On the strong stability of finite difference schemes for hyperbolic systems in two space dimensions - Archive ouverte HAL
Article Dans Une Revue Calcolo Année : 2014

On the strong stability of finite difference schemes for hyperbolic systems in two space dimensions

Résumé

We study the stability of some finite difference schemes for symmetric hyperbolic systems in two space dimensions. For the so-called upwind scheme and the Lax-Wendroff scheme with a stabilizer, we show that stability is equivalent to strong stability, meaning that both schemes are either unstable or L2-decreasing. These results improve on a series of partial results on strong stability. We also show that, for the Lax-Wendroff scheme without stabilizer, strong stability may not occur no matter how small the CFL parameters are chosen. This partially invalidates some of Turkel's conjectures.
Fichier principal
Vignette du fichier
Num2d.pdf (273.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00727417 , version 1 (03-09-2012)

Identifiants

Citer

Jean-François Coulombel. On the strong stability of finite difference schemes for hyperbolic systems in two space dimensions. Calcolo, 2014, 51 (1), pp.97-108. ⟨10.1007/s10092-013-0077-5⟩. ⟨hal-00727417⟩
233 Consultations
263 Téléchargements

Altmetric

Partager

More