccioli et al. for the
preparation of 3-substituted phenytoin derivatives.144 The
compounds were synthesized in DMSO in the presence of
aqueous KOH, under microwave irradiation (nine pulses at 750
W in a domestic microwave equipment). As a variant of the Biltz
reaction, N-hydroxy and N-alkoxyureas were reacted with
arylglyoxal hydrates to access 3-hydroxy or 3-alkoxy-5-
arylhydantoins.145 Acidic catalysis with AcOH helped the
reaction to proceed at room temperature to afford the desired
products after rather long reaction times but in good to excellent
yields.
Hroch et al. started from benzyloxycarbonyl (Cbz)-amino

malonic acids to prepare 3,5,5-trisubstituted hydantoins.146 After
forming the corresponding acyl chlorides, the carbonyl oxygen
on the N-carboxybenzyl (Cbz) protection attacked one of the
acyl chlorides, forming by cyclization an isoxazolidinone. A
rearrangement took place with the addition of an amine on the
same acyl chloride, affording the hydantoin by subsequent
reopening and cyclization of the heterocyclic ring (Scheme 20).
Similarly, hydantoins can be obtained from the rearrangement of
N-Boc-protected heterocycles. The reaction between Boc-imines
and isonitriles led to the formation of oxazolidinones that
rearranged into hydantoins.147 Chaubet et al. described the ring
contraction of bis-Boc diketopiperazines into the corresponding
hydantoins through a KOH or NaOMe-mediated rearrange-
ment.148

5.4. 3-Substituted Hydantoins from Amino Acids

5.4.1. Use of Isocyanates. As already mentioned, the use of
substituted isocyanates enabled the preparation of the 3-
substituted hydantoins from amines and other reactants.
However, the main pathway to hydantoins from isocyanates is
their reaction with amino acids or their derivatives. Indeed, this
reaction resulted in the formation of the corresponding ureido
derivative of the amino acids, which cyclized intramolecularly by
the attack of the nitrogen provided by the isocyanate on the C-
terminal moiety of the amino acid derivative. Konnert et al.
recently reported the first mechanochemical reaction of
substituted isocyanates with amino methyl esters, to provide a
range of 3-substituted hydantoins, including ethotoin (Figure 2),
using poly(ethylene glycol)s (PEGs) as grinding additives.149

Since 2004, some examples have been reported in which
analogues of natural amino acids, such as para-substituted
phenylglycine76,150 or β-amino-alanine derivatives151 were
reacted with various isocyanates to generate the 3-substituted
hydantoins.152−154 A variant to this procedure was described by
Park et al.,155 who first formed the hydantoin scaffold from anO-
substituted tyrosine with potassium cyanate and then alkylated
the N-3 position with the desired methyl sulfonate derivative.
Haridas et al. prepared bis-hydantoin structures from a phenyl
bis-isocyanate and alanine, aminoisobutyric acid, and leucine
methyl esters.156 In their study of the anion binding of the
corresponding ureido derivatives, they provoked the cyclization
into hydantoins in the presence of tetrabutyl ammonium fluoride
(TBAF) because of the high basicity of the fluoride anion
(Scheme 21). Moreover, the crystal structure of these bis-
hydantoins showed interesting self-assembly behavior thanks to
unusual hydrogen bonding.
Pyroglutamate, the cyclic analogue of glutamic acid, under-

went a rearrangement into hydantoin when reacted with
isocyanates.157 In presence of NaH, the ureido intermediate
reacted intramolecularly on the ester moiety of pyroglutamate to
form a fused bicyclic hydantoin intermediate. The released
alkoxide ion opened the bicyclic intermediate to a 3,5-

Scheme 19. Hydantoins Formed by the Reaction between E-Phosphazidoesters and Isocyanates

Scheme 20. Rearrangement from N-Benzyloxycarbonylamino Malonic Acid

Scheme 21. Bis-hydantoin Structures
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disubstituted hydantoin, after proton transfer and subsequent
racemisation of the chiral center (Scheme 22). Preliminary
alkylation of pyroglutamate led to 3,5,5-trisubstituted hydan-
toins.
Solid-phase synthesis is besides a useful technique for the

synthesis of 3-substituted hydantoins from amino acids. Colacino
et al. reported a microwave-assisted procedure158 in which resin-
bound amino acids with free N-terminal moiety reacted with
phenyl isocyanate. The generated ureido derivatives were then
simultaneously cyclized and released from the resin in the
presence of a base to afford the corresponding hydantoins, the
unreacted material remaining bound to the resin (Scheme 23).
In a similar manner, El bakkari et al. developed a bis-

monopyridyl benzyl alcohol tag for the easy purification by
hydrocarbon/perfluorocarbon phase-switching of products and
substrates. They synthesized a hydantoin in four steps, by first
anchoring by acylation N-Boc-glycine on the hydroxyl group of
the tag.159 After deprotection of the N-terminal moiety, 4-
isopropyl-phenyl isocyanate was added, leading to the ureido
derivative. Treatment with triethylamine led to the hydantoin
while releasing it of the tag. For each step, the intermediates were
purified by extraction with an aqueous solution containing a
fluorous copper(II) carboxylate complex to which the pyridyl
moiety could coordinate, easily removing the non-reacted and
byproduct material in the organic phase. Washings of the
perfluorodecalin solution with THF enabled the products to be
released from the tag and to recover them in the organic phase.
The “reverse” pathway of the reaction of amino acids with

isocyanates was to generate the isocyanate function from the
carbamoylated N-terminal moiety of the amino acid. This
transformation could be achieved by treatment of the carbamate
function with PCl5.

160,161 The addition of an amine followed by
cyclization of the obtained ureido derivative afforded the
corresponding 3,5,5-trisubstituted hydantoins (Scheme 24).
The formation of an isocyanate intermediate was proposed in

the mechanism of the rearrangement of Boc-protected amino
amides into hydantoins in the presence of triflate anhydride

(Tf2O) and pyridine.162 Tf2O would act as a Lewis acid and
activate the carbonyl group of the amide bond, leading to the
generation of an isocyanate moiety by liberation of the tert-butyl
group of the Boc-protection. This intermediate would then
cyclize into an oxazolidinone that would undergo a Mumm
rearrangement into the corresponding hydantoin. Among the
prepared compounds, the antiepileptic drug ethotoin was
obtained in 60% yield (Scheme 25).

Thus, hydantoins can be obtained from the intramolecular
cyclization of ureido derivatives of amino acids or peptides
obtained from isocyanates in solution, on solid phase or by
mechanochemistry. These urea derivatives can besides be
synthesized by the activation of the N-terminal moiety of
amino acids or peptides by acylating agents such as 1,1-
carbonyldiimidazole (CDI), phosgene or triphosgene, benzo-
triazole carbonyl derivatives, or disuccinimidyl carbonate, as well
as chloroformates, followed by the addition of an amine. The
urea derivatives can then be cyclized to afford the hydantoins,
usually in basic medium. The following paragraphs focus on the
different kinds of N-activation of amino acid derivatives allowing
to access to 3-substituted hydantoins.

5.4.2. Use of 1,1-Carbonyldiimidazole (CDI). In peptide-
like structures, the mechanism of formation of the hydantoin
described with isocyanates may happen right after the activation
step with CDI, the resulting activated N-1-imidazole-carbox-
amido intermediate acting like an isocyanate. This intramolecular

Scheme 22. Pyroglutamate Rearrangement

Scheme 23. Solid-Phase Synthesis of 3,5-Disubstituted Hydantoins

Scheme 24. Formation of Isocyanates of Amino Acid Derivatives

Scheme 25. Tf2O-Mediated Formation of 3,5-Substituted
Hydantoins from Amino Amides
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formation of hydantoin has been reported as a side reaction in the
synthesis of aza-peptides163 or in the preparation of macrocycles
containing an ureido function.164

However, this reaction can be taken advantage of for the solid-
phase synthesis of hydantoins from peptides.165 Vasquez et al.
showed that CDI was a useful reagent for the formation of
hydantoins from dipeptides without epimerization.166 They
extended their work to the solid-phase synthesis of hydantoin-
based peptidomimetics that were evaluated as inhibitors of
caspase-3.167

The mechanochemical formation of ureido derivatives from
amino esters was also described, using CDI to form an acyl
imidazole intermediate that underwent the nucleophilic attack of
various amines.149 The ureido derivatives were then cyclized in
the presence of potassium carbonate to afford the corresponding
hydantoins. The use of poly(ethylene)glycol (PEG) as a reaction
auxiliary during the ball-milled reaction168−170 proved to be
beneficial both to the yields and the retention of the optical purity
of the compounds. The drug ethotoin was notably synthesized in
65% yield following this procedure.
The synthesis of analogues of nilutamide was described by

Varchi et al., who prepared amino amide-like structures from
sulfinylimino propanamides.171 These structures were trans-
formed into hydantoins by reaction with CDI which furnished
the missing carbonyl function of the heterocycle, with no
racemisation of the stereogenic center.
Total synthesis of the marine alkaloid Parazoanthine F was

reported, which was based on the copper-assisted C−N coupling
of vinyl bromides and Boc-protected amino amides (namely
alanine and arginine). The resulting enamides were then cyclized
into hydantoins by reaction with CDI, after removal of the Boc-
group and without any epimerization of the chiral center.172

5.4.3. Use of (Tri)phosgene. Although phosgene and
triphosgene were extensively used for the N-activation of amino
acid derivatives to form ureido derivatives with the addition of
amines,173−175 some reported procedures of the recent years
employ triphosgene as a source of carbonyl group in the
preparation of 3-substituted hydantoins starting from dipep-
tides176 or amino amides.177 Notably, Zhang et al. prepared a
library of amino acid-derived hydantoins and found out that,
unlike CDI, triphosgene prevented epimerization of chiral amino
acid derivatives.178

5.4.4. Use of Benzotriazole Carbonyl Derivatives. The
group of Opacic worked on the preparation of amino amides by
aminolysis of N-benzotriazolecarbonyl-amino acids. In presence
of sodium carbonate, the cyclization occurred by the nucleophilic
substitution of the amide nitrogen on the activated carbonyl
function.179 By this method, the authors prepared a library of 3-
substituted hydantoins, evaluated for their antiviral activities.180

5.4.5. Activation by Formation of Carbamates. Fischer
et al. generated succinimidyl carbamates by addition of
hydroxysuccinimide on isocyanates prepared from amino acids
by Curtius rearrangement.181 The reaction ofN-free amino esters
on the activated carbonyl group afforded the amino acid ureido
derivatives, which cyclized in the presence of triethylamine into
the corresponding hydantoins.
Zaccaro et al. used disuccinimidyl carbonate (DSC) for the

activation of theN-terminal moiety of resin-bound dipeptides,182

so as to provoke the nucleophilic attack of the peptide-bond
nitrogen on the carbamate carbonyl function and cyclization into
hydantoin. They could generate a combinatorial library of Lys-
Trp based, hydantoin-containing dipeptides that could be tested
as TRPV1 ion channel modulators.

