Stability of finite difference schemes for hyperbolic initial boundary value problems II - Archive ouverte HAL
Article Dans Une Revue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze Année : 2011

Stability of finite difference schemes for hyperbolic initial boundary value problems II

Résumé

We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming stability for the dicretization of the hyperbolic operator as well as a geometric regularity condition, we show that the uniform Kreiss-Lopatinskii condition yields strong stability for the discretized initial boundary value problem. The present work extends results of Gustafsson, Kreiss, Sundstrom and a former work of ours to the widest possible class of finite difference schemes by dropping some technical assumptions. We give some new examples of numerical schemes for which our results apply.
Fichier principal
Vignette du fichier
IBVP_num_II.pdf (551.27 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00412050 , version 1 (31-08-2009)

Identifiants

Citer

Jean-François Coulombel. Stability of finite difference schemes for hyperbolic initial boundary value problems II. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, 2011, X (1), pp.37-98. ⟨10.2422/2036-2145.2011.1.03⟩. ⟨hal-00412050⟩
207 Consultations
121 Téléchargements

Altmetric

Partager

More