The Neumann numerical boundary condition for transport equations - Archive ouverte HAL
Article Dans Une Revue Kinetic and Related Models Année : 2020

The Neumann numerical boundary condition for transport equations

Résumé

In this article, we show that prescribing homogeneous Neumann type numerical boundary conditions at an outflow boundary yields a convergent discretization in $\ell^\infty$ for transport equations. We show in particular that the Neumann numerical boundary condition is a stable, local, and absorbing numerical boundary condition for discretized transport equations. Our main result is proved for explicit two time level numerical approximations of transport operators with arbitrarily wide stencils. The proof is based on the energy method and bypasses any normal mode analysis.
Fichier principal
Vignette du fichier
CL_final.pdf (406.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01902551 , version 1 (23-10-2018)
hal-01902551 , version 2 (05-11-2018)

Identifiants

Citer

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic and Related Models , 2020, 13 (1), pp.1-32. ⟨10.3934/krm.2020001⟩. ⟨hal-01902551v2⟩
366 Consultations
2250 Téléchargements

Altmetric

Partager

More