Ureido derivatives from valine methyl amide were obtained by
the addition of amines on the corresponding activated p-
nitrophenyl-carbamate precursor. Cyclization of these ureido
derivatives by acidic hydrolysis afforded the corresponding
valine-derived hydantoins as reference compounds for the
detection of valine adducts from dihydrohemoglobin after
potential exposure to isocyanates.183

5.4.6. From Urea and Other Activation Methods.
Dumbris et al. employed carbon monoxide itself as a source of
carbonyl group in the transformation of amino amides into
hydantoins in the presence of W(CO)6.

184 The amino amides
were prepared from the corresponding amino esters, either by
direct amidation of the ester moiety or by a mixed anhydride
coupling reaction.
As CDI and the above reagents can activate the N-terminal

moiety of amino acids and peptides to form, with the addition of
an amine, an ureido derivative, other reactants enabled the access
to these intermediates.
In their work on the preparation of N-hydroxyureas, Paz et al.

coupled, among others, activated amino acid derivatives of
carbamoyl azides and hydroxyl amines.185 They took advantage
of the side reaction of hydantoin formation to generate a library
of 3-hydroxyhydantoins by performing the intramolecular
cyclization of N-hydroxyureas in the presence of potassium or
cesium carbonate. They also prepared a pyroglutamic-hydantoin
derivative starting from glutamic acid.
Anhydride bonds also represent activated scaffolds for amine

substitution reactions and so formation of ureas. Malcor et al.
prepared 3-(2-pyrrolyl)-5-methylhydantoin by the opening of an
oxazine with the N-terminal moiety of alanine methyl ester.186

This led to an ureido intermediate which cyclized in acidic
medium into the hydantoin. The same group extended this
procedure to the synthesis of thienylhydantoins from various
amino acids.187,188

In their work on the preparation of 3,5-substituted 5′-
trifluoromethyl-hydantoins, Sokolov et al. synthesized analogues
of the amino acid-like ureido derivatives described in the
previous paragraph, by reacting the free amino moiety of N-
benzylurea in α-position of an α,β-unsaturated ester derivative.
Cyclization in the presence of triethylamine afforded the
corresponding 3-benzyl-5-pyrazoline-5′-trifluoromethyl-hydan-
toin.189

Hillier et al. studied the thermal cyclization of ureidoaceta-
mides into hydantoins and dihydrouracils.190 The ureidoaceta-
mide substrates were prepared from the reaction of carbamoyl
chlorides on amino acids (glycine, aminoisobutyric acid, and
valine), followed by the amidation of their acid moiety. The
effects of the solvent and the substitution of the ureidoacetamide
on the reaction kinetics and the racemization rate (in the case of
valine) were studied. It appeared that diols were solvents of
choice and ureido acetamides containing N-methyl-N-phenyl
ureas provided products with minimal racemization. This
method afforded a potent cytochrome P-450 inhibitor in a very
good yield of 95% with minimized racemization.

6. 1,3,5- AND 1,3,5,5-SUBSTITUTED HYDANTOINS

6.1. Substitution of the Hydantoin Core

Usually, 1,3,5- and 1,3,5,5-substituted hydantoins are obtained
from the substitution by alkylation, acylation, or Mitsunobu
reaction of N-1 and/or N-3 posit ions of hydan-
toins.83,119,154,191−196 The hydantoin core could be prepared
from the Bucherer−Bergs reaction and then undergo a double
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substitution.16,197−199 Analogues of phenytoin were notably
prepared with this procedure.138,200−203 Acylation methods gave
N-acylated-N-chloro-hydantoins204 that were then used as
chlorine source and a polymer-linked chiral hydantoin used as
an auxiliary in asymmetric aldol reactions.205 Chlorohydantoins
were besides obtained from the treatment of the nonsubstituted
hydantoins with trichloroisocyanuric acid (TCCA)206,207 or
hypochlorites.208−214 The preparation of the textile antimicrobial
additive 1-chloro-3-ethyl-5,5-dimethylhydantoin (CEDMH)
with calcium hypochlorite by mechanochemistry was recently
reported by Konnert et al., providing a clean procedure with high
yields and easy workup.149

Copper-catalyzed coupling reactions of allenyl215 or aryl216

iodides and hydantoins were reported, as well as ruthenium-
catalyzed hydroamidation of alkynes.217,218 Demmer et al.
recently reported the synthesis of N-1-allenyl-hydantoins by a
copper-catalyzed coupling reaction involving propargylic
bromides.219 Hydantoin-containing macrocycles such as crown
ethers220 could be synthesized by double alkylation of phenytoin
with oligo(ethylene glycol) diiodide. Macrocyclic bis-hydantoin
structures could as well be obtained by metathesis of the allylN-1
substituents of both hydantoin cores.
Double substitution of hydantoins can as well be obtained with

the use of carbodiimides. Their reaction with α,β-unsaturated
carboxylic acids or α-bromoaryl acetic acids (Scheme 14)
enabled Volonterio et al. to prepare a large variety of 1,3,5-
trisubstituted hydantoins.221−223 The preparation of unsym-
metrical carbodiimides widened the scope of possible
structures,224 incorporating carbohydrates225−227 or glycosyl-
amines228 as substituents of the hydantoins. However, when α-
azido esters were used as starting material with various
isocyanates, the authors observed that the main product of the
reaction was not the expected carbodiimide but the N-
carbamoyl-hydantoin obtained by the reaction of two equivalents
of isocyanate on the α-azido esters.229 Although the hydantoins
showed a loss of enantioselectivity compared to the enantiopure
α-azido esters, this method was more straightforward than the
already existing procedure for the synthesis of N-carbamoyl-
hydantoins. The same strategy was employed for the synthesis of
spirohydantoins formed from the carbohydrate derivative sialic
acid and various carbodiimides,230 as well as for the preparation
of benzofuran-3(2H)-one-hydantoin dyads.231,232

The C-5 position of hydantoins can as well be substituted to
obtain 5,5-disubstituted rings, as described by Fernańdez-Nieto
et al., who reported the palladium-catalyzed C-arylation of α-
amino acid-derived 1,3,5-trisubstituted hydantoins.233 The
reaction afforded the compounds in good to very good yields,

using electron-rich and electron-poor aryl iodides, and enabled,
after deprotection of the N-positions of the hydantoin ring, to
access pharmaceutically relevant molecules, such as phenytoin,
or quaternary α-amino acids after cleavage in basic medium.
Some drawbacks of this reaction would be the need of multiple
additives, long reaction times under refluxing toluene, and no
enantioselectivity.

6.2. Use of Isocyanates

1,3,5-Trisubstituted hydantoins can be synthesized from N-
substituted amino acids and alkyl, aryl,234 or sulfonyl235

isocyanates. One of the developed methods consists of first the
reductive alkylation of theN-terminal moiety of amino acids with
an aldehyde in the presence of sodium cyanoborohydride. The
obtained N-substituted amino acids then react with substituted
isocyanates in the presence of a base to afford the corresponding
1,3,5-trisubstituted hydantoins (Scheme 26). This procedure
could be performed on solid phase,236−238 as well as with
fluorous tagged reactants, that allowed easy purification via F-
SPE (fluorous solid-phase extraction).239,240

Similar methods were described, preparing the N-substituted
amino acid or nitrile from amination of α-bromocarboxylic
acids241,242 or Strecker reaction,243 respectively. N-substituted
glycine derivatives were also prepared via a PEG-supported
solution-phase method performed under microwave irradia-
tion.244 A polymer immobilized chloroacetyl ester, resulting from
the reaction of chloroacetyl chloride on PEG-6000, was
substituted with various primary amines, leading to a polymeric
bis-N-substituted glycine ester structure. The amino moiety of
each glycine was then reacted with aryl or alkyl isocyanates, and
the obtained ureido derivatives were simultaneously cyclized and
released from the polymer support to yield the corresponding
1,3-disubstituted hydantoins.
A similar strategy was applied to synthesize a N,N′-

disubstituted urea from an amine and an isocyanate and to
react this urea derivative with chloroacetyl chloride to obtain the
hydantoin ring.245 This procedure was employed by Rmedi et al.
to prepare N-sulfonylhydantoins.246 However, the yields
remaining poor, they developed another method to access the
desired hydantoins, using α-bromoacetamides instead of
bromoacetyl bromide. This second method would enable
variously substituted hydantoins to be prepared thanks to the
versatility of the starting materials.
A method to obtain various 1,3-disubstituted, 5-azasubstituted

hydantoins was developed by Attanasi et al. starting from 1,2-
diaza-1,3-diene esters, primary amines, and isocyanates.247,248 An
aza-Michael addition occurred between the 1,2-diaza-1,3-diene

Scheme 26. Reductive Amination of Amino Acids for the N-1 Substitution of Hydantoins

Scheme 27. Preparation of 5-Aza-Substituted Hydantoins
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esters and the amines, and the Michael adduct was reacted with
isocyanates to yield the desired aza-heterocycles (Scheme 27).
Aranha Potter et al. observed the formation of 1,3-dibenzyl-5-

ethoxy-hydantoin in the reaction between N-benzyl-2-ethox-
ycarbonyl-endo- or exo-azanorbornene and benzylisocyanate.249

Instead of the expected Claisen rearrangement, a retro Diels−
Alder reaction took place upon the addition of the isocyanate on
the norbornene, leading to the formation of the hydantoin along
with liberation of cyclopentadiene (Scheme 28).
Rigby et al. demonstrated that although the formation of 1,3-

diaryl-5,5-dimethoxyhydantoin occurred from the reaction
between dimethoxycarbene and aryl isocyanates,250 in the
presence of a metal, especially copper catalysts, the reactivity
could be switched to the formation of [4 + 1] cycloadducts. To
prepare enantiopure quaternary amino esters, Nique et al.
prepared a 5,5-disubstituted hydantoin from para-methoxyphe-
nylethanone following the Bucherer−Bergs reaction. Hydrolysis
of the hydantoin and enantiomeric resolution with (R)-(+) or
(S)-(−)-α-methylbenzylamine afforded the optically pure amino
acid derivatives.251 Their reaction with aryl isocyanates enabled
to access diaryl hydantoins as potent androgen receptor
modulators.

6.3. Use of Urea Derivatives

N,N′-Dimethylurea and other dialkyl ureas were used in the
formation of 1,3,5,5-tetrasubstituted hydantoins from their
reaction with 1,4-enediones.252 The originality of the reaction
consisted of two consecutive iodine-catalyzed domino processes,
the first one being the synthesis of the 1,4-enediones and the
second one, in which iodine was regenerated by oxidation, the
addition of N,N′-disubstituted ureas to afford the hydantoins.
Ventosa-Andre ̀s et al. studied the cyclization of N-
(cyanomethyl)urea derivatives in basic, neutral or acidic
conditions. The authors observed that only strong acidic
conditions led to the formation of hydantoins, whereas basic,
neutral, or even mild acidic treatment afforded the 4-imino-
imidazolidin-2-ones.253

6.4. Activation with Carbonyl Donors

The activation of the amino moiety of amino acid derivatives was
also employed for the synthesis of 1,3,5-trisubstituted
hydantoins. The reaction of N-substituted amino amides with
triphosgene,254 CDI,255 Boc2O,

256 or p-nitrophenol chlorofor-
mate,257 which provided the missing carbonyl function of the
heterocycle, offered methods of preparation of 1,3,5-trisubsti-
tuted hydantoins. This strategy allowed the preparation of a large

Scheme 28. Retro Diels−Alder Reaction Leading to 1,3-Dibenzyl-5-ethoxy-hydantoin

Scheme 29. Trifluoromethylhydantoin from Perfluorodiacetyl and Alkyl Urea

Scheme 30. 1,3,5-Trisubstituted Helix Forming Pseudopeptidic Hydantoins from Ugi Reaction
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variety of substrates including hydantoin analogues for biological
evaluation or as intermediates in the synthesis of heterocycles.
Notably, a phenyl-linked hydantoin oligomer was prepared by
concomitant cyclization of a triamino amide structure with
triphosgene.258 This scaffold presented an antiparallel β-strand
conformation for application as a nonpeptido mimetic of protein
secondary structures.
Triphosgene was used for the formation of N,N′-disubstituted

ureido derivatives of amino acids in solid-phase synthesis,238

while N-hydroxyurea derivatives of amino acids were prepared
with CDI and spontaneously cyclized into N-hydroxyhydan-
toins.259

6.5. Miscellaneous

The Biltz reaction between diterpene ureido esters and glyoxal
afforded the corresponding hydantoins with high regio- and
stereoselectivity. The starting ureido esters were derived from
the Lossen rearrangement ofN-hydroxymaleopimaric acid amide
p-toluenesulfonate.260 The condensation of urea and dimethyl or
diethylurea with perfluorodiacetyl led to the formation of
imidazolidines-2-ones which rearranged into trifluoromethylhy-
dantoins upon further reaction with urea (Scheme 29).261

A convenient synthesis of 1,3,5-trisubstituted hydantoins via a
multicomponent Ugi condensation was described by Ignacio et
al.262 The Ugi reaction between primary amines, aldehydes,
isocyanides, and trichloroacetic acid afforded the corresponding
adducts. The enhanced electrophilicity of the trichloroacetamide

moiety enabled the cyclization of the adducts into hydantoins in
the presence of sodium ethoxide (Scheme 30). The advantages of
the method are the possibility of preparing various structures
from easily obtainable starting materials, a simple procedure and
easy recovery of the products by precipitation off the reaction
medium. The same group reported later a Ugi/cyclization/Ugi
sequence for the preparation of helix-forming pseudopeptidic
hydantoins (Scheme 30).263

A modified Ugi reaction, using ethyl glyoxalate as the aldehyde
and trimethylsilyl azide as the fourth component of the reaction
along with amines and isocyanides, enabled tetrazole Ugi adducts
to be accessed with an amino ester structure. The subsequent
reaction of these compounds with various isocyanates afforded a
versatile library of 1,3-disubstituted 5-tetrazole-hydantoin
derivatives,264 further leading to the access to imidazotetrazolo-
diazepinones (Scheme 31).265

In their method for the synthesis of benzofuran-2-carbox-
amides consisting on a Ugi reaction followed by a Rap-Stoermer
reaction of salicylaldehydes with the Ugi-adducts, Han et al.
obtained 1,3,5-trisubstituted hydantoins as byproducts from the
cyclization of these adducts under the reaction conditions.266

Sehlinger et al. performed a Ugi five-component condensation
from carbon dioxide, methanol, isobutyraldehyde, 1,12-diami-
nododecane, and hexyl-1,6-diisocyanide to synthesize polymers
containing N-alkoxycarbonyl-amino amide units which were

Scheme 31. Synthesis of Tetrazole-hydantoins

Scheme 32. Preparation of Polyhydantoins by Ugi Condensation
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cyclized into hydantoins in the presence of KOH so as to obtain
polyhydantoins (Scheme 32).267

In their attempts to obtain macrocyclic 5-bromouracil
derivatives, Nikolaev et al. observed the ring contraction of 5-
bromouracil into hydantoin or hydroxyhydantoin (Scheme
33).268 This rearrangement occurred during the reaction of the

5-bromouracil derivatives with para-methoxybenzylamine, lead-
ing to hydantoin or hydroxyhydantoin depending on the
subsequent oxidation with O2 after the ring contraction.
1-Aryl-3-alkyl-hydantoins were obtained in the tandem N-

arylation/cyclization reaction of Boc-glycinamide derivatives.269

The palladium-catalyzed reaction afforded the hydantoins in
moderate yields, the scope of the reaction being limited to N-
alkyl amides (Scheme 34).
The formation of 1,5-bicyclic hydantoins from the cyclization

of amino-amide-like structures was observed by Kaschani et al. in
their studies on the preparation of syringolins (Scheme 35).
They took advantage of this side reaction to prepare hydantoinic
compounds that were tested as activity-based probes for
glyceraldehyde 3-phosphate dehydrogenases (GAPDH).270

7. ALKYLIDENE HYDANTOINS
To date, the preparation of 5-alkylidene hydantoins was
described by mainly two procedures. Most of the reported
protocols rely on a Knoevenagel condensation between the C-5
position of a hydantoin and a carbonyl compound. Procedures in
which Wittig-type reactions take place, using 5-phosphorylated-
hydantoins, were also described. These two strategies were
notably performed by Fraile et al. for the synthesis of 5-
methylenehydantoins, mono- or disubstituted on the positions
N-1 and N-3.271 Their reactivity toward Diels−Alder, epox-
idation, and nucleophilic addition reactions was explored.
However, apart from these very used procedures, other methods
were reported for the formation of 5-alkyl/arylidene hydantoins,
which are referenced in the following sections.
7.1. Non-substituted 5-Alkyl/Arylidene Hydantoins

A number of procedures for the synthesis of N-1 and N-3 non-
substituted 5-alkyl/arylidene hydantoins employed a Knoevena-
gel-type reaction, starting from hydantoin and a wide range of
substituted-aryl aldehydes. This method indeed enabled libraries
of analogues to be accessed for the screening of potent bioactive
compounds (Scheme 36).272−275

Microwave-induced reactions were also reported,38,276 and
Thirupathi Reddy et al. showed the tremendous advantage of this
technology on the condensation reaction, comparing classical
heating and microwave conditions that reduced the reaction
times from hours to seconds while improving the yields.277 The
solvent-free, microwave-assisted, boric acid-catalyzed condensa-
tion of 4-methoxybenzaldehyde with (thio)hydantoin was also
reported, leading to the corresponding benzilidene (thio)-
hydantoin in moderate to good yields.278 A Horner-Wadsworth-
Emmons reaction was described as well using an aryl
trifluoromethyl ketone, obtaining the corresponding 5-methyl-
ene hydantoin in a E/Z ratio of 2:1.279

Other original procedures were described for the preparation
of such hydantoins. Keiko et al. developed a variant of the
Bucherer−Bergs reaction, using cyano-enols, properly 2-alkoxy-
1-cyanoprop-1-en-1-ols, instead of ketones, which were reacted
with ammonium carbonate to afford the 5-(1-alkoxyethylidene)-
hydantoins. This procedure however yielded byproducts of the
reaction and thus implied careful respect of the temperature
conditions.
A 2-oxo-furanylidene hydantoin was prepared from the

reaction of urea with dimethyl dihydronaphtofuran-2,3-dicarbox-
ylate (Scheme 37). In the presence of sodium ethoxide, the
cyclization of the ureido derivative provoked the rearrangement
of the dihydrofuran ring into a lactone, keeping the
enantioselectivity of the structure unmodified.280

7.2. 1-Substituted 5-Alkyl/Arylidene Hydantoins

As previously described in section 4.1, Carmi et al. prepared 5-
benzylidene hydantoins by a Knoevenagel condensation
performed under MW irradiation (Scheme 38).69,70

Pardasani et al. largely studied the Knoevenagel type
condensation of hydantoin and 1-methylhydantoin with
dicarbonyl compounds such as cyclohexan-1,4-dione281 or
9,10-phenanthrenequinone282 and notably α-dicarbonyl com-
pounds like benzo[b]thiophene-2,3-dione, acenaphtylene-1,2-
dione,283 or 1,2-naphthoquinone284 (Scheme 39). Semiempirical
calculations determined that, in all cases, the product of the
condensation adopted an anti conformation, because of steric
effects but also, in the case of α-diketones, of the hydrogen
bonding between the second carbonyl oxygen atom and the N-3
nitrogen of the hydantoin moiety. Some of the products of these
studies were evaluated for their potential bioactivity.282,284

Gwynne et al. described an efficient synthesis of boron-
containing arylidene hydantoins.285 When the aldehyde function
was in ortho position, they observed after the Knoevenagel
condensation the formation of a fused azaborine, containing the
hydantoin core, deriving from the arylidene hydantoin
cyclization by dehydration of the boronic acid moiety (Scheme
40).
A number of other arylidene hydantoin structures via a

Knoevenagel condensation were prepared to be tested for their
potential bioactivity as inhibitors of zinc metalloprotease

Scheme 33. Formation of Hydantoin and Hydroxyhydantoin
from 5-Bromouracil Derivatives

Scheme 34. Palladium-Catalyzed N-Arylation/Cyclization of Glycinamide Derivatives into Hydantoins
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ADAMTS-5,286 inhibitors of Pim-1 and Pim-2 protein kinases,287

PPAR modulators,288 or α1 selective GlyR antagonists.289

Chezal et al. prepared imidazo[1,5-a]pyridin-1,3-diones by a
Horner -Wadsworth-Emmons react ion between 5-
(diethylphosphonate)hydantoin and aromatic acetal aldehydes
(Scheme 41).290 Once the arylidene hydantoin was obtained, the
addition of a few drops of aqueous HCl enabled the
intramolecular condensation between the ortho-diethyl acetal
function and nitrogen N-1 of the hydantoin core, in the case of
pyrimidinic compounds. Otherwise, the authors observed the
formation of carbamoylpyridine derivatives due to a decarbox-
ylation side reaction. 5-(Diethylphosphonate)hydantoin was also
used for the synthesis of potent tubulin inhibitors,291 by coupling
with a tripeptide aldehyde (Scheme 41) that shows antitumor
effects.
7.3. 3-Substituted 5-Alkyl/Arylidene Hydantoins

Most procedures for the preparation of 3-substituted 5-alkyl/
arylidene hydantoins involve a Knoevenagel-type condensation
(as already described above) preceded or followed by a
substitution reaction at the N-3 nitrogen of the hydantoin by
alkylation with a halogeno derivative or by Mitsunobu reaction
with an alcohol (Scheme 42).292−295 This protocol enabled
notably pyren-1-ylidene hydantoins,296 5-arylidene-3-(4-substi-
tuted benzyl)sulfonylhydantoins,297 3-phenethyl-5-furfurylme-
thylidene hydantoin,298 chromophore-containing arylidene
hydantoins,299 3-methoxyphenyl-5-(3-bromo-4-hydroxy)-ben-
zylidene hydantoin,300 and other 3-acetamide-5-arylidene
hydantoin derivatives to be prepared (Figure 7).292,301−303

The Wittig reaction was also used instead of the Knoevenagel
condensation (Scheme 42).304 Horner-Wadsworth-Emmons
reaction was used to prepare the marine alkaloid parazoanthine
B and its analogues.305 Another strategy consisted in synthesizing
the 3-substituted hydantoin via the cyclization of an ureido
intermediate and then to perform Knoevenagel condensation to
afford the desired hydantoins. The intermediate was prepared
from an isocyanate,306 commercially available307 or generated

from the corresponding amine with triphosgene308 or oxalyl
chloride.309

Interestingly, when Hidayat et al. performed the condensation
reaction of 3-substituted hydantoins and different benzaldehydes
under microwave irradiation, the major products obtained were
not the expected benzylhydantoins but the corresponding
benzylhydantoin alcohols, underlining the fact that microwave
conditions favored the formation of the C−C bond but did not
accelerated the dehydration step of the reaction.310

A Biltz-type reaction was performed for the preparation of 3-
substituted 5-diethoxymethylidene-hydantoins starting from
methyl, phenyl, or benzylureas and diethyl 2-ethoxy-3-
oxosuccinate (Scheme 43). The hydantoins were then used as
intermediates in the synthesis of highly functionalized
pyrimidones.
Other procedures allowed the access to various structures. The

[2 + 2] cycloaddition of alkynes and 5-methylidene hydantoins
was performed under MW irradiation, affording 5-(substituted)-
diene hydantoins (Scheme 44).311,312

Finally, the oxidation of a 2-ethyl-imidazole derivative afforded
the corresponding hydantoin.313 Oxidation of thio-derivatives
led to the corresponding hydantoins314 and served for the
preparation of brominated benzylidene hydantoins (Scheme
45).315

7.4. 1,3,5-Alkyl/Arylidene Hydantoins

An interesting procedure consisting of a Wittig reaction was
described by Ungören et al. In their method, N,N′-disubstituted
parabanic acids acted as ketones and were condensed with
various aryliminophosphoranes to afford 5-iminohydantoins
(Scheme 46).316 The procedure was both regio- and stereo-
selective, the Z-stereoisomers of the hydantoins being obtained
from the reaction.
Again, Knoevenagel-type reaction on 1,3-disubstituted

hydantoins were largely described.317,318 Among those, N,N′-
disubstituted ureido derivatives, after cyclization into hydantoins
in acidic conditions, underwent Knoevenagel-type condensation
with Vilsmeier-Haack reagent (dimethylformamide-dimethyl
acetal) to obtain a series of aminomethylene hydantoins.319

The compounds were synthesized with easily available starting
materials such as sarcosine and aniline derivatives and were then
coupled to quinolone pharmacophores to afford a series of
potential antitumor agents (Scheme 47).
The hydantoin core can as well be synthesized from a Biltz-

type reaction. Martinez-Lopez et al. designed 1,3-dimethyl-5-
arylmethylidene-hydantoins from the condensation of dimethyl

Scheme 35. Formation of a Bicyclic Hydantoin from an Amino-Amide-Like Macrocycle

Scheme 36. Knoevenagel Reaction for the Synthesis of 5-
Arylidene-hydantoins

Scheme 37. Preparation of a 5-(2-Oxo-furanylidene)-hydantoin
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urea and glyoxal and Knoevenagel reaction with several aryl
aldehydes.320 In all cases, the E isomer was obtained, and the
authors studied the photoisomerization into the Z isomers in
different conditions, revealing these hydantoin-based com-
pounds as new photoswitches with potent biological and optical
applications. The E/Z photoisomerization of 5-arylidene-
hydantoins was also studied in the case of the formation of
hydantoin dyads described by Tahli et al. (cf. section 6.1).232 The
study showed the existence of an equilibrium between the E and
Z stereoisomers in which the E/Z ratio, although always in favor
of the most thermodynamically Z isomer, depended on the
experimental conditions.
Several other methods implied catalyzed-reactions between

alkynes and isocyanates. Alizadeh et al. described a three-
component reaction, employing substituted benzylamines,
arylsulfonylisocyanates, and diverse dialkyl acetylenedicarbox-
ylates that led to 1-arylsulfonyl-3-benzyl-5-methylidene hydan-
toin derivatives in the presence of isoquinoline in neutral
conditions.321 Metal-catalyzed reactions were also reported
between alkynes and 2 equivalents of isocyanates, with either
Fe(CO)5

322 or BrMn(CO)5
323 as catalysts (Scheme 48).

8. SPIROHYDANTOINS

8.1. 5,5-Spirohydantoins

8.1.1. The Bucherer−Bergs Reaction. In the same manner
as the preparation of 5- and 5,5-disubstituted hydantoins, the
synthesis of 5,5-spirohydantoins mainly relies on the use of the
Bucherer−Bergs reaction, in classical conditions or using
microwave technology.36,324−327 This method enabled unusual
and constrained hydantoin structures to be accessed such as

camphor, anthracene, and naphthalene-derived hydantoins.328 In
turn, these hydantoins can be hydrolyzed into the corresponding
amino acids with resolution of the enantiomers, notably by lipase
catalysis.329 This strategy afforded potent group II mGluR
agonists,330,331 phosphotyrosyl mimetics to induce a specific
conformation in peptides,332 or cage-like amino acids that, once
incorporated into drugs, would improve its transport through
lipophilic membranes.333

8.1.2. Reaction with (Iso)cyanates and Urea Deriva-
tives. Pesquet et al. performed the reaction of N-carbamoyl-
isatin and 2-ethyl-2-isothiourea in the presence of triethylamine
that led, after heating at 80 °C with 10% hydrochloric acid, to the
rearrangement of the substrate structure to a spiro-
(imidazolidinoquinazolinones), a spirohydantoin further derived
toward the formation of hydroxyspirolactams (Scheme 49).334

8.2. 1-Substituted or 3-Substituted 5-Spirohydantoins

The reaction between amino nitriles and potassium cyanate was
recently reported for the preparation of 1-substituted 5-
spirohydantoins. The amino nitriles were obtained by Strecker
reaction on cyclic ketones. By this protocol, melanin-
concentrating hormone receptor-1 (MCH-R1)335 and CGRP
receptor antagonists336−338 were prepared, as well as bioactive
compounds in the treatment of tropical diseases (Scheme 50).339

Further N-3 alkylation of 1-substituted 5-spirohydantoins
obtained following this route enabled structures with antimalarial
activity to be accessed.340 3-Substituted 5,5-spiro(pyrrolidinyl)-
hydantoins were prepared by reaction of methyl 3-amino-1-
methyl-4-arylpyrrolidine-3-carboxylates with isocyanates.341

The quaternary amino ester structure was first synthesized
from methyl nitroacetate which underwent a Knoevenagel
condensation with aryl phenylimines. 1,3-dipolar cycloaddition
with in situ generated azomethine ylide and subsequent
reduction with Raney nickel afforded the pyrrolidinyl ring
bearing the amino and methyl ester functions. Reaction of this
amino ester with diverse isocyanates generated a library of
(pyrrolidinyl)hydantoins (Scheme 51).
5,5-Cyclopropanespirohydantoins were synthesized from

ethyl α,α′-cyclopropane-isocyanatoacetate obtained from a
Curtius rearrangement of the corresponding acids (Scheme
52). Similarly to the reactions between ethyl isocyanatoacetate
and primary amines (see section 5.2), the 3-substituted 5,5-

Scheme 38. Knoevenagel Condensation at Position C-5

Scheme 39. Arylidene Hydantoins from α-Dicarbonyl
Compounds

Scheme 40. Boron-Containing Arylidene Hydantoins
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cyclopropanespirohydantoin derivatives were obtained and
tested as potent anticonvulsant agents.342

8.3. 1,3-Disubstituted 5-Spirohydantoins

8.3.1. From Methylene Hydantoins. Procedures for the
preparation of 1,3-disubstituted 5-spirohydantoins from meth-
ylene hydantoins reported since 2004 present a high stereo-
selectivity and are described in section 12.6 of this review.

8.3.2. From Diverse Substrates. An alternative to the use
of methylene hydantoins was to build an α,α′-cyclic amino acid
prior to the formation of the hydantoin ring. Kuster et al.
prepared spirohydantoins with substituted cyclohexene as the
5,5-substituent of the hydantoins.343 The authors performed a
solid-phase synthesis, by anchoring nitroacetic acid on a
hydroxymethylene resin. The cyclohexene structure was

Scheme 41. Horner-Wadsworth-Emmons Reaction with a Phosphonate-hydantoin

Scheme 42. Strategies to Access 3-Substituted 5-Arylidene Hydantoins

Figure 7. 5-Alkyl/arylidene-hydantoin derivatives prepared by Knoevenagel condensation.
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obtained by a Knoevenagel condensation/Diels−Alder reaction
pathway and the nitro group was reduced into the free amino
moiety, which reacted with isocyanates to afford after cyclization
the corresponding spirohydantoins (Scheme 53).
The preparation of the N-substituted α,α′-cyclic amino acids

was achieved by reductive amination of the corresponding α,α′-
cyclic amino acid with aryl aldehydes. The hydantoins were then
obtained from their reaction with isocyanates. This method was

applied by Schafmeister’s group to prepare proline-derived
spirohydantoins used as ligands in spiroligomers complexes344 or
organocatalysts345 in the proline-catalyzed asymmetric aldol
reaction, showing excellent diastereo- and enantioselectivities.
The reaction between 4-cyanophenyl isocyanate and an amino

nitrile (described in section 8.2) was employed by Mehrotra et
al., enabling the substitution of N-3 position of the desired
spiro[4.5]hydantoin that was part of a number of analogous
scaffolds evaluated as potent GPIIb-IIIa antagonists.346

A 1-isocyanato-2,2′-dimethyl-cyclopropane ethyl ester was
reacted with various amines to afford the corresponding urea
derivatives and spirohydantoins upon cyclization. The cyclo-
propanehydantoins were then tested for their anticonvulsant
activity.347

Patel et al. performed the condensation of unsymmetrical
ureas, prepared from amines and isocyanates, with ninhydrin to
obtain indeno-[1,2,d]-imidazole intermediates that were then
oxidized with NaIO4 to form spiro-(2-benzofuran-5-one)-

Scheme 43. Biltz-Type Reaction Leading to 3-Substituted 5-Diethoxymethylidene-Hydantoins

Scheme 44. Microwave-Promoted [2 + 2] Cycloaddition of Alkynes and 5-Methylidene Hydantoins

Scheme 45. Formation of Brominated Benzylidene Hydantoins

Scheme 46. Wittig Reaction of Parabanic Acids and
Aryliminophosphoranes

Scheme 47. Knoevenagel-Type Condensation of Hydantoins with Vismeier-Haack Reagent
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hydantoin derivatives (Scheme 54).348 The compounds were
then tested for their potent anticonvulsant activity.

9. FUSED HYDANTOINS

9.1. 1,5-Bicyclic Hydantoins

In the recent literature, 1,5-bicyclic hydantoins have been
prepared following twomain pathways. The first one consisted of
using proline and its derivatives as starting material. Some
methods have already been mentioned in section 5.4 and simply
applied to proline.158,181,187 Its reaction with isocyanates and
eventual further alkylation was one of the synthetic routes of
choice for the formation of the corresponding hydantoins.349−353

Konnert et al. performed the solventless mechanochemical
reaction between proline methyl ester and potassium cyanate.17

The corresponding ureido derivative was then cyclized in the
presence of potassium carbonate and triethylamine to afford the
hydantoin tetrahydro-pyrrol-[1,2,c]-imidazole-1,3-dione in 91%
yield (Scheme 55). This route, although in acidic solution, was
also used by Delgado et al. to study the X-ray structure of the
molecule.354

Apart from cyanates, urea is also a reagent of choice for the
obtention of bicyclohydantoins from proline. The simple
condensation reaction of proline with urea in the presence of
sulfuric acid led to tetrahydro-pyrrol-[1,2,c]-imidazole-1,3-
dione.355 The reaction between proline diester derivative and
phenyl urea in the presence of an excess of sodium ethoxide

Scheme 48. Access to 1,3-Disubstituted 5-Alkyl/Arylidene Hydantoins

Scheme 49. Preparation of Spiro(imidazolidinoquinazolinones)

Scheme 50. Spirohydantoins from the Reaction of Amino Nitriles and Isocyanates
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conducted to an aminobarbituric acid-hydantoin rearrange-
ment356 to afford the 5-carbamoyl-bicyclohydantoin (Scheme
56). The procedure of Kumar et al. with dibutyl phosphate
applied to proline methyl ester also enabled to access the bicyclic
hydantoin.87

9.2. Polycyclic Fused 1,3,5-Trisubstituted Hydantoins

A number of fused polycyclic hydantoins present an interest as
biologically active scaffolds and a number of methods were
reported for the synthesis of these polycyclic hydantoins.
Notably, bioactive structures derive from tetrahydroisoquinoline
and tetrahydro-β-carboline derivatives (Scheme 57).

9.2.1. Tetrahydroisoquinoline Hydantoins. Tricyclic
compounds containing a hydantoin moiety were obtained
starting from tetrahydroisoquinoline and analogs. The reaction
of tetrahydroisoquinoline-3-carboxylic acid357−360 or its carbox-
ylate derivatives,357,361 which indeed act as an amino acid
analogues, and potassium cyanate has been reported. The indole
analog was also prepared in the same way.357,359 Otherwise, the
ureido derivatives could be prepared by N-activation of the
tetrahydroisoquinoline ring with CDI or triphosgene and
subsequent addition of an amine before their cyclization into
hydantoins (Scheme 57).362−364

Scheme 51. Multistep Synthesis of 3-Substituted 5,5-Spiro(pyrrolidinyl)hydantoins

Scheme 52. 3-Substituted 5,5-Cyclopropanespirohydantoin from the Corresponding Cyclopropane-Isocyanatoacetate

Scheme 53. Preparation of a Library of 3-Substituted 5,5-Cyclohexen-spirohydantoins

Scheme 54. Synthesis of Spiro-(2-benzofuran-5-one) Hydantoins

Scheme 55. Mechanochemical Reaction of Proline Methyl Ester and Potassium Cyanate
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9.2.2. Tetrahydro-β-carboline Hydantoins. Like tetrahy-
droisoquinoline-hydantoins, tetrahydro-β-carboline hydantoins
weremainly prepared from isocyanates and carboxylic derivatives
of tetrahydro-β-carbolines. These precursors were synthesized
by a Pictet-Spengler reaction from tryptophane, that enabled to
access a large variety of structures due to the use of various
aldehydes and ketones (Scheme 57).361,365−367 Besides,
alternatives to the classical solution-phase synthesis were
developed, such as microwave-induced procedures,368−370

PEG-supported synthesis,370,371 and the use of ionic liquids as
a reaction medium.372 Hydrolysis of tetrahydroisoquinoline and
tetrahydro-β-carboline cyano-derivatives in the presence of
LiOH and H2O2 afforded tricyclic structures containing a
hydantoin moiety (Scheme 57).373,374

9.2.3. Miscellaneous. Diverse fused compounds were
obtained by cyclization of ureido or amino amide derivative
structures, such as thiazolidine, morpholine, triazoline-, pyrrole-,
or indole-containing hydantoins (Figure 8). The reaction of ethyl
isocyanate on a proline-like substrate was also reported.375

Indole-hydantoins were also obtained by Cu-catalyzed intra-
molecular cyclization of haloarylidene hydantoins, obtained from
Knoevenagel condensation of hydantoin and aryl aldehydes.293

Firth et al. prepared a large library of bicyclic hydantoins via a
three-component Ugi−Joullie ́ reaction, followed by the cycliza-
tion of the obtained amino amide structures (Scheme 58).376

10. AMINOHYDANTOINS

10.1. 1-Aminohydantoins

An important class of hydantoins consists of the derivatives of 1-
aminohydantoin. The compounds are usually prepared from 1-
aminohydantoin hydrochloride, which synthesis on solid-
support has been described recently (Scheme 59),377 and the
aldehyde or ketone corresponding to the desired substitution on
the hydrazide moiety.378−381

By this procedure, Leban et al. prepared proteasome inhibitors
from peptide aldehydes and 1-aminohydantoin.382 They
synthesized a number of compounds by coupling dipeptides
with a Weinreb amide of phenylalanine, the resulting tripeptide
amide being hydrolyzed to aldehyde by treatment with lithium
aluminum hydride (LAH) and reacted with 1-aminohydantoin
hydrochloride to afford the desired compounds (Scheme 60).
Dantrolene is a hydantoin-based compound used as a skeletal

muscle relaxant for malignant hyperthermia (see section 2).
Various derivatives and analogues of this active biomolecule have
been synthesized in recent years.383 A diazido-functionalized
analogue was prepared by Hosoya et al. following the procedure
described above to synthesize a photolabeling probe for the
inhibition of physiological Ca2+ release.384 An analogue
containing a fluorescein moiety was prepared and used as a
PET probe for imaging the hERG potassium channel.385 Kumata
et al. designed [13N]dantrolene as a PET probe for imaging the

Scheme 56. Aminobarbituric Rearrangement Leading to 5-Carbamoyl-bicyclohydantoin

Scheme 57. Retrosynthetic Pathways to Tetrahydro-isoquinoline and β-Carboline Hydantoins

Figure 8. Examples of fused hydantoins.
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Scheme 58. Three-Component Ugi−Joullie ́ Reaction

Scheme 59. Solid-Phase Synthesis of 1-Aminohydantoin and Its Subsequent Condensation with Carbonyl Compounds

Scheme 60. Hydantoin-Based Proteasome Inhibitors

Scheme 61. Synthetic Methods for the Preparation of Dantrolene

Scheme 62. Tetrakis(N-hydantoinylamido)cavitanda

aImage reproduced with permission from ref 388. Copyright 2011 American Chemical Society.
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breast cancer resistance protein (BCRP) in the blood−brain
barrier.386 Instead of starting from 1-aminohydantoin, they used
ethyl hydrazinoacetate in the condensation with 5-(4-nitro-
phenyl)-2-furaldehyde, and the resulting amine was reacted with
4-nitrophenylcarbamoyl chloride or triphosgene to form the
corresponding carbamoyl derivative. Ammonolysis with [13N]-
ammonia afforded the corresponding ureido derivative that then
underwent thermal cyclization into hydantoin (Scheme 61).
The synthesis of dantrolene was performed by Crisostomo et

al. to illustrate the reaction of C−H arylation promoted by
ascorbic acid as a radical initiator. Furfural was arylated with 4-
nitroaniline in the presence of tert-butyl nitrite and ascorbic acid
and then coupled to 1-aminohydantoin to afford dantrolene
(Scheme 61). 1-Aminohydantoin is the main metabolite of the
antibiotic nitrofurantoin. To detect this metabolite, an ELISA
method was developed, and an immunogen, CPAHD-Jeffamine-
BSA, was prepared from the condensation reaction of 1-amino-
hydantoin and 4-carboxybenzaldehyde.387

1-Aminohydantoin was recently used for the synthesis of a
macromolecular cage for anionic guests like CH3OSO3

− or BF4
−.

Molecules of 1-aminohydantoins were coupled to the structure
tetrakis (chloro-carbonyl)cavitand to form a tetrakis(N-
hydantoinylamido)cavitand.388 Depending on the solvent and
on the anionic guest, this cavitand can form a dimeric complex via
hydrogen bonding to form a molecular capsule (Scheme 62).
Potent Kv1.5 potassium channel inhibitors for the atrium

fibrillation treatment have been prepared from 1-amino-
hydantoin.389 The structures being 1,3,5-trisubstituted hydan-
toins, the synthetic route consisted in protecting the amino
group with benzaldehyde before alkylating the N-3 position of

the hydantoin core. After its deprotection, the free amino moiety
could be coupled to various acyl chlorides to afford the targeted
structures (Scheme 63).

10.2. 3-Aminohydantoins

An amino substituent on the hydantoin core can also be present
on nitrogen N-3. Since 2004, some examples of formation of 3-
aminohydantoins have been described, following procedures that
do not involve the use of amino acid derivatives, as already
described in the past.390−392 A procedure involving amino esters
and in situ generatedN-substituted isocyanates has been recently
described by Vincent-Rocan et al. The reaction between different
amino ester derivatives and several hydrazones and hydrazides,
the N-isocyanate precursors, under microwave activation
afforded a series of 3-aminohydantoins in good to excellent
yields, among those compounds related to the vetenary drug
azumolene (Scheme 64), which is itself a more soluble analogue
of dantrolene (see sections 2 and 10.1).393

Abdul Nasser et al. performed the synthesis of 3-[(2-
furylmethylene)-amino]hydantoin394 and 3-[(1-pyridin-2-
ylmethylene)amino]hydantoin395 by reacting the corresponding
aminourea derivatives with ethyl chloroacetate in the presence of
fused sodium acetate. The resulting aminohydantoins then
underwent a Mannich type condensation on the N-1 nitrogen of
the hydantoin moiety (Scheme 65). The obtained compounds
were tested for their antimicrobial and antifungal activity. This
strategy has also been used by Amin et al. for the synthesis of
hydantoin derivatives of spiro [(2H,3H) quinazoline-2,10-
cyclohexan]-4(1H)-one with potential anti-inflammatory and
analgesic activities.396

Scheme 63. Preparation of Potent Kv1.5 Potassium Channel Inhibitors

Scheme 64. Preparation of 3-Aminohydantoin Analogues of Azumolene

Scheme 65. 1-Substituted 3-Aminohydantoins
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The rearrangement of 4-aminopyrazolidin-3-ones into 3-
amino-hydantoins through catalytic hydrogenation reaction was
also reported.397 The authors assumed that hydrogenation would
cleave at the same time the benzyl carbamate protecting group
and the C-5-N-1 bond of the 4-aminopyrazolidin-3-one. The
opened ring, under its carbamic acid form due to the presence of
carbon dioxide, would cyclize again to afford the 3-amino-
hydantoin (Scheme 66).

10.3. 5-Aminohydantoins

The 5-aminohydantoin structure is found in a class of 2-
aminoimidazole-containing natural products extracted from a
marine sponge (Leucetta species), namely naamidine, clathridine,
and their analogues, the syntheses of which was described over
the past few years. Usually, the syntheses consisted in
constructing the 2-amino-4,5-substituted imidazole moiety and
then condensing it with a N-TMS derivative of parabanic acid,
affording thus the 5-aminohydantoin-like moiety (Scheme
67).398

The total synthesis and the biological activity of naamidine A
was explored by Aberle et al. The authors described a six-step
synthesis starting from Boc-Tyr(Bzl)−OH as a cheap and easily
available precursor of the 2-aminoimidazole moiety.399 The
antitumor activity as well as the structure−activity relationship of
naamidine A was studied, notably by the synthesis of thiazole
analogues.400 The syntheses of clathridine A401 as well as other
analogs of naamidine A such as naamidine G and 14-
methoxynaamidine G,402 naamidine H,403 and isonaamidine
E404 were reported by Lovely’s group. Their strategy relied on the
synthesis of the 2-aminoimidazole moiety by substitution of 1-
methyl-4,5-diiodoimidazole, the difference between the ana-
logues being mainly the nature of the substituents on the benzyl
ring(s). Another strategy for the preparation of naamidine
analogues has been to synthesize 3-methyl-5-aminohydantoin
from 3-methylparabanic acid and then to alkylate the free amino
function to afford 1,3,5-triazine derivatives of the amino-
hydantoin (Scheme 68).405

Scheme 66. Rearrangement of Catalytic Hydrogenation of 4-Aminopyrazolidin-3-ones into 3-Aminohydantoins

Scheme 67. Synthesis of Naamidines and Analogues

Scheme 68. 1,3,5-Triazine Analogues of the Naamidine Core
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11. HYDANTOINS AS LIGANDS IN ORGANOMETALLIC
COMPLEXES

Hydantoins can complex to various metals to form complexes
that present cytotoxic activity. In these complexes, the
hydantoins can coordinate to the metal with the nitrogen
atoms, and so can adopt mono or bidentate behavior.
As an example, Bakalova et al. synthesized platinum(II)

complexes, PtCBH and PtCHTH (Scheme 69), each adopting
one or the other coordination pattern.406 The same group
recently prepared Pt(II) and Pt(IV) complexes with 3-
thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranes-
piro-5′-hydantoin as ligands. In this case, the metal ion was
coordinated to the sulfur contained in the spiro-compounds, as
proved by DFT calculations.407

5-Methyl-5′-pyridinyl-hydantoin and its derivatives are widely
used ligands for the preparation of platinum(II), palladium-
(II),408−413 gold(III),414 and mercury(II) complexes.415,416

Depending on the position of the hydantoin core on the
pyridinyl ring, 5-methyl-5-pyridylhydantoin could adopt either
monodentate or bidentate coordination behavior (Scheme 70).
Silver complexes were also synthesized with hydantoin, 1-

methylhydantoin, 5,5-dimethylhydantoin, and allantoin.417 With
the three first hydantoins, the X-ray structure of the complex

revealed a coordination of N-3 nitrogen of one ring and the
oxygens O-4 of two other rings. These complexes were tested
and found to be strong cytotoxic agents. In the case of allantoin,
the subsequent coordination of the nitrogen of the lateral chain
decreased dramatically the activity. 1-Methylhydantoin was also
used as a ligand in nickel(III) complexes.418 Hu et al. reported
the preparation and X-ray structure analysis of bis-
(diphenylhydantoin) (ethylenediamine) zinc(II) complex, in
which the Zn atom is coordinated to nitrogens N-3 of both
diphenylhydantoins.419 N- and C-ferrocenyl derivatives of
nilutamide were prepared for the evaluation of their antiprolifer-
ative and cytotoxic properties. Their syntheses involved the
reaction of N-ferrocenyl-amino nitriles with 4-cyano-3-trifluor-
omethyl-phenylisocyanate and double N-1 and C-5 alkylation of
5-ferrocenylhydantoin, respectively.420 Other N-ferrocenyl
hydantoins were prepared by substituting the N-3 position of
proline-hydantoin with iodoferrocene.421 The synthesis was then
efficiently extended to ferrocene bearing electrophilic groups.
Recently, Ahmedova et al. studied the complexation of (9′-

fluorene)-spiro-5-hydantoin prepared by the Bucherer−Bergs
reaction, with Cu(II). They showed that in the presence of a
strong base, the hydantoin formed complexes with copper as
monodentate ligands, coordinating nitrogenN-3 to the metal.422

Scheme 69. Platinum(II) Complexes of Spiro Hydantoins

Scheme 70. Diverse Metallo Complexes of 5-Pyridinyl-Hydantoins

Scheme 71. Stereoselective Bucherer−Bergs Reaction
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12. ASYMMETRIC SYNTHESIS OF HYDANTOINS

12.1. 5,5-Disubstituted Hydantoins

12.1.1. Bucherer−Bergs Synthesis. While usual con-
ditions of the Bucherer−Bergs reaction lead to racemic forms
of the desired hydantoins, modified reaction conditions were
elaborated by Wynands et al. for the synthesis of glycosylhy-
dantoins as precursors of glyco-amino acids (GAAs), used as
catalysts for enantioselective aldol reactions. A first step
consisting in the Strecker reaction using Ti(OiPr)4 stereo-
selectively afforded the glycosyl α-amino nitrile, which was then
reacted with ammonium carbonate to yield almost quantitatively
the corresponding hydantoins (Scheme 71).27

Diastereospecific formation of a camphor-derived 5,5-
disubstituted hydantoin was observed by Knizhnikov et al. in
their study of the Bucherer−Bergs reaction involving (R)-
(+)-bornane-2,3-dione, or camphorquinone,423 implying the
regioselective cleavage of its C2−C3 bond due to the presence of
ammonia in the reaction medium (Scheme 72).

12.1.2. Other Procedures. Miscellaneous procedures for
the preparation of 5,5-disubstituted hydantoins relied on the
cyclization of an intermediate with a N-carbamoyl-α,α′-
disubstituted amino amide structure. This intermediate could
be obtained from several starting materials (Scheme 73).
Mashiko et al. obtained the amino amide derivative from the
La-catalyzed asymmetric α-amination of α-alkoxycarbonyl
amides and subsequent carbamoylation with p-nitrophenyl
chloroformate.424 Girijavallabhan et al. performed the multistep

construction of the amino amide intermediate, resulting from the
reaction of glyoxylic acid and methyl carbamate and double
substitution in the α-position of the obtained amino methyl ester
that underwent amidification with ammonia.425 Finally, Barnwell
et al. prepared a phenylglycinol-derived amino nitrile by
asymmetric Strecker reaction that underwent a sequence
consisting of intramolecular lactonisation, carbamoylation with
methyl chloroformate, and amidification with ammonia.426 Once
the intermediate was formed, it cyclized simultaneously to afford
in each case a 5,5-disubstituted hydantoin with a stereogenic
center at its C-5 position.

12.2. 1,5-Disubstituted Hydantoins

An enantioselective pathway for the synthesis of 1,5-
disubstituted hydantoins was proposed by Saravanan et al. The
starting imine is subjected to asymmetric Strecker reaction in the
presence of a chiral organocatalyst,427 and the subsequent nitrile
is transformed after hydrolysis to the corresponding hydantoin
by the use of triphosgene (Scheme 74).
Etxabe et al. designed an organocatalyzed, enantioselective

route to quaternary α-amino acid derivatives by the addition
reaction of 2-thio-1H-imidazol-4(5H)-ones to nitro olefins. The
corresponding quaternary adducts were the key intermediates to
access the targeted compounds and in particular 1,5-
disubstituted hydantoins that were easily obtained by hydrolysis
of these adducts (Scheme 75).

12.3. 3,5-Substituted Hydantoins

12.3.1. Alkylation of Position C-5. Fang et al. reported a
procedure for the enantioselective hydroamination of allenyl
esters.428 The reactions were catalyzed with chiral disubstituted
thioureas and afforded ethyl 4-(2,5-dioxoimidazolidin-1-yl)pent-
2-enoate when hydantoin was used as the amine component of
the reaction (Scheme 76).

12.3.2. Miscellaneous. Mehra et al. prepared ureido
derivatives of cis-3-amino-2-azetidinones by activation of the
amino function with phenyl chloroformate and substitution with
several amines.429 The intramolecular ring opening of the β-

Scheme 72. Camphor-Derived Hydantoin from the
Bucherer−Bergs Synthesis

Scheme 73. 5,5-Disubstituted Hydantoins from N-Carbamoyl-α,α′-Disubstituted Amino Amide Derivatives
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lactam by nucleophilic attack of the external nitrogen of the urea
moiety afforded the 3,5-disubstituted hydantoins, along with a
non-negligible proportion of dimers (Scheme 77).
In their work on the iodine-mediated formation of azetidines

from amidomalonate derivatives and enones, Miao et al.
performed the addition reaction of 2-(3-phenylureido)malonate
and chalcone that led, after optimization of the conditions, to the
diastereoselective formation of a 3,5,5-trisubstituted hydantoin
(Scheme 78).430

12.4. 1,3,5-Trisubstituted Hydantoins

12.4.1. Use of Isocyanates. A number of published works
reported the synthesis of 1,3,5- and 1,3,5,5-substituted
hydantoins involving the reaction of various compounds with

two equivalents of isocyanates to form the hydantoin ring.
Alizadeh et al. developed a simple procedure for the synthesis of
phosphorus ylides of 1,3-diarylsulfonyl-5,5-disubstituted hydan-
toins,431,432 consisting of the reaction of dialkyl acetylenedi-
carboxylates with two equivalents of arylsulfonyl isocyanates in
the presence of trialkyl phosphites (Scheme 79). This procedure
was advantageously easy-to-handle as performed in mild
conditions with no need of activation of the reactants.
Gololobov et al. described the formation of 1,3-ditosyl-5,5-

diethoxycarbonyl-hydantoin from β-carbonyl sulfonium ylides
and tosyl isocyanate.433 The specific nucleophilicity of the
sulfonium ylide led to the hydantoin, whereas the reaction
between iodonium ylides and isocyanates led to the formation of
substituted oxazolin-2-ones.
Varying the reaction conditions was also determining for the

obtention of hydantoin derivatives, as shown by Boultwood et
al.434 On the one hand, when aziridinyllithium species were
reacted with isocyanates in the presence of n-Buli at −100 °C,

Scheme 74. Asymmetric Strecker Reaction and Subsequent Cyclization into Hydantoin

Scheme 75. Enantioselective Synthesis of Hydantoins from 2-Thio-1H-imidazol-4(5H)-ones

Scheme 76. Substitution of Hydantoins by Hydroamination of
Allenyl Esters

Scheme 77. Intramolecular Ring Opening of β-Lactam Leading to the Hydantoin Ring

Scheme 78. Diastereoselective Synthesis of 3,5,5-
Trisubstituted Hydantoins
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only the acylated aziridine was obtained, whereas warming up the
reaction led to the progressive formation of 1,3,5-trisubstituted
hydantoins, as the amide anion of the acylated aziridine would
react on a second equivalent of isocyanate (Scheme 80).
Metal-catalyzed syntheses of hydantoins from isocyanates

were besides described. The Ni-catalyzed formation of 1,3,5-
trisubstituted hydantoins from acrylates in the presence of two
equivalents of aryl isocyanates was reported.435 Although
tolerating a variety of acrylates, including cyclic 5,6-dihydro-

2H-pyran-2-one, the method was not efficient with alkyl
isocyanates. Hill et al. reported the diastereoselective, Mg-
catalyzed cascade reaction of four equivalents of isocyanates on
phenylacetylene, which yielded to bis(hydantoin) structures.436

12.4.2. Synthesis of BIRT-377, Generation of a Chiral
Quaternary Center. 1,3,5,5-Tetrasubstituted hydantoins that
possess a stereocenter may not be synthesized from the chiral
pool and usual amino acids. Much attention has been focused on
the synthesis of the LFA-1 antagonist BIRT-377, which can

Scheme 79. Diastereoselective Synthesis of Phosphorus Ylides of 1,3,5-Trisubstituted Hydantoins

Scheme 80. 1,3,5-Trisubstituted Hydantoins from Acylated Aziridines

Scheme 81. Synthetic Routes to BIRT-377
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potentially treat several inflammatory and immune diseases, and
the synthesis of which needs the generation of a quaternary
stereocenter. In recent years, innovative pathways for the
synthesis of BIRT-377 have been described, circumventing the
usual Seebach’s method of self-regeneration of stereocenters437

mainly employed until then. In these procedures, the key step is
the formation of the quaternary chiral α-amino acid derivative,
prepared from various starting materials (Scheme 81). Once
obtained, the latter was reacted with 3,5-dichlorophenyl
isocyanate to afford the hydantoin ring, that was then methylated
in position N-1 to give BIRT-377.
Starting from 3-(4-bromophenyl)-2-methylpropanal, Chow-

dari et al. proposed the total synthesis of BIRT-377 in eight steps
involving the enantioselective proline-derived tetrazole-catalyzed
α-amination of the aldehyde that led upon oxidation to the chiral
quaternary amino acid438 (Scheme 81). Patwardhan et al. applied
their method for the diastereoselective alkylation of aziridine-2-
carboxylate esters to the synthesis of BIRT-377. Methylation and
ring opening of (2R ,3R)-ethyl 1-benzhydryl-3-(4-
bromophenyl)aziridine-2-carboxylate enabled the corresponding
quaternary enantiopure (>99%) amino acid to be accessed439

(Scheme 81). Han et al. described an efficient synthesis of BIRT-
377 by generating the chiral quaternary amino acid from N-
(para-chloromethylene)-alanine tert-butyl or ethyl ester.440 The
authors developed a chiral phase-transfer catalyst to perform the
asymmetric para-bromobenzoylation of the amino acid deriva-
tive and accessed the desired hydantoin in fewer steps than the
above procedures (Scheme 81).
Vassiliou et al. proposed to synthesize BIRT-377 by a

Schöllkopf-type reaction of construction of enantiopure
quaternary amino acids. Alkylation of a bis-lactim ether with
para-bromobenzyl bromide after deprotonation with tert-BuLi
and subsequent hydrolysis with TFA afforded the enantiopure
amino methyl ester.441

Recently, Kanemitsu et al. proposed to access BIRT-377 from
malonic diesters.442 Instead of preparing enantioselectively a
quaternary amino acid, they performed the asymmetric
methylation of 1-tert-butyl-3-methyl-2-(4-bromobenzyl)-malo-
nate using a cinchona alkaloid derivative as catalyst to obtain the
corresponding chiral α,α-disubstituted malonic diester (Scheme
82). After selective cleavage of the tert-butyl ester with TFA, the
resulting acid moiety was turned into an azide and underwent a
Curtius rearrangement to generate the isocyanate. The latter was
reacted in one-pot with 3,5-dichloroaniline to form the
corresponding urea derivative that cyclized into the hydantoin.
Subsequent N-1 methylation afforded BIRT-377.
BIRT-377 was also synthesized from the diastereoselective

asymmetric desymmetrization of 2-(4-bromobenzyl)-serinol
derivative.443 The desymmetrization method relied on the
diastereoselective formation of a 2-oxazolidinone from serinol
followed by reduction to afford the corresponding quaternary
chiral amino alcohol. The disadvantage compared to the other
methods is that, in this case, a Ru-catalyzed oxidation step must
be performed to provoke the cyclization after the addition of the
isocyanate.
From a critical point of view, Han’s method seems the most

interesting for the synthesis of BIRT-377. The starting material
and the catalyst are synthezised from commercially available
chemicals, i.e., alanine and gallic acid, respectively. The
organocatalyzed reaction did not require the highly inflammable
t-BuLi and the workup was performed with relatively innocuous
aqueous citric acid. Moreover, the few steps of the procedure
represent an additional advantage compared to the other
methods.

12.4.3. Use of Urea Derivatives. Innovative pathways have
been reported for the preparation of 1,3,5-trisubstituted
hydantoins from urea derivatives.

Scheme 82. Synthesis of BIRT-377 from Malonic Diester

Scheme 83. Intramolecular C-Arylation of Urea Derivatives of Amino Acid Enolates
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Atkinson et al. developed a method relying on the intra-
molecular C-arylation of urea derivatives of amino acid
enolates.444 The aryl migration was followed by the cyclization
of the ureido derivative into hydantoin (Scheme 83). This
strategy enabled, from the 1,3,5-substituted 5-aryl hydantoins, to
quaternary amino acids to be accessed. Although various
quaternary structures can be obtained through this method,
the enantioselectivity of the reaction was still to be improved.
The authors eventually provided an enantioselective version of
their work by using pseudoephedrine as a chiral auxiliary.445 A
similar asymmetric α-arylation of urea derivatives of amino acids
was besides brought by Tomohara et al., who obtained the chiral
hydantoins via a memory of chirality strategy in 55−98% ee, by
generation of axially chiral enolates of the urea derivatives.446

The development by Gore et al. of a low-melting mixture of
(+)-tartaric acid and N,N′-dimethylurea (DMU) as a solvent, a
catalyst, and a reactant offered environmentally friendly
conditions to the diastereoselective formation of 1,3,5-
trisubstituted hydantoins from β,γ-unsaturated ketocarboxylic
acids (Scheme 84).447

12.5. 5,5-Spirohydantoins

12.5.1. Bucherer−Bergs Reaction. On their work on the
synthesis of functionalized cyclobutanones derivatives, Lum-
broso et al. applied the Bucherer−Bergs conditions to (S)-3-
(benzyloxy)-2,2-dimethylcyclobutanone (Scheme 85) and ob-
tained the corresponding spirohydantoin in a good yield of 77%.
The reaction was diastereoselective and afforded the major
isomer in a 92:8 d.r. ratio.448

12.5.2. Reaction with Isocyanates and Urea Deriva-
tives. Kato and Liu employed the same strategy to prepare
spirohydantoins from amino nitriles and potassium cyanate or
chlorosulfonyl isocyanate (see also section 8.2). The two groups
described the enantioselective Strecker synthesis of the amino
nitriles by asymmetric cyanation of ketoimines. Kato et al.
developed a gadolinium-catalyzed system with a D-glucose-
derived ligand and applied their method to the synthesis of the
drug sorbinil, a spirohydantoin with therapeutic effects on
chronic complications of diabetes mellitus (Scheme 86).449 Liu
et al. preferred organocatalysis, using a cinchonidine-derived
thiourea catalyst, to perform the same reaction from isatin-
derived ketoimines450 and prepare by this way a spiro-

[imidazolidine-4,3′-indole]2,2′,5′-(1H)-trione (Scheme 86)
which is an inhibitor at the vanilloid receptor 1 (VR1) developed
by Astra Zeneca for the treatment of pain. A similar
diastereoselective reaction pathway had already been described
by Sacchetti et al.451 More classically, Bleŕiot et al. used
potassium cyanate for the formation of a 6-deoxy-L-lyxofur-
anose-derived spirohydantoin from the corresponding α,α′-
cyclic amino ester that possessed potent herbicidal activity.452

12.6. 1,3-Disubstituted Spirohydantoins

12.6.1. FromMethylene Hydantoins. 1,3-Disubstituted 5-
spirohydantoins were prepared by Pham et al., who synthesized
analogues of hydantocidin, a naturally occurring spironucleoside
first isolated from Streptomyces hygroscopicus, via the [3 + 2]
cycloaddition of methylene hydantoins and several methyl
butynoate-derived phosphonium ylides.192 The regio- and
diastereoselectivity of the reaction could be reached by using
chiral auxiliaries-derived butynoates (Scheme 87). Similar
structures to those obtained by Pham et al. were prepared
from the [3 + 2] cycloaddition of methylene hydantoins and
allenes.453 The reaction was enantioselective and regioselective,
thanks to the use of a chiral phosphepine catalyst.
A number of recent papers focused on the synthesis of

spiroisoxazolinohydantoins. These structures, found to have
biological activities, were usually prepared from the cycloaddition
between 1,3-disubstituted 5-methylene hydantoins and nitrile
oxides454−457 or nitrones.458,459 The reactions were regio- and
diastereoselective and allowed access to various structures thanks
to the variety of substitution of the reactants (Scheme 87).
The synthesis of the LFA-1 antagonist BMS-587101 and its

analogues (see section 2.1) have been largely described. The key
step in the preparation of this spirohydantoin relied on the
cycloaddition of N-(methoxymethyl)-N-(trimethylsilylmethyl)-
benzylamine on the suitable arylidene hydantoin, obtained from
the reaction between 3,5-dichlorophenylisocyanate and sarco-
sine methyl ester followed by the Knoevenagel condensation of
4-cyanobenzaldehyde (Scheme 88). After the cycloaddition,
further steps enable the desired spirohydantoins BMS-587101
and derivatives to be accessed.14,15,460,461

12.6.2. From Other Substrates. Kuster et al. prepared
spirohydantoins with substituted cyclohexene as the 5,5-
substituent of the hydantoins.343 The authors performed a
solid-phase synthesis, anchoring nitroacetic acid on a hydroxy-
methylene resin. The cyclohexene structure was obtained by a
Knoevenagel condensation/Diels−Alder reaction pathway, and
the nitro group was reduced into the free amino moiety, which
reacted with isocyanates to afford after cyclization the
corresponding spirohydantoins.
Oroidin-derived alkaloids, and particularly spirocyclic palau’-

amines, attracted interest for their numerous biological activities.
The synthesis of the structural cores of these natural products
was described following two procedures (since 2004) that are
depicted in Scheme 89.
Romo et al. developed a Diels−Alder/olefin isomerization/

chlorination/ring contraction sequence starting from N,N′-
diprotected imidazolone as diene and α,β-unsaturated lactam as
dienophile.462,463 Tan et al. performed a comparatively more
efficient manganese(III)-promoted radical cyclization cascade by
the oxidation of a β-ketoester derivative of N,N′-diprotected
imidazolone that created the four stereocenters of the palau’-
amine core in one single step (Scheme 89).464 Besides, Cernak et
al. described a Diels−Alder reaction between methylene
hydantoins and cyclopentadiene that could be applicable to the

Scheme 84. DMU as Solvent, Catalyst, and Reactant for the
Synthesis of Hydantoins

Scheme 85. Diastereoselective Bucherer−Bergs Reaction for
the Formation of Spirohydantoins
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Scheme 86. Preparation of Bioactive Spirohydantoins via Asymmetric Synthesis of Amino Nitriles

Scheme 87. Access to Spirohydantoins from Methylene Hydantoins

Scheme 88. Synthesis of LFA-1 Antagonist BMS-587101
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synthesis of palau’amine, as the adducts adopted a major exo

conformation.465 Axinellamines, which are other oroidin-derived

alkaloids, contain a fused hydantoin structure. The synthesis of

their core as well as the preparation of diverse fused hydantoins

are described in the following paragraph.

12.7. Fused Hydantoins

12.7.1. 1,5-Bicyclic Hydantoins. The diastereoselective
preparation of fused bicyclic hydantoins has been described by
Smit and Pavlovic.466 The three steps of the reaction consisted of
first the reaction between β-ketoesters and alkenyl chlorides to
provide the corresponding unsaturated ketones, which were
subjected in the second step to the Bucherer−Bergs conditions,

Scheme 89. Synthesis of Cores of Natural Alkaloids

Scheme 90. Selenium-Containing Fused Bicyclic Hydantoins

Scheme 91. Construction of a Bicyclic Hydantoin Through a Three-Component Reaction
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leading to the corresponding 5-alkenyl-hydantoins. Finally, an
intramolecular electrophilic amidoselenylation of the hydantoin
compounds afforded the fused bicyclic hydantoins (Scheme 90).
The reaction proceeded in mild conditions, giving the desired
hydantoins in moderate to excellent yields with, however, only
moderate to good diastereomeric ratios between the cis and the
trans configurations.
Other bicyclic hydantoin structures that are 2-azapyrrolizidine

alkaloid analogues have been recently reported.467

The procedure consists f a three-component reaction in water
involving a 1-substituted hydantoin, malononitrile, and an
aldehyde. The proposed mechanism suggests a Knoevenagel
condensation between the aldehyde and malononitrile. The
cyclization step follows either a concerted pathway or a two-step
route consisting of a Michael addition of the C-5 carbon of the
hydantoin on the Knoevenagel intermediate followed by a 5-exo-
dig-cyclization (Scheme 91). A variety of substituted bicyclic
structures were synthesized following this highly regio-, chemo-,
and diastereoselective synthesis.
12.7.2. Polycyclic Fused 1,3,5-Trisubstituted Hydan-

toins. Romo et al. described the synthesis of the axinellamine
core,468 starting from the palau’amine core previously described
(see section 12.6). They first opened the lactam ring of the spiro
structure and oxidized the resulting amino alcohol into the
corresponding aldehyde, after removing the triisopropylsilyl-
(TIPS) protecting group. Then, N-1 deprotection and intra-
molecular cyclization were provoked by treatment with cerium
ammonium nitrate to afford the 1,5-fused hydantoin correspond-
ing to the axinellamine core (Scheme 92).
The reaction between aziridine aldehydes and isocyanates, as

well as a hetero Diels−Alder reaction with diazenes, afforded
reduced hydantoin structures that could be then oxidized
through classical protocols.469,470

Very recently, Umstead et al. described the synthesis of
pentacyclic structures with a fused hydantoin core by photo-
induced intramolecular cycloaddition reactions (Scheme 93).471

The synthesis of these structures was based on linking

photoprecursors that were aromatic o-amino ketones to furan

by a heteroatom-containing tether. The photochemical reaction

enabled then to form the hydantoin core by intramolecular

cycloaddition.

13. PREPARATION OF AMINO ACIDS FROM
HYDANTOINS

The hydrolysis of hydantoins is a straightful pathway to the
obtention of unnatural amino acids. Usually, the hydantoins are
prepared from the corresponding ketone following the
Bucherer−Bergs conditions and are then hydrolyzed chemically
or enzymatically. This approach is generally used to prepare
quaternary444,445 and constrained amino acids,197,330,333,472−476

such as spiro structures,477−480 which can then find applications
as potent bioactive compounds,481−486 as peptidomimetics for
peptide modification,29,332,487−490 or as intermediates in the
synthesis of natural products.491 In this section, we will present
the different methods to prepare amino acids from hydantoins
(Scheme 94).

13.1. Chemical Hydrolysis

The chemical hydrolysis of hydantoins, as opposed to the
enzymatic hydrolysis, which is described in the next paragraph, is
mainly performed under basic conditions followed by strong
acidification. One of the most used procedures consists of
hydrolyzing the hydantoinic ring in aqueous concentrated
solutions of sodium hydroxide (2N to 5N NaOH solutions).
Although this method is effective, it usually demands high
temperatures and long reaction times, up to several days, to
obtain the desired amino acids.233,472,475,478 Improved con-
ditions were described by Chen et al., who employed an aqueous
solution of 0.5N NaOH in 1,2-dimethoxyethane, for 10 min only
at 150 °C under microwave irradiation.477 However, in the case
of their compound of interest, the yield of the resulting amino
acid was low (16% yield). The use of Ba(OH)2,

26,27 although still
demanding harsh conditions,29,492 was reported to be more
efficient than NaOH.493 Milder conditions can be found
following procedures employing potassium41,494,495 or lith-
ium496−498 hydroxide for the hydrolysis of 1,3-di(tert-butylox-
ycarbonyl)-hydantoins. The hydrolysis of the unsubstituted
hydantoins prepared from the Bucherer−Bergs reaction was then
developed as a two-step procedure, in which the hydantoins are
first N-substituted by reaction with Boc2O and then cleaved at
room temperature in solutions of THF and aq. LiOH or KOH,
the reaction times remaining consequently long.199,499,500

Apart from the hydrolysis of hydantoins in basic conditions,
some procedures have been reported to be performed in acidic
media, and particularly with halogenohydric acids HCl,501−506

HBr,507,508 andHI.509 Hydrobromic acid was notably reported to
be more efficient in terms of rate of reaction and ease of workup
than sodium hydroxide, hydrochloric acid, or sulfuric acid.508 As
well as in basic media, the hydrolysis of hydantoins using these
reagents required high temperatures, concentrated aqueous
solutions, and long reaction times. Microwave irradiation proved
again to improve these harsh conditions, as Pham et al. reported
the cleavage of their hydantoinic compounds in 30 min at 100 °C
in a 10% HCl solution.192 Although these different methods
demonstrated to be efficient for the preparation of unnatural
amino acids, one inconvenient thing is that they do not enable to

Scheme 92. From Palau’amine to Axinellamine

Scheme 93. Photoinduced Intramolecular Cycloaddition into
Hydantoins
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obtain them in an enantiopure form, as it would be advantageous
for instance in the case of their insertion in modified peptides. In
the case of constrained structures, the Bucherer−Bergs reaction
afforded the corresponding hydantoins with a favored isomer
that enabled then to recover one major isomer of the desired
amino acid.487,510 In any case, the mixture of isomers needed to
be separated. The resolution can be performed by column
chromatography,487,511 selective recrystallization of diastereoiso-
meric derivatives,331,512 formation of complexes,251,513,514 or by
an enzymatic pathway.329,515

13.2. Enzymatic Hydrolysis of Hydantoins

On the contrary to chemical methods, the enzymatic hydrolysis
of hydantoins enables the corresponding amino acid to be
obtained enantioselectivelys. D-Hydantoinase is the most
common enzyme to produce D-amino acids from racemic
hydantoins, L-hydantoinase is more rarely found in Nature and
moreover needs ATP as well as Mn2+, Mg2+, or K+ as cofactors to
be selectively active toward L-substrates.516

The enzymatic process for the production of pure D-amino
acids from racemic hydantoins relies on the activity of two
enzymes, namely D-hydantoinase (E.C.3.5.2.2) and D-N-
carbamoylase, also called N-carbamoyl-D-amino acid amidohy-
drolase (E.C.3.5.1.6). Dynamic kinetic resolution is performed
with D-hydantoinase, which cleaves selectively D-hydantoins to
afford N-carbamoyl-D-amino acids, while L-hydantoins racemize
in the basic conditions of the enzymatic reaction medium. The
activity of D-N-carbamoylase on the N-carbamoyl-amino acids
enables them to obtain the free D-amino acids (Scheme 95). This
process was widely used for the production of D-p-hydrox-
yphenylglycine, a valuable precursor of semisynthetic penicillins
and cephalosporins.517 Enzymes in many isolated microorgan-
isms were studied, either after being immobilized on a
matrix518,519 or used in the whole cells.520−522 Chiang et al.
synthesized by genetic modification of Escherichia coli a
bifunctional protein with both D-hydantoinase and D-N-

carbamoylase activities, which showed a higher reaction rate
than both enzymes used in the common process.523

Other D-amino acids than D-p-hydroxyphenylglycine could be
produced enzymatically,28,39,524 but the corresponding 5-
substituted hydantoin precursors possessed a limiting rate of
spontaneous racemization compared to 5-p-hydroxyphenylgly-
cine. To overcome this problem, Nozaki et al. used whole cells of
E. coli in which the three genes encoding respectively for D-
hydantoinase, D-N-carbamoylase, and hydantoin racemase were
coexpressed,525 which enabled them to efficiently catalyze the
production of eight different pure D-amino acids.
If, as previously mentioned, L-hydantoinase is less commonly

available in Nature, the enantioselective production of L-amino
acids was however reported. Lo et al. prepared variants of
Brevibacillus agri dihydropyrimidinase (BaDHP), an enzyme that
usually acts preferentially on D-homophenylalaninhydantoin (D-
HPAH), by site-directed mutagenesis of the residues important
in the enzyme activity. These variants exhibited then an activity
toward L-HPAH, which enabled to obtain the pure L-amino acid
in a 90% conversion yield upon coupling one of the selected
variants with N-carbamoylase and N -acylamino acid race-
mase.526 Ohishi et al. used D-hydantoinase to perform the
enantioselective cyclization of N-carbamoyl-S-tert-butyl-D,L-α-
methylcysteine, which is the reverse reaction of the usual
hydrolysis activity of this enzyme on hydantoins. This enzymatic
resolution led them to get pure N-carbamoyl-S-tert-butyl-L-α-
methylcysteine, while D-5-methyl-5-tert-butylcysteinhydantoin
was hardly hydrolyzed by D-hydantoinase. Easy separation of
the N-carbamoyl-L-amino acid and further hydrolysis with LiOH
and HCl afforded L-methylcysteine with 99.6% ee.30

Overall, the enzymatic hydrolysis of racemic hydantoins
represents an attractive process for the preparation of
enantiopure amino acids. The enantioselectivity of the enzymatic
reactions, the mild reaction conditions, and the stability of the
enzymes, either immobilized or in cells, as efficient catalysts are

Scheme 94. Pathways to the Production of Amino Acids from Hydantoins

Scheme 95. Enzymatic Process for the Production of D-p-Hydroxyphenylglycine
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advantages that enable this process to be scalable30,527 and then
potentially applicable in the industry.

14. CONCLUSIONS
As illustrated by the literature presented in this review, the
preparation of hydantoin structures has raised a great interest in
the methodology, total synthesis, and medicinal chemistry areas.
The hydantoin core has proven to be an important
pharmacophore that provides a wide range of biological
properties to the diverse hydantoin derivatives. This has led
groups of synthetic and medicinal chemists to explore the
synthetic methods to access these valuable molecules, as well as
looking for more sustainable alternatives to the previously
existing procedures.528 The different families of molecules, i.e.,
substituted hydantoins at positions C-5, N-1, and N-3, alkyl/
arylidene, spiro, polycyclic, and amino hydantoins, contribute to
the extended variety of biomedical applications that have already
been assessed or that will be with the future discovery or design
of novel structures. The latter as well as further exploration of the
potential medicinal and pharmaceutical relevance of hydantoinic
compounds represent the future directions and challenges of the
field.
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